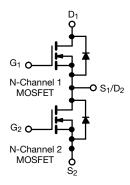


Dual N-Channel 30 V (D-S) MOSFETs

PRODU	CT SU	MMARY		
	V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)
Channel-1	30	0.0240 at V _{GS} = 10 V	11	3.5 nC
Chamilei-1	30	0.0320 at $V_{GS} = 4.5 \text{ V}$	11	3.5 110
Channel-2	30	0.0110 at V _{GS} = 10 V	28	6.8 nC
Onamie-2	30	0.0165 at $V_{GS} = 4.5 \text{ V}$	28	0.0110

PowerPAIR® 3 x 3 S₁/D₂

Ordering Information: SiZ300DT-T1-GE3 (Lead (Pb)-free and Halogen-free)


FEATURES

- PowerPAIR Optimizes High-Side and Low-Side MOSFETs for Synchronous Buck Converters
- TrenchFET® Power Mosfets
- 100 % R_{α} and UIS Tested
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

HALOGEN **FREE**

APPLICATIONS

- Computing System Power
- Synchronous Buck Converter

ABSOLUTE MAXIMUM RATINGS	(T _A = 25 °C, unle	ess otherwise	noted)		
Parameter		Symbol	Channel-1	Channel-2	Unit
Drain-Source Voltage		V_{DS}	30		V
Gate-Source Voltage		V_{GS}	± 20		v
	T _C = 25 °C		11 ^a	28 ^a	
Continuous Drain Current (T _{.I} = 150 °C)	T _C = 70 °C	l _a	11 ^a	28 ^a	
Continuous Diain Current (1) = 150 °C)	T _A = 25 °C	I _D	9.8 ^{b, c}	9.8 ^{b, c} 14.9 ^{b, c} 7.8 ^{b, c} 11.9 ^{b, c}	
	T _A = 70 °C	_	7.8 ^{b, c}	11.9 ^{b, c}	_
Pulsed Drain Current (t = 300 μs)		I _{DM}	30	40	l A
Continuous Source Drain Diode Current	T _A = 25 °C	IS	11 ^a	26	
Continuous Source Drain Diode Current	T _A = 25 °C	10	3.2 ^{b, c}	3.8 ^{b, c}	
Avalanche Current		I _{AS}	12	15]
Single Pulse Avalanche Energy L = 0.1 mH		E _{AS}	7	11	mJ
	T _C = 25 °C		16.7	31	
Maximum Dawar Dissination	T _C = 70 °C	P_{D}	10.7	20	w
Maximum Power Dissipation	T _A = 25 °C	' D	3.7 ^{b, c}	4.2 ^{b, c}	
	T _A = 70 °C		2.4 ^{b, c}	2.7 ^{b, c}]
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C
Soldering Recommendations (Peak Temperature) ^{d, e}			2	260	

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

Document Number: 67715 S12-1361-Rev. D, 11-Jun-12

Vishay Siliconix

THERMAL RESISTANCE RATINGS							
			Chan	nel-1	Chan	nel-2	
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit
Maximum Junction-to-Ambient ^{a, b}	t ≤ 10 s	R _{thJA}	27	34	24	30	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	6	7.5	3.2	4	O/ VV

Notes:

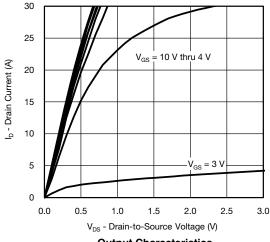
- a. Surface mounted on 1" x 1" FR4 board.
- b. Maximum under steady state conditions is 69 °C/W for channel-1 and 64 °C/W for channel-2.

