

÷2/4, ÷4/5/6 CLOCK GENERATION CHIP

Precision Edge[®] SY100S839V

FEATURES

- 3.3V and 5V power supply option
- 50ps output-to-output skew
- 50% duty cycle outputs
- Synchronous enable/disable
- Master Reset for synchronization
- Internal 75KΩ input pull-down resistors
- Available in 20-pin SOIC package

DESCRIPTION

The SY100S839V is a low skew $\div 2/4$, $\div 4/5/6$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The device can be driven by either a differential or single-ended ECL/LVECL or, if positive power supplies are used, PECL/LVPECL input signal. In addition, by using the VBB output, a sinusoidal source can be AC-coupled into the device. If a single-ended input is to be used, the VBB output should be connected to the /CLK input and bypassed to ground via a 0.01 μ F capacitor. The VBB output is designed to act as the switching reference for the input of the S839V under single-ended input conditions. As a result, this pin can only source/sink up to 0.5mA of current.

The common enable (/EN) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon start-up, the internal flip-flops will attain a random state; the master reset (MR) input must be asserted to ensure synchronization. For systems which only use one S839V, the MR pin need not be exercised as the internal divider designs ensures synchronization between the $\pm 2/4$, and the $\pm 4/5/6$ outputs of a single device.

Precision Edge is a registered trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION

Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100S839VZC	Z20-1	Commercial	SY100S839VZC	Sn-Pb
SY100S839VZCTR ⁽¹⁾	Z20-1	Commercial	SY100S839VZC	Sn-Pb
SY100S839VZG ⁽²⁾	Z20-1	Industrial	SY100S839VZG with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100S839VZGTR ^(1, 2)	Z20-1	Industrial	SY100S839VZG with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

1. Tape and Reel.

2. Pb-Free package is recommended for new designs.

20-Pin SOIC (Z20-1)

TRUTH TABLE

CLK	/EN	MR	Function
Z	L	L	Divide
ZZ	Н	L	Hold Q0–3
Х	Х	Н	Reset Q0-3

Note:

Z = LOW-to-HIGH transition

ZZ = HIGH-to-LOW transition

DIVSELa	Q0, Q1 OUTPUTS
0	Divide by 2
1	Divide by 4

DIVSELb1	DIVSELb0	Q2, Q3 OUTPUTS
0	0	Divide by 4
0	1	Divide by 6
1	0	Divide by 5
1	1	Divide by 5

PIN NAMES

Pin	Function
CLK	Differential Clock Inputs
/EN	Synchronous Enable
MR	Master Reset
Vbb	Reference Output
Q0, Q1	Differential ÷2/4 Outputs
Q2, Q3	Differential ÷4/5/6 Outputs
DIVSEL	Frequency Select Input

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

VEE = VEE (min) to VEE (max); VCC = GND

		$TA = -40^{\circ}C \qquad TA = 0^{\circ}C$;	Т	4 = +25°	С	Т				
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
IEE	Power Supply Current	_	50	95	—	50	95	—	50	95	—	54	95	mA
VBB	Output Reference Voltage	-1.38	_	-1.26	-1.38	—	-1.26	-1.38	_	-1.26	-1.38	—	-1.26	V
Ін	Input High Current	_	—	150	—	—	150	—	_	150	_	—	150	μΑ
Vон	Output HIGH Voltage ⁽²⁾	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	-1025	-955	-880	mV
Vol	Output LOW Voltage ⁽²⁾	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	-1810	-1705	-1620	mV
Vона	Output HIGH Voltage ⁽³⁾	-1095	_	_	-1035	—	_	-1035	_	_	-1035	_	—	mV
Vola	Output LOW Voltage ⁽³⁾		_	-1555	_	_	-1610	—	_	-1610	_	_	-1610	mV
Viн	Input HIGH Voltage	-1165	_	-880	-1165	_	-880	-1165	_	-880	-1165	_	-880	mV
VIL	Input LOW Voltage	-1810	_	-1475	-1810	—	-1475	-1810	_	-1475	-1810	_	-1475	mV
lı∟	Input LOW Current ⁽⁴⁾	0.5	_		0.5	_		0.5	_	_	0.5		—	μA

Note:

1. Parametric values specified at: -3.0V to -3.8V or -4.2V to -5.5V.

2. VIN = VIH(Max) or VIL(Min): Loading with 50Ω to -2.0V.

3. VIN = VIH(Min) or VIL(Max): Loading with 50Ω to -2.0V.

4. VIN = VIL(Min).

AC ELECTRICAL CHARACTERISTICS⁽¹⁾

VEE = VEE (min) to VEE (max); VCC = GND

		TA = −40°C		TA = 0°C			TA = +25°C			TA				
Symbol	Parameter	Min.	Тур.	Max.	Unit									
fmax	Maximum Toggle Frequency	1000	_	_	1000		_	1000			1000	_	_	MHz
tPD	Propagation Delay to Output CLK → Output (Diff.) CLK → Output (S.E.) MR → Output	725 675 600		925 975 900	725 675 600		925 975 900	725 675 610		925 975 910	725 675 630		925 975 930	ps
tskew	Within-Device Skew $^{(2)}$ Q0 — Q3Part-to-PartQ0 — Q3 (Diff.)	_	_	50 200			50 200	_		50 200	_	_	50 200	ps
ts	Set-up Time $/EN \rightarrow /CLK$ DIVSEL $\rightarrow CLK$	250 400	_	_	250 400		_	250 400			250 400	_	_	ps
tн	Hold Time $/CLK \rightarrow /EN$ $CLK \rightarrow DIVSEL$	100 150	_	_	100 150			100 150			100 150			ps
Vpp	Minimum Input Swing ⁽³⁾ CLK	250	—		250	_	—	250	_	_	250	—	_	mV
VCMR	Common Mode Range ^{(4), (5)}	-1.6	_	-0.4	-1.7	—	-0.4	-1.7	—	-0.4	-1.7	—	-0.4	V
trr	Reset Recovery Time	_	_	100	_	_	100	_	_	100	_	_	100	ps
tPW	Minimum Pulse Width CLK MR	500 700	_	_	500 700		_	500 700			500 700	_	_	ps
tr tf	Output Rise/Fall Times Q (20% —80%)	280	—	550	280	_	550	280	—	550	280	—	550	ps

Notes:

1. Parametric values specified at: -3.0V to -3.8V or -4.2V to -5.5V.

2. Skew is measured between outputs under identical transitions.

3. Minimum input swing for which AC parameters are guaranteed. The device will function reliably with differential inputs down to 100mV.

4. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPP min. and 1V. The lower end of the CMR range varies 1:1 with VEE. The numbers in the spec table assume a nominal VEE = -3.3V. Note for PECL operation, the VCMR (min) will be fixed at 3.3V – IVCMR (min)I.

5. Duty Cycle: (Min. 48%; Max. 52%) } over temp.

LOGIC DIAGRAM

TIMING DIAGRAMS

20-PIN SOIC .300" WIDE (Z20-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.