

XR33202

Description

Typical Application

The XR33202 is a high performance TIA-485/TIA-422 transceiver designed to meet the increasing system requirements found in today's portable/handheld, process control and industrial equipment environments. This is a wide supply (3.0V to 5.5V) device that operates at maximum data rate of 20Mbps and features a 1.65V to 5.5V I/O logic supply, simplifying multi-voltage system interfacing requirements.

The receiver includes full fail-safe circuitry, guaranteeing a logichigh receiver output when the receiver inputs are open, shorted or undriven. The XR33202 receiver input impedance is at least $96k\Omega$ (1/8 unit load), allowing more than 256 devices on the bus.

The driver is protected by short circuit detection as well as thermal shutdown and maintains high impedance in shutdown or when powered off. The XR33202 does not have slew limiting and is intended for high speed applications requiring data rates up to 20Mbps.

The DE and $\overline{\text{RE}}$ pins include hot swap circuitry to prevent false transitions on the bus during power up or live insertion and can enter a 1µA low current shutdown mode for extreme power savings.

The XR33202 is a half-duplex device that operates at max data rates of 20Mbps. It is available in a 10-pin DFN package.

FEATURES

- Wide 3.0V to 5.5V supply operation
- 1.65V to 5.5V I/O logic interface VL pin
- Enhanced receiver fail-safe protection for open, shorted or terminated but idle data lines
- Hot swap glitch protection on DE and RE Pins
- Robust ESD (Electrostatic Discharge) protection for TIA-485 bus pins
 - ±15kV human body model
 - ±15kV IEC61000-4-2 air discharge
 - ±8kV IEC61000-4-2 contact discharge
- Driver short circuit limit and thermal shutdown for overload protection
- -40°C to 125°C ambient operating temperature range
- Lead-free (RoHS 6) DFN

APPLICATIONS

- Portable and handheld equipment
- Industrial and process control equipment
- Point-of-sale equipment
- Building security and automation

Figure 1. Typical Application

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Maximum Rating condition for extended periods may affect device reliability and lifetime.

Supply voltage (V _{CC})		-0.3V to 7.0V		
Logic interface voltage (VL)		$V_L \le V_{CC}$		
Junction temperature		150ºC		
land a land	DE and DI	-0.3V to 6.0V		
Input voltages	RE	-0.3V to (V _L + 0.3V)		
Output voltage	RO	-0.3V to (V _L + 0.3V)		
Driver output voltage A/Y, B/Z		±18V		
Receiver input voltages A/Y, B/Z		±18V		
Operating Conditions				
Operating temperature range		-40°C to 125°C		
V _{CC} supply range		3.0V to 5.5V		
V_L I/O supply range (VL $\leq V_{CC}$)		1.65V to 5.5V		
Thermal Information				
θ _{JA}		40.5°C/W		
θ _{JC}		8.5°C/W		

Pin Configuration

Pin Functions

Pin Number	Pin Name	Туре	Description	
1	VL	Supply	I/O power supply, sets the logic levels for RO, DE, $\overline{\text{RE}}$ and DI	
2	RO	Output	Receiver output	
3	DE	Input	Driver enable, driver active when $DE = 1$, disabled when $DE = 0$	
4	RE	Input	Receiver enable, receiver is disabled when $\overline{RE} = 1$, enabled when $\overline{RE} = 0$	
5	DI	Input	Driver input	
6	GND	Supply	Ground	
7	NC		No connection, can be connected to ground	
8	A/Y	I/O	±15kV ESD protected, TIA-485/TIA-422 half-duplex non-inverting receiver input and non-inverting driver output	
9	B/Z	I/O	±15kV ESD protected, TIA-485/TIA-422 half-duplex inverting receiver input and inverting driver output	
10	V _{CC}	Supply	Power supply	
*	Paddle		Exposed paddle (DFN package), connect to ground	