Parameter						T	T	
	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static	ı		1	T	1	T	1	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0, I_D = 250 \mu A$	Ch-1	30			V	
	53	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30				
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{.1}$	I _D = 250 μA	Ch-1		24			
	_ D3 · 3	I _D = 250 μA	Ch-2		30		mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-1		- 4.1		-	
· GS(III) remperature econoccin		I _D = 250 μA	Ch-2		- 5			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	Ch-1	1		2.4	V	
date Threshold Voltage	VGS(th)	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	Ch-2	1		2.2	V	
Gate Source Leakage	loos	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			± 100	ω Λ	
date Source Leakage	I _{GSS}	VDS - 0 V, VGS - ± 20 V	Ch-2			± 100	ПА	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1		
Zara Cata Valtaga Drain Current	l	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$				5	μΑ	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-2			5		
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	10				
		$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	10			A	
Drain-Source On-State Resistance ^b	R _{DS(on)}	V _{GS} = 10 V, I _D = 9.8 A	Ch-1		0.0200	0.0240		
		V _{GS} = 10 V, I _D = 15 A	Ch-2		0.0090	0.0110	Ω	
		V _{GS} = 4.5 V, I _D = 8.5 A	Ch-1		0.0265	0.0320		
		V _{GS} = 4.5 V, I _D = 12 A	Ch-2		0.0135	0.0165	mV/°C V nA μA	
		V _{DS} = 15 V, I _D = 9.8 A	Ch-1		30		_	
Forward Transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 15 A	Ch-2		30		S	
Dynamic ^a		20 , 5	<u> </u>	L	1	l		
			Ch-1		400			
Input Capacitance	C _{iss}	Channel-1	Ch-2		730			
		$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		125		_	
Output Capacitance	C _{oss}	Channel-2	Ch-2		155		pF	
		V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Ch-1		25			
Reverse Transfer Capacitance	C_{rss}	VDS = 10 V, VGS = 0 V, 1 = 1 WH 12	Ch-2		65		1	
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 9.8 \text{ A}$	Ch-1		7.4	12		
	_	V _{DS} = 15 V, V _{GS} = 10 V, I _D = 15 A	Ch-2		14.2	22	nC	
Total Gate Charge	Q _g	<u> </u>	Ch-1		3.5	5.3		
		Channel-1	Ch-2		6.8	11		
	_	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 9.8 \text{ A}$	Ch-1		1.5			
Gate-Source Charge	Q_{gs}	Ohan a la	Ch-2		2.2			
		Channel-2 $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 15 \text{ A}$	Ch-1		1.1			
		VDS - 10 V, VGS = 4.0 V, ID = 10 A			-	 	1	
Gate-Drain Charge	Q_{gd}		Ch-2		2.3			
Gate-Drain Charge Gate Resistance	R _q	f = 1 MHz	Ch-2 Ch-1	0.5	2.3	5.2	Ω	

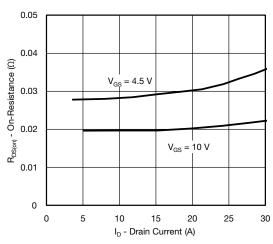
Notes:

- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

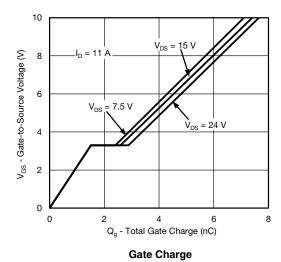
Parameter	unless otherwise noted) Symbol Test Conditions				Typ.	Max.	Unit
Dynamic ^a	,			l			
Turn-On Delay Time	t _{d(on)}		Ch-1		25	50	
Turn-On Delay Time	'a(on)		Ch-2		25	50	
Rise Time	t _r	55	Ch-1		45	90	
The Thire	4	D = 0 A, VGEN = 4.3 V, Hg = 1.32	Ch-2		80	160	
Turn-Off Delay Time	t _{d(off)}	$Channel-1 \\ V_{DD} = 15 \text{ V, } R_L = 1.9 \ \Omega \\ I_D \cong 8 \text{ A, } V_{GEN} = 4.5 \text{ V, } R_g = 1 \ \Omega \\ Channel-2 \\ V_{DD} = 15 \text{ V, } R_L = 1.5 \ \Omega \\ I_D \cong 10 \text{ A, } V_{GEN} = 4.5 \text{ V, } R_g = 1 \ \Omega \\ \\ Channel-1 \\ V_{DD} = 15 \text{ V, } R_L = 1.9 \ \Omega \\ I_D \cong 8 \text{ A, } V_{GEN} = 10 \text{ V, } R_g = 1 \ \Omega \\ \\ Channel-2 \\ V_{DD} = 15 \text{ V, } R_L = 1.5 \ \Omega \\ I_D \cong 10 \text{ A, } V_{GEN} = 10 \text{ V, } R_g = 1 \ \Omega \\ \\ T_C = 25 \text{ °C} \\ \\ I_S = 8 \text{ A, } V_{GS} = 0 \text{ V} \\ I_S = 10 \text{ A, } V_{GS} = 0 \text{ V} \\ \\ I_S = 10 \text{ A, } V_{GS} =$	Ch-1		10	20	
	u(on)		Ch-2		20	40	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1		10	20	
			Ch-2 Ch-1		40	80	ns
Turn-On Delay Time	t _{d(on)}	Channel-1			5	10	
	,		Ch-2		5	10	
Rise Time	t _r		Ch-1 Ch-2		10	20 40	
		gen g			10	20	-
Turn-Off Delay Time	uili-Oil Delay Tille		Ch-1 Ch-2		15	30	
			Ch-1		7	15	-
Fall Time t _f		$I_D = 10 \text{ A}, V_{GEN} = 10 \text{ V}, H_g = 132$	Ch-2		10	20	
Drain-Source Body Diode Characteristi	cs						
Continuous Course Duein Diede Courset	l-	T - 25 °C	Ch-1			11	
Continuous Source-Drain Diode Current	I _S	1 _C = 25 °C	Ch-2			26	۸
Data - Diada Farmani O manif	1		Ch-1			30	Α
Pulse Diode Forward Current ^a	I _{SM}		Ch-2			40	
Dady Diada Valtara	V	I _S = 8 A, V _{GS} = 0 V	Ch-1		0.84	1.2	
Body Diode Voltage	V_{SD}	I _S = 10 A, V _{GS} = 0 V	Ch-2		0.82	1.2	V
De de Die de Decembra Decembra Timo			Ch-1		17	35	
Body Diode Reverse Recovery Time	t _{rr}		Ch-2		20	40	ns
Pady Diada Payaraa Baayary Chargo	Q _{rr}	Channel-1	Ch-1		9	20	nC
Body Diode Reverse Recovery Charge	Ch-2 14		30	IIC			
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		9.5		
Tieverse riecovery Fall Tillie	ча	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		12.5		ns
Reverse Recovery Rise Time	t _b		Ch-1		7.5		113
Tieverse riccovery riise riille	۵*		Ch-2		7.5		

