General Description

The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input switching frequency in excess of 1.0GHz. The 15 outputs are arranged in four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.

The MAX9322 operates in LVPECL systems with a +2.375V to +3.8V supply or in LVECL systems with a -2.375V to -3.8V supply. A V_{BB} reference output provides compatibility with single-ended clock input signals and a master reset input provides a simultaneous reset on all outputs.

The MAX9322 is available in 52-pin TQFP and 68-pin QFN packages and is specified for operation over -40°C to +85°C. For 1:10 clock drivers, refer to the MAX9311/MAX9313 data sheet. For 1:5 clock drivers, refer to the MAX9316 data sheet.

Applications

Precision Clock Distribution Low-Jitter Data Repeaters Central-Office Backplane Clock Distribution DSLAM Backplane Base Stations ATE

Typical Operating Circuit

_ Maxim Integrated Products 1

Driver Features

- 900ps Propagation Delay
- Selectable Divide-by-1 or Divide-by-2 Frequency Outputs
- Multiplexed 2:1 Input Function

1.2ps (RMS) Maximum Random Jitter

300mV Differential Output at 1.0GHz

- ◆ LVECL Operation from V_{EE} = -2.375V to -3.8V
- ♦ LVPECL Operation from V_{CC} = +2.375V to +3.8V
- ♦ ESD Protection: > 2kV Human Body Model

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE
MAX9322ECY	-40°C to +85°C	52 TQFP
MAX9322ETK*	-40°C to +85°C	68 QFN

*Future product—contact factory for availability.

Pin Configurations

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX9322

ABSOLUTE MAXIMUM RATINGS

$\label{eq:VCC} \begin{array}{llllllllllllllllllllllllllllllllllll$	
Single-Layer PC Board 52-Pin TQFP (derate 15.4mW/°C above +70°C)1230.8mW 68-Lead QFN (derate 27.8mW/°C above +70°C)2222.2mW Multilayer PC Board	
52-Pin TQFP (derate 19.1mW/°C above +70°C)1529.6mW 68-Lead QFN (derate 38.5mW/°C above +70°C)3076.9mW Junction-to-Ambient Thermal Resistance in Still Air	
Single-Layer PC Board 52-Pin TQFP+65°C/W	
68-Lead QFN+36°C/W Multilayer PC Board	
52-Pin TQFP+52.3°C/W 68-Lead QFN+26°C/W	

Junction-to-Ambient Thermal Resistance with 500 LFPM Airflow
Single-Layer PC Board
52-Pin TQFP+50°C/W
68-Lead QFN+27°C/W
Multilayer PC Board
52-Pin TQFP+40°C/W
68-Lead QFN+20°C/W
Junction-to-Case Thermal Resistance
52-Pin TQFP+12.9°C/W
68-Lead QFN+2°C/W
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
ESD Protection
Human Body Model (Q, <u>Q</u> , CLK_SEL,
FSEL_, CLK_, CLK_, MR, VBB)±2kV
Soldering Temperature (10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $((V_{CC} - V_{EE}) = 2.375V \text{ to } 3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V; CLK_SEL, FSEL_ = high or low; MR = low; IV_{ID}I = 0.095V \text{ to the lower of } (V_{CC} - V_{EE}) \text{ and } 3V. Typical values are at } (V_{CC} - V_{EE}) = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.) (Notes 1-4)$

PARAMETER	SYMBOL	CONDITIONS		-40°C			+25°C			+85°C		UNITS
FARAMETER	FARAMETER STMBUL		MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
SINGLE-ENDED INP	UT (MR, F	SEL_, CLK_SEL)										
Input High Voltage	VIH1	Figure 1	V _{CC} - 1.155		V _{CC} - 0.88	V _{CC} - 1.155		V _{CC} - 0.88	V _{CC} - 1.155		V _{CC} - 0.88	V
Input Low Voltage	VIL1	Figure 1	V _{CC} - 1.81		V _{CC} - 1.505	V _{CC} - 1.81		V _{CC} - 1.505	V _{CC} - 1.81		V _{CC} - 1.505	V
Input Current	l _{IN1}	MR, FSEL_, CLK_SEL = VIL or VIH	-15		+150	-15		+150	-15		+150	μA
DIFFERENTIAL INPU	JT (CLK_,	CLK_)										
Single-Ended Input High Voltage	V _{IH2}	Figure 1	V _{CC} - 1.155		V _{CC} - 0.88	V _{CC} - 1.155		V _{CC} - 0.88	V _{CC} - 1.155		V _{CC} - 0.88	V
Single-Ended Input Low Voltage	V _{IL2}	Figure 1	V _{CC} - 1.81		V _{CC} - 1.505	V _{CC} - 1.81		V _{CC} - 1.505	V _{CC} - 1.81		V _{CC} - 1.505	V
High Voltage of Differential Input	VIHD		V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		V _{CC}	V _{EE} + 1.2		V _{CC}	V
Low Voltage of Differential Input	VILD		V _{EE}		V _{CC} - 0.095	V _{EE}		V _{CC} - 0.095	V _{EE}		V _{CC} - 0.095	V

