Features - Fast Read Access Time 120 ns - Dual Voltage Range Operation - Unregulated Battery Power Supply Range, 2.7V to 3.6V or Standard 5V ±10% Supply Range - Pin Compatible with JEDEC Standard AT27C4096 - Low Power CMOS Operation - 20 μ A Max (Less than 1 μ A Typical) Standby for V_{CC} = 3.6V - 36 mW Max Active at 5 MHz for V_{CC} = 3.6V - JEDEC Standard Surface Mount Packages - 44-lead PLCC - 40-lead VSOP - High Reliability CMOS Technology - 2,000V ESD Protection - 200 mA Latchup Immunity - Rapid Programming algorithm 100 µs/Word (Typical) - CMOS and TTL Compatible Inputs and Outputs - JEDEC Standard for LVTTL and LVBO - Integrated Product Identification Code - Industrial Temperature Range - · Green (Pb/Halide-free) Packaging Option ### 1. Description The AT27BV4096 is a high-performance, low-power, low-voltage 4,194,304-bit one-time programmable read-only memory (OTP EPROM) organized as 256K by 16 bits. It requires only one supply in the range of 2.7V to 3.6V in normal read mode operation. The by-16 organization makes this part ideal for portable and handheld 16 and 32 bit microprocessor based systems using either regulated or unregulated battery power. Atmel's innovative design techniques provide fast speeds that rival 5V parts while keeping the low power consumption of a 3V supply. At $V_{\rm CC}$ = 2.7V, any word can be accessed in less than 120 ns. With a typical power dissipation of only 18 mW at 5 MHz and $V_{\rm CC}$ = 3V, the AT27BV4096 consumes less than one fifth the power of a standard 5V EPROM. Standby mode supply current is typically less than 1 μ A at 3V. The AT27BV4096 simplifies system design and stretches battery lifetime even further by eliminating the need for power supply regulation. The AT27BV4096 is available in industry-standard JEDEC-approved one-time programmable (OTP) plastic PLCC and VSOP packages. All devices feature two-line control ($\overline{\text{CE}}$, $\overline{\text{OE}}$) to give designers the flexibility to prevent bus contention. The AT27BV4096 operating with V_{CC} at 3.0V produces TTL level outputs that are compatible with standard TTL logic devices operating at $V_{CC} = 5.0$ V. At $V_{CC} = 2.7$ V, the part is compatible with JEDEC approved low voltage battery operation (LVBO) interface specifications. The device is also capable of standard 5-volt operation making it ideally suited for dual supply range systems or card products that are pluggable in both 3-volt and 5-volt hosts. 4-Megabit (256K x 16) Unregulated Battery-Voltage High-Speed OTP EPROM AT27BV4096 Not Recommended for New Designs. 0640E-EPROM-8/07 Atmel's AT27BV4096 has additional features to ensure high quality and efficient production use. The Rapid Programming Algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 μ s/word. The Integrated Product Identification Code electronically identifies the device and manufacturer. This feature is used by industry-standard programming equipment to select the proper programming algorithms and voltages. The AT27BV4096 programs exactly the same way as a standard 5V AT27C4096 and uses the same programming equipment. ## 2. Pin Configurations | Pin Name | Function | |----------|---------------| | A0 - A17 | Addresses | | O0 - O15 | Outputs | | CE | Chip Enable | | ŌĒ | Output Enable | | NC | No Connect | Note: Both GND pins must be connected. ### 2.1 40-lead VSOP Top View Type 1 ### 2.2 44-lead PLCC Top View Note: PLCC package pins 1 and 23 are Don't Connect. 