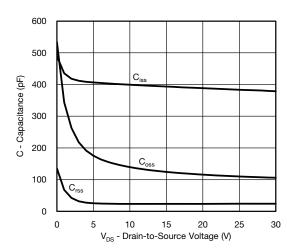

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Guaranteed by design, not subject to production testing.

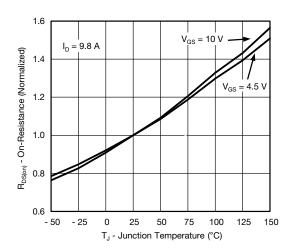

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

Vishay Siliconix


CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

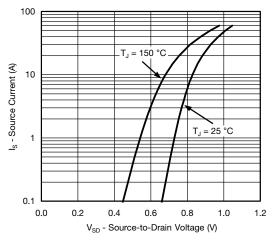


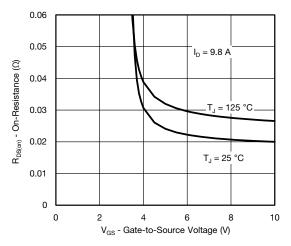
On-Resistance vs. Drain Current



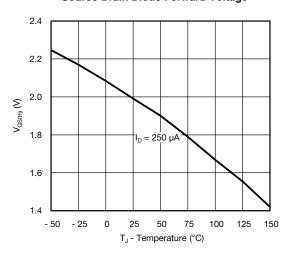
16 Ip - Drain Current (A) 12 $T_C = 25$ °C 8 4 °C 0 0.0 0.5 1.0 1.5 3.5 2.0 2.5 3.0 V_{GS} - Gate-to-Source Voltage (V)