DC ELECTRICAL CHARACTERISTICS (continued)

 $((V_{CC} - V_{EE}) = 2.375V \text{ to } 3.8V, \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V; \text{ CLK}_SEL, \text{FSEL} = \text{high or low; } MR = \text{low; } |V_{ID}| = 0.095V \text{ to the lower of } (V_{CC} - V_{EE}) \text{ and } 3V. \text{ Typical values are at } (V_{CC} - V_{EE}) = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.) (Notes 1-4)$

PARAMETER SYMBOL		CONDITIONS	-40°C		+25°C				UNITS			
FARAMETER	STWBOL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	
Differential Input	V _{IHD} -	For V _{CC} - V _{EE} < 3.0V	0.095		V _{CC} - V _{EE}	0.095		V _{CC} - V _{EE}	0.095		V _{CC} - V _{EE}	V
Voltage	V _{ILD}	For V _{CC} - V _{EE} ≥ 3.0V	0.095		3.0	0.095		3.0	0.095		3.0	~
Input Current	I _{IN2}	CLK_, CLK_ = VIHD or VILD	-150		+150	-150		+150	-150		+150	μA
OUTPUTS ($Q_{,} \overline{Q}_{)}$												
Single-Ended Output High Voltage	Vон	Figure 1	V _{CC} - 1.085		V _{CC} - 0.880	V _{CC} - 1.025		V _{CC} - 0.880	V _{CC} - 1.025		V _{CC} - 0.880	V
Single-Ended Output Low Voltage	V _{OL}	Figure 1	V _{CC} - 1.810		V _{CC} - 1.52	V _{CC} - 1.810		V _{CC} - 1.620	V _{CC} - 1.810		V _{CC} - 1.620	V
Differential Output Voltage	V _{OH} - V _{OL}	Figure 1	500			600			600			mV
REFERENCE			•									
Reference Voltage Output	V _{BB}	$I_{BB} = \pm 0.5 \text{mA}$ (Note 5)			V _{CC} - 1.25	V _{CC} - 1.41		V _{CC} - 1.25	V _{CC} - 1.41		V _{CC} - 1.25	V
SUPPLY			•			•			•			
Supply Current	IEE	(Note 6)		50	85		66	115		80	130	mA

AC ELECTRICAL CHARACTERISTICS

 $((V_{CC} - V_{EE}) = 2.375V \text{ to } 3.8V; \text{ outputs loaded with } 50\Omega \pm 1\% \text{ to } V_{CC} - 2V; \text{ input frequency } \leq 1000MHz; \text{ input transition time} = 125ps (20\% \text{ to } 80\%); CLK_SEL, FSEL_ = high or low, MR = low; V_{IHD} = V_{EE} + 1.2V \text{ to } V_{CC}; V_{ILD} = V_{EE} \text{ to } V_{CC} - 0.4V; V_{IHD} - V_{ILD} = 0.4V \text{ to } 1V. \text{ Typical values are at } (V_{CC} - V_{EE}) = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.) \text{ (Note 7)}$