2 ## 3. System Considerations Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array. ### 4. Block Diagram ## 5. Absolute Maximum Ratings* | Temperature Under Bias55° C to +125° C | |--| | Storage Temperature65° C to +150° C | | Voltage on Any Pin with Respect to Ground2.0V to +7.0V ⁽¹⁾ | | Voltage on A9 with Respect to Ground2.0V to +14.0V ⁽¹⁾ | | V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾ | *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability Note: 1. Minimum voltage is -0.6V DC which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC which may be exceeded if certain precautions are observed (consult application notes) and which may overshoot to +7.0V for pulses of less than 20 ns. ## 6. Operating Modes | Mode/Pin | CE | ŌĒ | Ai | V_{PP} | V _{cc} | Outputs | |--|-----------------|-----------------|---|------------------|-----------------|---------------------| | Read ⁽²⁾ | V _{IL} | V _{IL} | Ai | X ⁽¹⁾ | V _{CC} | D _{OUT} | | Output Disable ⁽²⁾ | Х | V _{IH} | X | Х | V _{CC} | High Z | | Standby ⁽²⁾ | V _{IH} | Х | Х | X ⁽⁵⁾ | V _{CC} | High Z | | Rapid Program ⁽³⁾ | V _{IL} | V _{IH} | Ai | V _{PP} | V _{CC} | D _{IN} | | PGM Verify ⁽³⁾ | V _{IH} | V_{IL} | Ai | V_{PP} | V _{CC} | D _{OUT} | | PGM Inhibit ⁽³⁾ | V _{IH} | V _{IH} | Х | V _{PP} | V _{CC} | High Z | | Product Identification ⁽³⁾⁽⁵⁾ | V _{IL} | V _{IL} | $A9 = V_{H}^{(4)}$
$A0 = V_{IH} \text{ or } V_{IL}$
$A1 - A17 = V_{IL}$ | V _{cc} | V _{cc} | Identification Code | Notes: 1. X can be V_{IL} or V_{IH} . - 2. Read, output disable, and standby modes require, 2.7V \leq V_{CC} \leq 3.6V, or 4.5V \leq V_{CC} \leq 5.5V. - 3. Refer to Programming Characteristics. Programming modes require $V_{CC} = 6.5V$. - 4. $V_H = 12.0 \pm 0.5V$. - 5. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte. ## 7. DC and AC Operating Conditions for Read Operation | | AT27BV4096-12 | | | | |---|----------------|--|--|--| | Industrial Operating Temperature (Case) | -40° C - 85° C | | | | | V. Dawar Supply | 2.7V to 3.6V | | | | | V _{CC} Power Supply | 5V ±10% | | | | ## 8. DC and Operating Characteristics for Read Operation | Symbol | Parameter | Condition | Min | Max | Units | |---------------------------------|---|--|-----------------------|-----------------------|-------| | V _{CC} = 2.7 | / to 3.6V | | | | | | I _{LI} | Input Load Current | V _{IN} = 0V to V _{CC} | | ±1 | μΑ | | I _{LO} | Output Leakage Current | V _{OUT} = 0V to V _{CC} | | ±5 | μA | | I _{PP1} ⁽²⁾ | V _{PP} ⁽¹⁾ Read/Standby Current | $V_{PP} = V_{CC}$ | | 10 | μA | | |) (1) (1) (1) (1) (1) | I_{SB1} (CMOS), $\overline{CE} = V_{CC \pm} 0.3V$ | | 20 | μA | | I _{SB} | V _{CC} ⁽¹⁾ Standby Current | I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V | | 100 | μΑ | | I _{CC} | V _{CC} Active Current | $f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}, V_{CC} = 3.6V$ | | 10 | mA | | ., | | V _{CC} = 3.0 to 3.6V | -0.6 | 0.8 | V | | V_{IL} | Input Low Voltage | V _{CC} = 2.7 to 3.6V | -0.6 | 0.2 x V _{CC} | V | | | | V _{CC} = 3.0 to 3.6V | 2.0 | V _{CC} + 0.5 | V | | V_{IH} | Input High Voltage | V _{CC} = 2.7 to 3.6V | 0.7 x V _{CC} | V _{CC} + 0.5 | V | | | | I _{OL} = 2.0 mA | | 0.4 | V | | V _{OL} | Output Low Voltage | I _{OL} = 100 μA | | 0.2 | V | | | | I _{OL} = 20 μA | | 0.1 | V | | | | I _{OH} = -2.0 mA | 2.4 | | V | | V_{OH} | Output High Voltage | I _{OH} = -100 μA | V _{CC} - 0.2 | | V | | | | I _{OH} = -20 μA | V _{CC} - 0.1 | | V | | V _{CC} = 4.5 | / to 5.5V | | | | | | I _{LI} | Input Load Current | $V_{IN} = 0V$ to V_{CC} | | ±1 | μΑ | | I _{LO} | Output Leakage Current | V _{OUT} = 0V to V _{CC} | | ±5 | μΑ | | I _{PP1} ⁽²⁾ | V _{PP} ⁽¹⁾ Read/Standby Current | $V_{PP} = V_{CC}$ | | 10 | μΑ | | _ |), (1) a, , , , , | I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$ | | 100 | μΑ | | I _{SB} | V _{CC} ⁽¹⁾ Standby Current | I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V | | 1 | mA | | I _{cc} | V _{CC} Active Current | $f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$ | | 40 | mA | | V _{IL} | Input Low Voltage | | -0.6 | 0.8 | V | | V _{IH} | Input High Voltage | | 2.0 | V _{CC} + 0.5 | V | | V _{OL} | Output Low Voltage | I _{OL} = 2.1 mA | | 0.4 | V | | V _{OH} | Output High Voltage | I _{OH} = -400 μA | 2.4 | | V | Notes: 1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously with or after V_{PP} 2. V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP} ## 9. AC Characteristics for Read Operation $V_{CC} = 2.7V$ to 3.6V and 4.5V to 5.5V | | | | AT27BV4096-12 | | | | |-----------------------------------|---|------------------------------|---------------|-----|-------|--| | Symbol | Parameter | Condition | Min | Max | Units | | | t _{ACC} ⁽³⁾ | Address to Output Delay | CE = OE