Transfer Characteristics

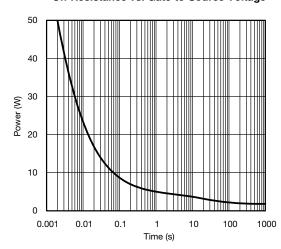

Capacitance



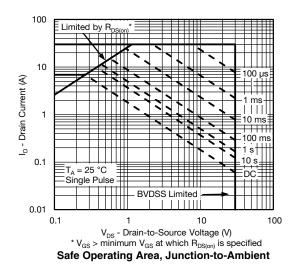
On-Resistance vs. Junction Temperature



CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

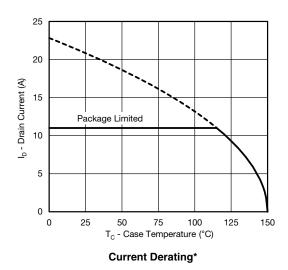


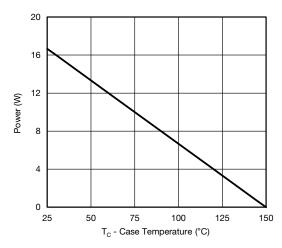
Source-Drain Diode Forward Voltage



On-Resistance vs. Gate-to-Source Voltage

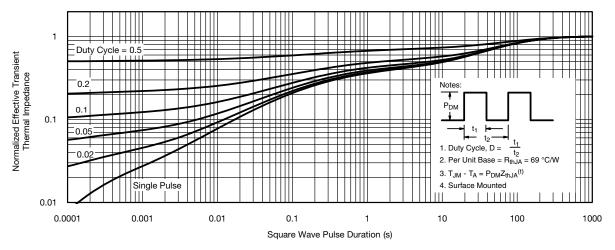
Threshold Voltage


Single Pulse Power

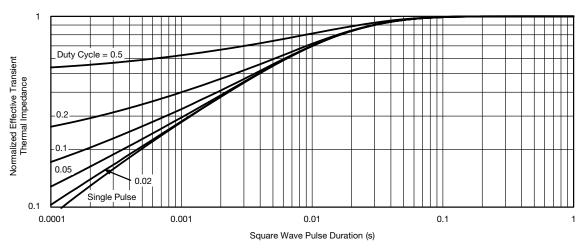


Vishay Siliconix

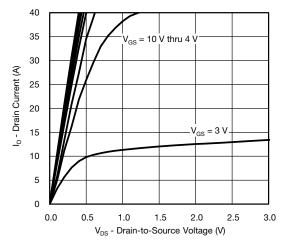
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

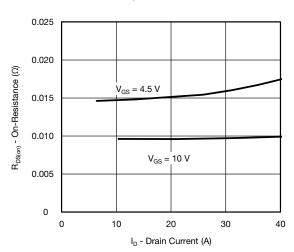


Power, Junction-to-Case

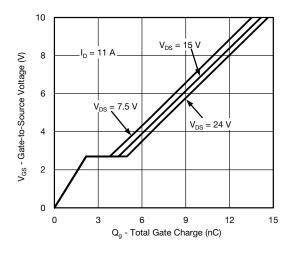

^{*} The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

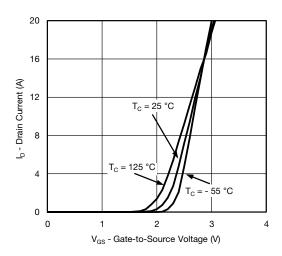
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