PARAMETER	SYMBOL	CONDITION	-40°C			+25°C				UNITS		
FARAMETER	STMBUL	CONDITION	MIN	ТҮР	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Input-to- Output Delay	tplhd, tphld	Figure 2	700	900	1150	725	900	1180	750	950	1225	ps
Single-Ended CLK_/CLK_ to Output Delay	tphls, tplhs	Figure 1	700	900	1170	700	900	1175	725	950	1250	ps
MR to Output Delay	tpD	Figure 3	450		930	450		930	450		930	ps
Output-to-Output Skew	tskoo	(Note 8)			85			56			50	ps
Added Random Jitter	t _{RJ}	f _{IN} = 1.0GHz clock pattern (Note 9)			1.2			1.2			1.2	ps (RMS)
Added Deterministic Jitter	tDJ	1Gbps 2 ²³ - 1 PRBS pattern (Note 9)			61			61			61	psp-p
Switching Frequency	fMAX	V _{OD} > 300mV	1.0			1.0			1.0			GHz
Differential Output Rise and Fall Time (20% to 80%)	t _R , t _F	Figure 2	200	260	400	200	260	400	200	240	400	ps

Note 1: Measurements are made with the device in thermal equilibrium.

Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.

Note 3: Single-ended CLK_, $\overline{\text{CLK}}$ input operation is limited to V_{CC} - V_{EE} = 3.0V to 3.8V.

Note 4: DC parameters are production tested at $T_A = +25^{\circ}C$ and guaranteed by design over the full operating temperature range.

Note 5: Use V_{BB} as a reference for inputs of the same device only.

Note 6: All pins open except V_{CC} and V_{EE} .

Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma.

Note 8: Measured between outputs of the same parts at the signal crossing points under identical conditions for a same-edge transition.

Note 9: Device jitter added to a jitter-free input signal.

Typical Operating Characteristics

(V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, V_{ID} = 500mV, CLK_SEL = 0, FSEL_ = 0, f_{IN} = 600MHz, T_A = +25°C, unless otherwise noted.)