= V _{IL} | | 120 | ns | | | t _{CE} ⁽²⁾ | CE to Output Delay | OE = V _{IL} | | 120 | ns | | | t _{OE} ⁽²⁾⁽³⁾ | OE to Output Delay | CE = V _{IL} | | 35 | ns | | | t _{DF} ⁽⁴⁾⁽⁵⁾ | OE or CE High to Output Float, Whichever Occurred First | | | 30 | ns | | | t _{OH} | Output Hold from Address, $\overline{\text{CE}}$ or $\overline{\text{OE}}$, Whichever Occurred First | | 0 | | ns | | # 10. AC Waveforms for Read Operation⁽¹⁾ - Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified. - 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} . - 3. $\overline{\text{OE}}$ may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} . - 4. This parameter is only sampled and is not 100% tested. - 5. Output float is defined as the point when data is no longer driven. - 6. When reading a AT27BV4096, a 0.1 μ F capacitor is required across V_{CC} and ground to suppress spurious voltage transients. ## 11. Input Test Waveforms and Measurement Levels ## 12. Output Test Load Note: CL = 100 pF including jig capacitance. # 13. Pin Capacitance $f = 1 \text{ MHz } T = 25^{\circ}C^{(1)}$ | Symbol | Тур Мах | | Units | Conditions | | |------------------|---------|----|-------|-----------------------|--| | C _{IN} | 4 | 10 | pF | $V_{IN} = 0V$ | | | C _{OUT} | 8 | 12 | pF | V _{OUT} = 0V | | Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested. # 14. Programming Waveforms⁽¹⁾ Notes: - 1. The Input Timing Reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$. - 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer. - 3. When programming the AT27BV4096 a 0.1 μ F capacitor is required across V_{PP} and ground to suppress spurious voltage transients. ## 15. DC Programming Characteristics $T_A = 25 \pm 5^{\circ} C$, $V_{CC} = 6.5 \pm 0.25 V$, $V_{PP} = 13.0 \pm 0.25 V$ | | | | Lin | Limits | | |------------------|---|---------------------------|------|-----------------------|-------| | Symbol | Parameter | Test Conditions | Min | Max | Units | | ILI | Input Load Current | $V_{IN} = V_{IL}, V_{IH}$ | | ±10 | mA | | V _{IL} | Input Low Level | | -0.6 | 0.8 | V | | V _{IH} | Input High Level | | 2.0 | V _{CC} + 0.1 | V | | V _{OL} | Output Low Voltage | I _{OL} = 2.1 mA | | 0.4 | V | | V _{OH} | Output High Voltage | I _{OH} = -400 μA | 2.4 | | V | | I _{CC2} | V _{CC} Supply Current (Program and Verify) | | | 50 | mA | | I _{PP2} | V _{PP} Supply Current | CE = V _{IL} | | 30 | mA | | V _{ID} | A9 Product Identification Voltage | | 11.5 | 12.5 | V | ## 16. AC Programming Characteristics $T_A = 25 \pm 5^{\circ} C$, $V_{CC} = 6.5 \pm 0.25 V$, $V_{PP} = 13.0 \pm 0.25 V$ | | | | Lir | | | |------------------|---|---|------|---------|----| | Symbol | Parameter | Test Conditions ⁽¹⁾ | Min | Min Max | | | t _{AS} | Address Setup Time | | 2 | | μs | | t _{CES} | CE Setup Time | | 2 | | μs | | t _{OES} | OE Setup Time | Input Rise and Fall Times: | 2 | | μs | | t _{DS} | Data Setup Time | (10% to 90%) 20 ns | 2 | | μs | | t _{AH} | Address Hold Time | Input Pulse Levels: | 0 | | μs | | t _{DH} | Data Hold Time | 0.45V to 2.4V | 2 | | μs | | t _{DFP} | OE High to Output Float Delay ⁽²⁾ | | 0 | 130 | ns | | t _{VPS} | V _{PP} Setup Time | Input Timing Reference Level: 0.8V to 2.0V | 2 | | μs | | t _{VCS} | V _{CC} Setup Time | 0.00 10 2.00 | 2 | | μs | | t _{PW} | PGM Program Pulse Width ⁽³⁾ | Output Timing Reference Level: | 47.5 | 52.5 | μs | | t _{OE} | Data Valid from OE | 0.8V to 2.0V | | 150 | ns | | t _{PRT} | V _{PP} Pulse Rise Time During