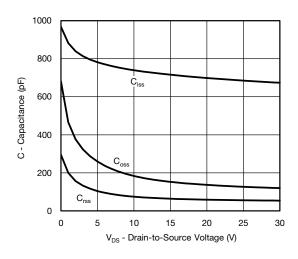

Normalized Thermal Transient Impedance, Junction-to-Ambient

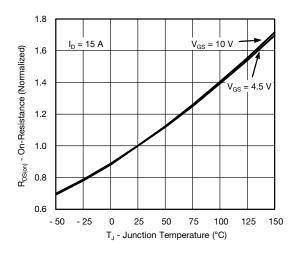

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix

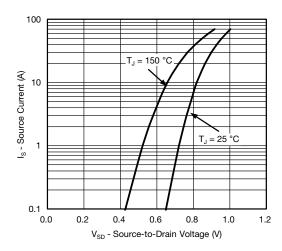

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

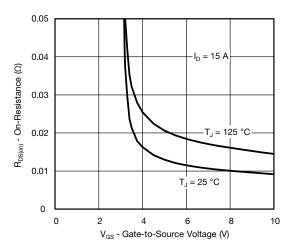

Output Characteristics


On-Resistance vs. Drain Current

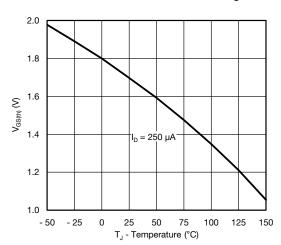

Gate Charge

Transfer Characteristics

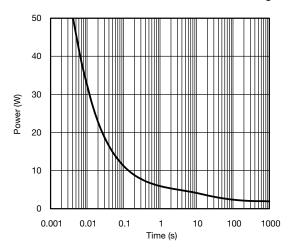

Capacitance



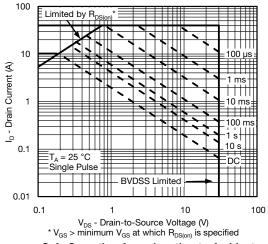
On-Resistance vs. Junction Temperature



CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

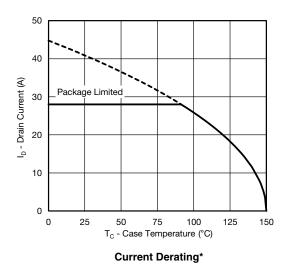


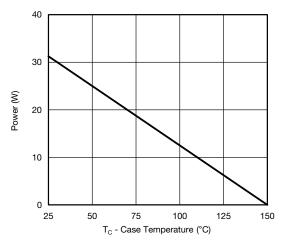
Source-Drain Diode Forward Voltage



On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

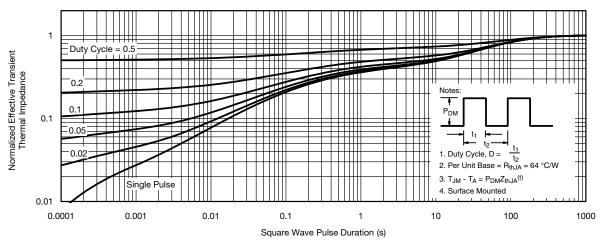

Single Pulse Power



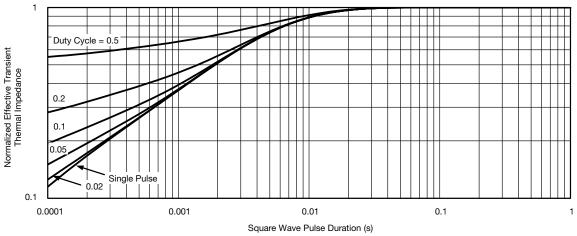
Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

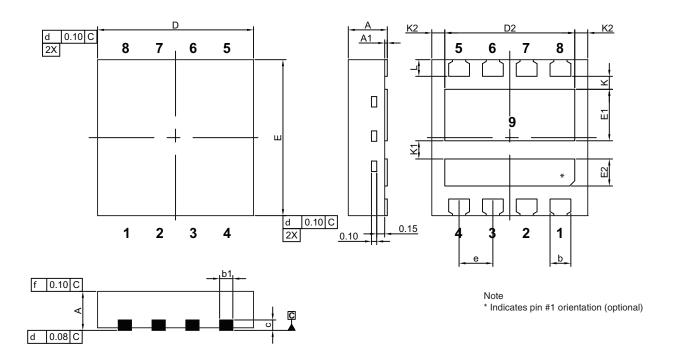


Power, Junction-to-Case


^{*} The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

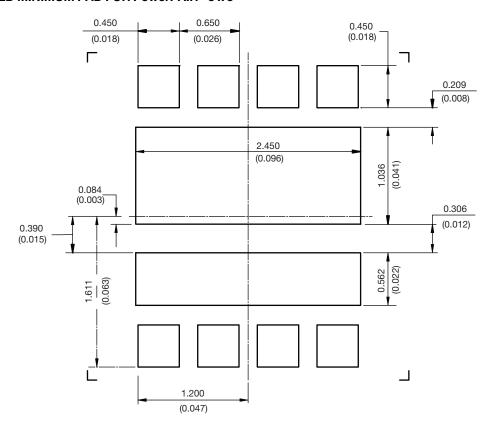
Normalized Thermal Transient Impedance, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67715.

PowerPAIR® 3 x 3 Case Outline


		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.70	0.75	0.80	0.028	0.030	0.031		
A1	0.00		0.05	0.000		0.002		
b	0.35	0.40	0.45	0.014	0.016	0.018		
b1	0.20	0.25	0.38	0.008	0.010	0.015		
С	0.18	0.20	0.23	0.007	0.008	0.009		
D	2.90	3.00	3.10	0.114	0.118	0.122		
D2	2.35	2.40	2.45	0.093	0.094	0.096		
E	2.90	3.00	3.10	0.114	0.118	0.122		
E1	0.94	0.99	1.04	0.037	0.039	0.041		
E2	0.47	0.52	0.57	0.019	0.020	0.022		
е		0.65 BSC		0.026 BSC				
K		0.25 typ.			0.010 typ.			
K1		0.35 typ.			0.014 typ.			
K2	0.30 typ.				0.012 typ.			
L	0.27	0.32	0.37	0.011	0.013	0.015		

ECIN. 112-0347-nev. C, 10-Juli-12

DWG: 5998

RECOMMENDED MINIMUM PAD FOR PowerPAIR® 3 x 3

Recommended PAD for PowerPAIR 3 x 3

Dimensions in millimeters (inches)

Keep-Out 3.5 mm x 3.5 mm for non terminating traces

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.