Pin Description

TGFP OFN Positive Power Supply. Powers input circuitry. Bypass each V _{CC} to V _{EE} with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device. 2 4 MR Single-Ended Master Reset. A high on MR sets all outputs to differential zero. A low on MR enables all outputs. MR is pulled to V _{EE} through a 75kΩ resistor. 3 5 FSELA Single-Ended Frequency Select A. Selects the output frequency for bank A. Bank A consists of two differential outputs. A low on FSELA selects divide-by-1. A high on FSELA selects divide-by-2. FSELA is pulled to V _{EE} through a 75kΩ resistor. 4 6 FSELB Single-Ended Frequency Select B. Selects the output frequency for bank B. Bank B consists of two differential outputs. A low on FSELA selects divide-by-1. A high on FSELB selects divide-by-2. FSELB is pulled to V _{EE} through a 75kΩ resistor. 5 7 CLK0 Noninverting Clock 0 Input. CLK0 is pulled to V _{EE} through a 75kΩ resistor. 6 8 CLK0 Inverting Clock 0 Input. CLK0 is pulled to V _{EE} through a 75kΩ resistor. 7 9 CLK_SEL Single-Ended Clock Selector Input. A low on CLK_SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK0 is pulled to V _{EE} through a 75kΩ resistor. 7 9 CLK0 Noninverting Clock 0 Input. CLK0 is pulled to V _{CE} and to V _{EE} through a 75kΩ resistor. 8 <	PIN								
1 2, 3 V _{CC} and 0.1µ ^C capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closes to the device. 2 4 MR Single-Ended Master Reset. A high on MR sets all outputs to differential zero. A low on MR enables all outputs. MR is pulled to V _{EE} through a 75kΩ resistor. 3 5 FSELA Single-Ended Frequency Select A. Selects the output frequency for bank A. Bank A consists of two differential outputs. A low on FSELA selects divide-by-1. A high on FSELA selects divide-by-2. FSELA is pulled to V _{EE} through a 75kΩ resistor. 4 6 FSELA Single-Ended Frequency Select B. Selects the output frequency for bank B. Bank B consists of three differential outputs. A low on FSELB selects divide-by-1. A high on FSELB selects divide-by-2. FSELA is pulled to V _{EE} through a 75kΩ resistor. 5 7 CLKO Noninverting Clock 0 Input. CLKO is pulled to V _{EE} through a 75kΩ resistor. 6 8 CLK1 Inverting Clock 0 Input. CLK is pulled to V _{EE} through a 75kΩ resistor. 7 9 CLK_SEL Single-Ended Clock Selector Input. A low on CLK_SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK is pulled to V _{EE} through a 75kΩ resistor. 8 10 CLK Inverting Clock 1 Input. CLK1 is pulled to V _{EE} through a 75kΩ resistor. 9 11 CLK1 Noninverting Clock 1 Input. CLK1 is pulled to V _{EE} through a 75kΩ resistor. 10 12 NB Reference Voltage Output. Connect V _{BB} to CLK_or CLK_1 oprovi			NAME	FUNCTION					
2 4 MH MR enables all outputs. MR is pulled to VEE through a 75kΩ resistor. 3 5 FSELA Single-Ended Frequency Select A. Selects the output frequency for bank A. Bank A consists of two differential outputs. A low on FSELA selects divide-by-1. A high on FSELA selects divide-by-2. FSELA is pulled to VEE through a 75kΩ resistor. 4 6 FSELA Single-Ended Frequency Select B. Selects the output frequency for bank B. Bank B consists of three differential outputs. A low on FSELB selects divide-by-1. A high on FSELB selects divide-by-2. FSELB is pulled to VEE through a 75kΩ resistor. 5 7 CLK0 Noninverting Clock 0 Input. CLK0 is pulled to VEE through a 75kΩ resistor. 6 8 CLK0 Inverting Clock 0 Input. CLK0 is pulled to VEE through a 75kΩ resistor. 7 9 CLK1 Noninverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor. 8 10 CLK1 Inverting Clock 1 Input. CLK1 is pulled to VCE and to VEE through a 75kΩ resistor. 9 11 CLK1 Inverting Clock 1 Input. CLK1 is pulled to VCE and to VEE through a 75kΩ resistor. 10 12 VBB Reference Voltage Output. Connect VBB to CLK_or CLK_or CLK_to provide a reference for single-ended operation. When used, bypass with a 0.01 µF ceramic capacitor to VCC; otherwise leave open. 11 13 <td>1</td> <td>2, 3</td> <td>V_{CC}</td> <td colspan="6">and 0.1µF capacitor. Place the capacitors as close to the device as possible with the</td>	1	2, 3	V _{CC}	and 0.1µF capacitor. Place the capacitors as close to the device as possible with the					
3 5 FSELA consists of two differential outputs. A low on FSELA selects divide-by-1. A high on FSELA selects divide-by-2. FSELA is pulled to V _{EE} through a 75kΩ resistor. 4 6 FSELB Single-Ended Frequency Select B. Selects throutput frequency for bank B. Bank B consists of three differential outputs. A low on FSELB selects divide-by-1. A high on FSELB selects divide-by-2. FSELB is pulled to VEE through a 75kΩ resistor. 5 7 CLK0 Noninverting Clock 0 Input. CLK0 is pulled to VEE through a 75kΩ resistor. 6 8 CLK0 Inverting Clock 0 Input. CLK0 is pulled to VEE through a 75kΩ resistor. 7 9 CLK_SEL Single-Ended Clock Selector Input. A low on CLK. SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK_SEL is pulled to VEE through a 75kΩ resistor. 8 10 CLK1 Noninverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor. 9 11 CLK1 Inverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor. 10 12 VBB Reference Voltage Output. CONCt VEB to CLK_or CLK_ to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to VCC: onsists of four differential outputs. A low on FSELD selects divide-by-1. A high on FSELC selects divide-by-1. A high on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELC is pulled to VEE through a 75kΩ resistor. 11 13 15.16 VEE <td>2</td> <td>4</td> <td>MR</td> <td>5 °</td>	2	4	MR	5 °					