Electrical Characteristics

Specifications are at $T_A = 25^{\circ}$ C, $V_{CC} = 3.3V \pm 10\%$ or $5.0V \pm 10\%$, $V_L = V_{CC}$ unless otherwise noted. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}$ C, and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Driver DC C	haracteristics					
		RL = 100Ω (TIA-422), V _{CC} = 3.0V	2.0			V
N		RL = 54Ω (TIA-485), V _{CC} = 3.0V	1.5			V
V _{OD}	Differential driver output	RL = 100Ω (TIA-422), V_{CC} = 4.5V	2.25			v
		RL = 54 Ω (TIA-485), V _{CC} = 4.5V	2.25			V
ΔV_{OD}	Change in magnitude of differential output voltage	$RL = 100\Omega \text{ or } 54\Omega$	-0.2		0.2	v
V _{CM}	Driver common-mode output voltage (steady state)	RL = 100Ω or 54Ω		V _{CC/2}	3	v
ΔV_{CM}	Change in magnitude of common-mode output voltage	RL = 100Ω or 54Ω	-0.2		0.2	v
4.0	Input current (A and B)	$V_{OUT} = 12V, DE = 0V$ $V_{CC} = 0V \text{ or } 5.5V$			125	μΑ
I _{A, B}		$V_{OUT} = -7V$, DE = 0V $V_{CC} = 0V$ or 5.5V	-100			μA
I _{OL}	Output leakage (Y and Z)	V_{OUT} = 12V, DE = 0V V_{CC} = 0V or 5.5V			125	μA
		$V_{OUT} = -7V, DE = 0V$ $V_{CC} = 0V \text{ or } 5.5V$	-100			μA
I _{OSD}	Driver short-circuit output current	$-7V \le V_{OUT} \le +12V$	-250		250	mA
Receiver DC	Characteristics					
V _{TH}	Receiver differential threshold voltage (V _A - V _B)	$-7V \le V_{CM} \le 12V$	-200	-125	-50	mV
ΔV_{OH}	Receiver input hysteresis	$V_{CM} = 0V$		25		mV
R _{IN}	Receiver input resistance	$-7V \le V_{CM} \le 12V$	96			kΩ
I _{OSC}	Receiver output short-circuit current	$0V \le V_{RO} \le V_L$	-120		120	mA
Logic Inputs	and Outputs					
V _{IH}	Logic input thresholds (DI, DE, \overline{RE})	Logic input high	2/3*V _L			V
V _{IL}	$1.65V \le V_{L} \le 5.5V \& V_{L} \le V_{CC}$	Logic input low			1/3*V _L	v
V _{HYS}	Input hysteresis (DI, DE, \overline{RE})			50		mV
I _{IN}	Logic input current (DI, DE, RE)	$0V \le V_{IN} \le V_L$, after first transition			1	μA
I _{INHS}	Logic input current hot swap (DE and RE)	Until first transition			±320	μA
V _{OH}	Receiver output high voltage (RO)	$3.0V \le V_L \le 5.5V$, $I_{OUT} = -1mA$ $1.6V \le V_L \le 3.0V$, $I_{OUT} = -1mA$	V _L - 0.6			v
V _{OL}	Receiver output low voltage (RO)	$\begin{array}{l} 3.0V \leq V_L \leq 5.5V, \ I_{OUT} = 1 \text{mA} \\ 1.6V \leq V_L \leq 3.0V, \ I_{OUT} = 1 \text{mA} \end{array}$			0.4	v
I _{OZR}	High-Z receiver output current	$0V \le V_{OUT} \le V_{L}$	-1		1	μA

Electrical Characteristics

Specifications are at $T_A = 25^{\circ}$ C, $V_{CC} = 3.3V \pm 10\%$ or $5.0V \pm 10\%$, $V_L = V_{CC}$ unless otherwise noted. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}$ C, and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
Supply	Supply							
V _{CC}	Supply voltage range		3.0		5.5	V		
		No load. $\overline{RE} = 0V$, DE = V _L , DI = 0V		400	600	μA		
Icc	Supply current	No load. $\overline{RE} = V_L$, DE = V _L , DI = 0V		300	600	μA		
		No load. $\overline{RE} = 0V$, DE = 0V, receiver A and B inputs open		300	500	μA		
I _{SHDN}	Supply current in shutdwon mode	$\overline{\text{RE}} = \text{V}_{\text{L}}, \text{DE} = 0\text{V}$		0.05	3	μA		
ESD Protecti	ESD Protection							
		Human body model (HBM)		±15		kV		
	ESD protection for TIA-485 bus pins (A/Y, B/Z)	IEC 61000-4-2 airgap		±15		kV		
		IEC 61000-4-2 contact		±8		kV		
	ESD protection for all other pins	Human body model (HBM)		±4		kV		