Programming | | 50 | | ns | Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} - 2. This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven see timing diagram. - 3. Program Pulse width tolerance is 50 μ sec \pm 5%. ## 17. Atmel's AT27BV4096 Integrated Product Identification Code⁽¹⁾ | | | Pins | | | | | | | Hex | | | |--------------|----|--------|----|------------|----|----|----|----|-----|----|------| | Codes | A0 | O15-O8 | 07 | O 6 | O5 | 04 | О3 | O2 | 01 | 00 | Data | | Manufacturer | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 001E | | Device Type | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 00F4 | Note: 1. The AT27BV4096 has the same Product Identification Code as the AT27C4096. Both are programming compatible. ### 18. Rapid Programming Algorithm A 50 μs \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 50 μs \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a word fails to pass verification, up to 10 successive 50 μs pulses are applied with a verification after each pulse. If the word fails to verify after 10 pulses have been applied, the part is considered failed. After the word verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All words are read again and compared with the original data to determine if the device passes or fails. # 19. Ordering Information ## 19.1 Standard Package | t _{ACC} | t _{ACC} I _{CC} (mA) (ns) Active Standby | | | | | |------------------|---|--------|-----------------|---------|------------------------| | (ns) | | | Ordering Code | Package | Operation Range | | 120 | 0 | 8 0.02 | AT27BV4096-12JI | 44J | Industrial | | 120 | 0 | | AT27BV4096-12VI | 40V | (-40° C to 85° C) | Note: Refer to PCN# SC042702. ## 19.2 Green Package (Pb/Halide-free) | t _{ACC} | I _{CC} (mA) | | | | | | |------------------|----------------------|------|------------------------------|-----|---------------------------------|-----------------| | (ns) | Active Standby | | Active Standby Ordering Code | | Package | Operation Range | | 120 | 8 | 0.02 | AT27BV4096-12JU | 44J | Industrial
(-40° C to 85° C) | | | Package Type | | | |--------------|--|--| | 44J | 44-lead, Plastic J-leaded Chip Carrier (PLCC) | | | 40V | 40-lead, Plastic Thin Small Outline Package (VSOP) | | ## 20. Packaging Information #### 20.1 44J - PLCC Notes: - 1. This package conforms to JEDEC reference MS-018, Variation AC. - 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line. - 3. Lead coplanarity is 0.004" (0.102 mm) maximum. | COMMON | DIMENSIONS | |--------------|---------------| | /I Init of M | 0001180 8080) | NOTE 4.572 Α1 2.286 3.048 0.508 _ A2 17.399 17.653 D 16.510 D1 16.662 Note 2 Ε 17.399 17.653 16.510 E1 16.662 Note 2 D2/E2 14.986 16.002 В 0.660 0.813 В1 0.330 0.533 1.270 TYP е 10/04/01 | | TITLE | DRAWING NO. | REV. | |--|--|-------------|------| | 2325 Orchard Parkway
San Jose, CA 95131 | 44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) | 44J | В | ### 20.2 40T - VSOP Notes: - 1. This package conforms to JEDEC reference MO-142, Variation CA. - 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side. - 3. Lead coplanarity is 0.10 mm maximum. | SYMBOL | MIN | NOM | MAX | NOTE | |--------|------------|-------|-------|--------| | Α | _ | _ | 1.20 | | | A1 | 0.05 | _ | 0.15 | | | A2 | 0.95 | 1.00 | 1.05 | | | D | 13.80 | 14.00 | 14.20 | | | D1 | 12.30 | 12.40 | 12.50 | Note 2 | | E | 9.90 | 10.00 | 10.10 | Note 2 | | L | 0.50 | 0.60 | 0.70 | | | L1 | 0.25 BASIC | | | | | b | 0.17 | 0.22 | 0.27 | | | С | 0.10 | _ | 0.21 | | | е | 0.50 BASIC | | | | | | | | | | 10/18/01 | 4Imei | 2325 Orchard
San Jose, CA | Parkway | |--------|------------------------------|---------| | AIIIEL | San Jose, CA | 95131 | **TITLE 40V**, 40-lead (10 x 14 mm Package) Plastic Thin Small Outline Package, Type I (VSOP) DRAWING NO. REV. 40V B #### Headquarters Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 #### International Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe France Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 #### **Product Contact** Web Site www.atmel.com Technical Support eprom@atmel.com Sales Contact www.atmel.com/contacts Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2007 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.