46FSELBconsists of three differential outputs. A low on FSELB selects divide-by-1. A high on FSELB selects divide-by-2. FSELB is pulled to VEE through a 75kΩ resistor.57CLK0Noninverting Clock 0 Input. CLK0 is pulled to VEE through a 75kΩ resistor.68CLK0Inverting Clock 0 Input. CLK0 is pulled to VEE through a 75kΩ resistor.79CLK_SELSingle-Ended Clock Selector Input. A low on CLK_SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK_SEL is pulled to VEE through a 75kΩ resistor.810CLK1Noninverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor.911CLK1Inverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor.911CLK1Inverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor.1012VBBReference Voltage Output. Connect VBB to CLK_ or CLK_ to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to VCC; otherwise leave open.1113FSELCSingle-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-2. FSELC is pulled to VEE through a 75kΩ resistor.1214FSELDSingle-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELC selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to VEE through a 75kΩ resistor.1315, 16VEENegative Power-Supply Input14, 27, 30, 36, 37, 40, 49, 50, 53, 54, 61, 66,	3	5	FSELA	consists of two differential outputs. A low on FSELA selects divide-by-1. A high on					
6 8 CLK0 Inverting Clock 0 Input. CLK0 is pulled to V _{CC} and to V _{EE} through a 75kΩ resistor. 7 9 CLK_SEL Single-Ended Clock Selector Input. A low on CLK_SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK_SEL selects CLK1. CLK_SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK_SEL selects CLK1. CLK_SEL selects CLK1. Selects CLK1. Selects through a 75kΩ resistor. 8 10 CLK1 Noninverting Clock 1 Input. CLK1 is pulled to V _{EE} through a 75kΩ resistor. 9 11 CLK1 Inverting Clock 1 Input. CLK1 is pulled to V _{CC} and to V _{EE} through a 75kΩ resistor. 10 12 VBB Reference Voltage Output. Connect V _{BB} to CLK_ or CLK_ to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V _{CC} ; otherwise leave open. 11 13 FSELC Single-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to V _{EE} through a 75kΩ resistor. 12 14 FSELD Single-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to V _{EE} through a 75kΩ resistor. 13 15, 16 V _{EE} Negative Power-Supply Input 14, 27, 30, 39, 60, 63, 74, 04, 49,	4	6	FSELB	consists of three differential outputs. A low on FSELB selects divide-by-1. A high on					
7 9 CLK_SEL Single-Ended Clock Selector Input. A low on CLK_SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK_SEL selects CLK1. CLK_SEL is pulled to VEE through a 75kΩ resistor. 8 10 CLK1 Noninverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor. 9 11 CLK1 Inverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor. 10 12 VBB Reference Voltage Output. Connect V _{BB} to CLK_ or CLK_ to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V _{CC} ; otherwise leave open. 11 13 FSELC Single-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-1. A high on FSELC selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to VEE through a 75kΩ resistor. 12 14 FSELD VEE Negative Power-Supply Input	5	7	CLK0	Noninverting Clock 0 Input. $\overline{\text{CLK0}}$ is pulled to VEE through 75k Ω resistors.					
19CLR_SELCLK_SEL selects CLK1. CLK_SEL is pulled to VEE through a 75kΩ resistor.810CLK1Noninverting Clock 1 Input. CLK1 is pulled to VEE through a 75kΩ resistor.911CLK1Inverting Clock 1 Input. CLK1 is pulled to V _{CC} and to VEE through 75kΩ resistors.1012VBBReference Voltage Output. Connect V _{BB} to CLK_ or CLK_ to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V _{CC} ; otherwise leave open.1113FSELCSingle-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-2. FSELC is pulled to VEE through a 75kΩ resistor.1214FSELDSingle-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to VEE through a 75kΩ resistor.1315, 16VEENegative Power-Supply Input14, 27, 30, 39, 40, 47, 5219, 20, 33, 36, 37, 40, 49, 50, 53, 54, 61, 66, 67Output Driver Positive Power Supply. Powers device output drivers. Bypass each Vccco to VEE with a 0.01µF capacitor. Place the capacitors as close to the device.1521QD5Inverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1622QD5Noninverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1723QD4Inverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	6	8	CLKO	Inverting Clock 0 Input. CLK0 is pulled to V_CC and to V_EE through a 75k Ω resistor.					
911CLK1Inverting Clock 1 Input. CLKT is pulled to V _{CC} and to V _{EE} through 75kΩ resistors.1012VBBReference Voltage Output. Connect V _{BB} to CLK_ or CLK_ to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V _{CC} ; otherwise leave open.1113FSELCSingle-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-2. FSELC is pulled to VEE through a 75kΩ resistor.1214FSELDSingle-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to VEE through a 75kΩ resistor.1315, 16VEENegative Power-Supply Input14, 27, 30, 39, 40, 47, 5219, 20, 33, 36, 37, 40, 49, 50, 53, 54, 61, 66, 67VccoOutput Driver Positive Power Supply. Powers device output drivers. Bypass each V _{CCO} to V _{EE} with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.1521QD5Inverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1723QD4Inverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	7	9	CLK_SEL						