Driver AC Characteristics - XR33202

Specifications are at $T_A = 25^{\circ}$ C, $V_{CC} = 3.3V \pm 10\%$ or $5.0V \pm 10\%$, $V_L = V_{CC}$ unless otherwise noted. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}$ C, and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{DPLH}	Driver prop. delay (low to high)				30	ns
t _{DPHL}	Driver prop. delay (high to low)				30	ns
t _{DPLH} -t _{DPHL}	Differential driver output skew	$C_{L} = 50 pF, R_{L} = 54 \Omega,$			5	ns
t _{DR} , t _{DF}	Driver differential output rise or fall time				17	ns
	Maximum data rate	1/t _{UI} , duty cycle 40% to 60%	20			Mbps
t _{DZH}	Driver enable to output high				50	ns
t _{DZL}	Driver enable to output low				50	ns
t _{DHZ}	Driver disable from output high	$C_L = 50 pF, R_L = 500 \Omega,$			50	ns
t _{DLZ}	Driver disable from output low				50	ns
t _{DZH(SHDN)}	Driver enable from shutdown to output high	0 50-5 D 5000			250	ns
t _{DZL(SHDN)}	Driver enable from shutdown to output low	$C_L = 50 pF, R_L = 500 \Omega,$			250	ns
t _{SHDN}	Time to shutdown		50	200	600	ns

Receiver AC Characteristics - XR33202

Specifications are at $T_A = 25^{\circ}$ C, $V_{CC} = 3.3V \pm 10\%$ or $5.0V \pm 10\%$, $V_L = V_{CC}$ unless otherwise noted. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}$ C, and are provided for reference purposes only.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{RPLH}	Receiver prop. delay (low to high)				50	ns
t _{RPHL}	Receiver prop. delay (high to low)	$C_L = 50 pF, R_L = 54 \Omega$			50	ns
It _{RPLH} -t _{RPHL} I	Receiver propagation delay skew				5	ns
	Maximum data rate	1/t _{UI} , duty cycle 40% to 60%	20			Mbps
t _{RZH}	Receiver enable to output high				50	ns
t _{RZL}	Receiver enable to output low				50	ns
t _{RHZ}	Receiver disable from output high	$C_L = 50 pF, R_L = 1 k\Omega,$			50	ns
t _{RLZ}	Receiver disable from output low				50	ns
t _{RZH(SHDN)}	Receiver enable from shutdown to output high				2200	ns
t _{RZL(SHDN)}	Receiver enable from shutdown to output low	$C_L = 50 pF, R_L = 1 k\Omega,$			2200	ns
t _{SHDN}	Time to shutdown		50	200	600	ns

Block Diagram

Figure 2. Block Diagram

Package Description

10-Pin DFN Package (3mm x 3mm)

- 2. Coplanarity applies to the exposed pad as well as the terminals. Coplanarity shall
- not exceed 0.05mm.
- 3. Warpage shall not exceed 0.05mm.
- 4. Package length/package width are considered as special characteristics.

Order Information

- 5. Refer JEDEC MO-229.
- 6. L/F stock #FR0O45 (Ag on lead only). UTL PKG code TD-300E300B010A or TD-300S300B010A or TD-300M300B010A or TD-300D300B010A.

Part Number	Package	Environmental Rating	Operating Temperature Range
XR33202EEHB-F	10-pin DFN	Green	-40°C to 125°C
XR33202EEHBTR-F	10-pin DFN	Green	-40°C to 125°C

48760 Kato Road Fremont, CA 94538 USA

Tel.: +1 (510) 668-7000 Fax: +1 (510) 668-7001 Email: support@exar.com

Exar Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Exar Corporation conveys no license under any patent or other right and makes no representation that the circuits are free of patent infringement. While the information in this publication has been carefully checked, no responsibility, however, is assumed for inaccuracies.

Exar Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Exar Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of Exar Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of Exar Corporation is prohibited. Exar, XR and the XR logo are registered trademarks of Exar Corporation. All other trademarks are the property of their respective owners.

©2015 Exar Corporation