1012VBBReference Voltage Output. Connect VBB to CLK_ or OLK_ to provide a reference for single-ended operation. When used, bypass with a 0.01μF ceramic capacitor to VCC; otherwise leave open.1113FSELCSingle-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-2. FSELC is pulled to VEE through a 75kΩ resistor.1214FSELDSingle-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to VEE through a 75kΩ resistor.1315, 16VEENegative Power-Supply Input14, 27, 30, 39, 40, 47, 5219, 20, 33, 36, 37, 40, 49, 50, 53, 54, 61, 66, 67VCCOOutput Driver Positive Power Supply. Powers device output drivers. Bypass each V _{CCO} to VEE with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.1521QD5Inverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1723QD4Inverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	8	10	CLK1	Noninverting Clock 1 Input. CLK1 is pulled to V _{EE} through a 75k Ω resistor.					
1012VBBsingle-ended operation. When used, bypass with a 0.01μF ceramic capacitor to Vcc; otherwise leave open.1113FSELCSingle-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-2. FSELC is pulled to VEE through a 75kΩ resistor.1214FSELDSingle-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to VEE through a 75kΩ resistor.1315, 16VEENegative Power-Supply Input14, 27, 30, 39, 40, 47, 5219, 20, 33, 36, 37, 40, 49, 50, 53, 54, 61, 66, 67VccoOutput Driver Positive Power Supply. Powers device output drivers. Bypass each Vcco to VEE with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.1521QD5Inverting QD5 Output. Typically terminate with 50Ω resistor to Vcc - 2V.1622QD5Noninverting QD5 Output. Typically terminate with 50Ω resistor to Vcc - 2V.1723QD4Inverting QD4 Output. Typically terminate with 50Ω resistor to Vcc - 2V.	9	11	CLK1	Inverting Clock 1 Input. $\overline{\text{CLK1}}$ is pulled to V _{CC} and to V _{EE} through 75k Ω resistors.					
1113FSELCconsists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-2. FSELC is pulled to VEE through a 75kΩ resistor.1214FSELDSingle-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to VEE through a 75kΩ resistor.1315, 16VEENegative Power-Supply Input14, 27, 30, 39, 40, 47, 5219, 20, 33, 36, 37, 40, 49, 50, 53, 54, 61, 66, 67Output Driver Positive Power Supply. Powers device output drivers. Bypass each V _{CCO} to VEE with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.1521QD5Inverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1723QD4Inverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	10	12	VBB	single-ended operation. When used, bypass with a 0.01 μ F ceramic capacitor to V _{CC} ;					
1214FSELDconsists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to VEE through a 75kΩ resistor.1315, 16VEENegative Power-Supply Input14, 27, 30, 39, 40, 47, 5219, 20, 33, 36, 37, 40, 49, 50, 53, 54, 61, 66, 67Output Driver Positive Power Supply. Powers device output drivers. Bypass each V _{CCO} to VEE with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.1521QD5Inverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1622QD5Noninverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1723QD4Inverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	11	13	FSELC	consists of four differential outputs. A low on FSELC selects divide-by-1. A high on					
14, 27, 30, 39, 40, 47, 52 19, 20, 33, 36, 37, 40, $49, 50, 53,$ $54, 61, 66, 67$ Output Driver Positive Power Supply. Powers device output drivers. Bypass each V _{CCO} to V _{EE} with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.1521 $\overline{\text{QD5}}$ Inverting QD5 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.1622QD5Noninverting QD5 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.1723 $\overline{\text{QD4}}$ Inverting QD4 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.	12	14	FSELD	consists of six differential outputs. A low on FSELD selects divide-by-1. A high on					
14, 27, 30, 39, 40, 47, 5236, 37, 40, 49, 50, 53, 54, 61, 66, 67V_{CCO}Output Driver Positive Power Supply. Powers device output drivers. Bypass each V _{CCO} to V _{EE} with a 0.01µF and 0.1µF capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.1521QD5Inverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1622QD5Noninverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1723QD4Inverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	13	15, 16	VEE	Negative Power-Supply Input					
1622QD5Noninverting QD5 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.1723 $\overline{\text{QD4}}$ Inverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	39, 40, 47,	36, 37, 40, 49, 50, 53,	Vcco						
1723 $\overline{\text{QD4}}$ Inverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	15	21	QD5	Inverting QD5 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
	16	22	QD5	Noninverting QD5 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
18 24 QD4 Noninverting QD4 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.	17	23	QD4	Inverting QD4 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
	18	24	QD4	Noninverting QD4 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					

Pin Description (continued)

PIN								
TQFP	TQFP QFN NAME		FUNCTION					
19	25	QD3	Inverting QD3 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
20	26	QD3	Noninverting QD3 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
21	27	QD2	Inverting QD2 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
22	28	QD2	Noninverting QD2 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
23	29	QD1	Inverting QD1 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
24	30	QD1	Noninverting QD1 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
25	31	QD0	Inverting QD0 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
26	32	QD0	Noninverting QD0 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
28, 29	1, 17, 18, 34, 35, 38, 39, 51, 52, 68	N.C.	No Connection. Not internally connected.					
31	41	QC3	Inverting QC3 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
32	42	QC3	Noninverting QC3 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
33	43	QC2	Inverting QC2 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
34	44	QC2	Noninverting QC2 Output. Typically terminate with 50 Ω resistor to V_CC - 2V.					
35	45	QC1	Inverting QC1 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
36	46	QC1	Noninverting QC1 Output. Typically terminate with 50 Ω resistor to VCC - 2V.					
37	47	QCO	Inverting QC0 Output. Typically terminate with 50 Ω resistor to VCC - 2V.					
38	48	QCO	Noninverting QC0 Output. Typically terminate with 50 $\!\Omega$ resistor to V_CC - 2V.					
41	55	QB2	Inverting QB2 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
42	56	QB2	Noninverting QB2 Output. Typically terminate with 50 Ω resistor to V_CC - 2V.					
43	57	QB1	Inverting QB1 Output. Typically terminate with 50 Ω resistor to VCC - 2V.					
44	58	QB1	Noninverting QB1 Output. Typically terminate with 50 Ω resistor to V_CC - 2V.					
45	59	QB0	Inverting QB0 Output. Typically terminate with 50 Ω resistor to VCC - 2V.					
46	60	QB0	Noninverting QB0 Output. Typically terminate with 50 Ω resistor to VCC - 2V.					
48	62	QA1	Inverting QA1 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
49	63	QA1	Noninverting QA1 Output. Typically terminate with 50 Ω resistor to VCC - 2V.					
50	64	QA0	Inverting QA0 Output. Typically terminate with 50 $\!\Omega$ resistor to VCC - 2V.					
51	65	QA0	Noninverting QA0 Output. Typically terminate with 50 Ω resistor to V _{CC} - 2V.					
_	EP	V _{EE}	The exposed pad of the QFN package is internally connected to V_{EE} . Refer to Application Note HFAN-08.1.					

Figure 1. Timing Diagram for Single-Ended Inputs

Figure 2. Timing Diagram for Differential Inputs

Figure 3. Timing Diagram for MR

Detailed Description

The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input frequency operation in excess of 1.0GHz. The 15 outputs are arranged into four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.

LVECL/LVPECL Operation

Output levels are referenced to V_{CC} and are LVPECL or LVECL, depending on the level of the V_{CC} supply. With V_{CC} connected to a positive supply and V_{EE} connected to ground, the outputs are LVPECL. The outputs are LVECL when V_{CC} is connected to ground and V_{EE} is connected to a negative supply. When interfacing to differential LVPECL signals, the V_{CC} range is 2.375V to 3.8V (V_{EE} = 0), allowing high-performance clock distribution in systems with nominal 2.5V and 3.3V supplies. When interfacing to differential LVECL, the V_{EE} range is -2.375V to -3.8V (V_{CC} = 0).

Control Inputs (FSEL_, CLK_SEL, MR)

The MAX9322 provides four output banks: A, B, C, and D. Bank A consists of two differential output pairs. Bank B consists of three differential output pairs. Bank C consists of four differential output pairs. Bank D consists of six differential output pairs. FSEL_ selects the output clock frequency for a bank. A low on FSEL_ selects divide-by-1 frequency operation while a high on FSEL_ selects divide-by-2 operation. CLK_SEL selects CLK0 or CLK1 as the input signal. A low on CLK_SEL selects CLK0 while a high selects CLK1.

Master reset (MR) enables all outputs. CLK_SEL and FSEL_ are asynchronous. Changes to the control inputs (CLK_SEL, FSEL_) or on power-up cause indeterminate output states requiring a MR assertion to resynchronize any divide-by-2 outputs (Figure 4). A low on MR activates

all outputs for normal operation. A high on MR resets all outputs to differential low condition. See Table 1.

Input Termination Resistors

Differential inputs CLK_ and CLK_ are biased to guarantee a known state (differential low) if the inputs are left open. CLK_ is internally pulled to VEE through a 75k Ω resistor. CLK_ is internally pulled to V_{CC} and to VEE through 75k Ω resistors.

Single-ended inputs FSEL_, MR, and CLK_SEL are internally pulled to VEE through a 75k Ω resistor.

Differential Clock Input

The MAX9322 accepts two differential or single-ended clock inputs, CLK0/CLK0 and CLK1/CLK1. CLK_SEL selects between CLK0/CLK0 and CLK1/CLK1. A low on CLK_SEL selects CLK0/CLK0. A high on CLK_SEL selects CLK1/CLK1. See Table 1.

Differential CLK_ inputs must be at least V_{BB} \pm 95mV to switch the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table. The maximum magnitude of the differential signal applied to the differential clock input is the lower of (V_{CC} - V_{EE}) and 3.0V. This limit also applies to the difference between any reference voltage input and a single-ended input. Specifications for the high and low voltages of a differential input (V_{IHD} and V_{ILD}) and the differential input voltage (V_{IHD} - V_{ILD}) apply simultaneously.

Table 1. Function Table

PIN	FUNCTION						
FIN	LOW OR OPEN	HIGH					
FSEL_	Divide-by-1	Divide-by-2					
CLK_SEL	CLK0	CLK1					
MR*	Active	Reset					

*A master reset is required following power-up or changes to input functions to prevent indeterminant output states.

9

MAX9322

Single-Ended Inputs and VBB

The differential clock input can be configured to accept a single-ended input when operating at V_{CC} - V_{EE} = 3.0V to 3.8V. Connect V_{BB} to the inverting or noninverting input of the differential input as a reference for single-ended operation. The differential CLK_ input is converted to a noninverting, single-ended input by connecting V_{BB} to CLK_ and connecting the single-ended input signal to CLK. Similarly, an inverting configuration is obtained by connecting V_{BB} to CLK_ and connecting the single-ended input to CLK_.

The single-ended inputs FSEL_, CLK_SEL, and MR are internally referenced to V_{BB}. All single-ended inputs (FSEL_, CLK_SEL, MR, and any CLK_ in single-ended mode) can be driven to V_{CC} and V_{EE} or with a single-ended LVPECL/LVECL signal. The single-ended input must be at least V_{BB} \pm 95mV to switch the outputs to the V_{OH} and V_{OL} levels specified in the *DC Electrical Characteristics* table. When using the V_{BB} reference output, bypass V_{BB} with a 0.01µF ceramic capacitor to V_{CC}. Leave V_{BB} open when not used. The V_{BB} reference can source or sink 0.5mA. Use V_{BB} as a reference for the same device only.

Applications Information

Supply Bypassing

Bypass each V_{CC} and V_{CCO} to V_{EE} with high-frequency surface-mount ceramic 0.01µF and 0.1µF capacitors in parallel as close to the device as possible, with the 0.01µF capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the V_{BB} reference output, bypass V_{BB} to V_{CC} with a 0.01µF ceramic capacitor.

Controlled-Impedance Traces

Input and output trace characteristics affect the performance of the MAX9322. Connect input and output signals with 50 Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50 Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination

Terminate outputs with 50Ω to V_{CC} - 2V or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if QA0 is used as a single-ended output, terminate both QA0 and QA0.

Figure 4. Timing Diagram for MR Resynchronization

Functional Diagram

Chip Information

TRANSISTOR COUNT: 2063 **PROCESS: Bipolar**

_Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Revision History

Pages changed at Rev 2: 1, 5, 13

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

MAXIM is a registered trademark of Maxim Integrated Products, Inc.