
1
dc2467af

DEMO MANUAL DC2467A

Description

LTC2970
Dual Power Supply Monitor Linduino Shield

with LTC3604 and LT3581 Regulators

The DC2467 Linduino® shield is a demonstration system
for the LTC®2970 dual power supply monitor and margin-
ing controller. The LTC2970 provides a rich set of features
for monitoring and controlling two power rails, including
monitoring supply voltage and current, detecting faults in
voltage and current, margining the supply voltage high or
low, measuring temperature, and turning the supplies on
and off through GPIO pins. It is fully accessible through
the built-in I2C bus, which allows it to communicate with
an external microcontroller or other I2C bus master.

The DC2467 Linduino shield operates in conjunction with
a Linduino One (DC2026) and with a DC1613 controller.
The Linduino is a microcontroller that comes with a full
library of existing C code examples, as well as the capa-
bility to run custom C code to control the LTC2970. The
DC1613 enables a PC running LTpowerPlay® to access
the LTC2970 on the DC2467. Linduino and LTpowerPlay
cooperate to enable code development and debugging in
one convenient system.

On the DC2467 board, two DC/DC switching regulators
provide +5V and –5V power outputs and demonstrate
how the LTC2970 monitors and controls power supplies
in a system. The LTC2970 fully controls both regulators.
The LTC3604 is a buck regulator with integrated switches,

configured to step down the +12V input to +5V at 1A. The
LT3581 is a multifunction switching regulator, configured
here as an inverting DC/DC converter producing –5V at –1A.

DC2467 Features
 n Demonstrate the Capabilities of the LTC2970
 n Two Onboard Power Supplies: +5V and –5V
 n Monitor Supply Voltage and Current
 n Adjust Supply Voltage Higher or Lower on Command
 n Monitor Voltage and Current Faults with Adjustable

Thresholds
 n Monitor LTC2970 Die Temperature
 n Connect to both Linduino and LTpowerPlay
 n Demonstrate C Code Available for the LTC2970

DC2467 Hardware Required
 n DC2467 Shield
 n Linduino One (DC2026)
 n USB-to-I2C/SMBus/PMBus Controller (DC1613)
 n +12V Power Supply
 n 2 USB Cables

Design files for this circuit board are available at
http://www.linear.com/demo/DC2467A
L, LT, LTC, LTM, Linear Technology, Linduino, LTpowerPlay and the Linear logo are registered
trademarks and QuikEval is a trademark of Linear Technology Corporation. All other trademarks
are the property of their respective owners.

http://www.linear.com/LTC2970

2
dc2467af

DEMO MANUAL DC2467A

I2C ACTIVITY LED
I2C ALERT LED

DC1613
CONNECTOR

GPIO LEDS

LTC2970

POWER LEDS

I2C TURRETS

+5V OUTPUT

–5V OUTPUT

DC2467 BOARD

performance summary
Table 1. LTC2970 Performance Summary
PARAMETER CONDITIONS VALUE

12VIN Supply Input Voltage Range 8V to 15V

VDD Regulator Voltage Range 4.75V to 5.25V

ADC Total Unadjusted Error VIN = 3V ±0.5%

ADC Input Range 0V to 6V

ADC Resolution Resolution = 8.192V/16384 500μV/LSB

ADC Conversion Time 33.3ms

Margining DAC Resolution 8-bits

Temperature Sensor Resolution 0.25°C/LSB

I2C Serial Clock Frequency 10kHz to 400kHz

Table 2. DC2467 Performance Summary
PARAMETER CONDITIONS VALUE

VOUT_CH0 Untrimmed +5V ±50mV

IOUT_CH0 (Max) T = 25°C 1A

VOUT_CH0 Servo Range ±0.8V

VOUT_CH1 Untrimmed –5V ±50mV

IOUT_CH1 (Max) T = 25°C –1A

VOUT_CH1 Servo Range ±0.75V

Description

3
dc2467af

DEMO MANUAL DC2467A

LinDuino Quick start

Figure 1. DC2467 Shield Mounted on the DC2026 Linduino

Make sure that the Linduino software is properly installed
on your PC, then get started quickly developing code for
the LTC2970 with these easy steps.

1. Follow the Linduino installation instructions in the
DC2026 demo manual.

 Follow the software installation and IDE configuration
instructions. These can be found on the Linduino main
web page and include instructions for downloading
and installing the Arduino software and downloading
and installing the LTSketchbook. Both of these steps
must be completed successfully before proceeding
further (see Note 1 at the end of this document). Begin
with this web page:

 http://www.linear.com/solutions/linduino

 This document assumes software running on a
Windows PC. LTpowerPlay only runs on Microsoft
Windows. Linux and Mac versions of the Arduino
software are available. While these usually work well
with the Linduino, they may have their own platform-
specific details and are not specifically addressed in
this document.

 LTSketchbook is the complete code base for the
Linear Technology devices supported by the Linduino
platform. It includes library code, demonstration
sketches and HTML documentation. Download the
latest LTSketchbook.zip from:

 http://www.linear.com/docs/43958

 The LTSketchbook contains code for many Linear
Technology® ICs and demo boards, so it is important
to upload the specific DC2467 sketch to the Linduino
before using it. Below, we show how to do this (see
Note 5).

2. Plug in the Linduino

 Attach the DC2467 to the DC2026 shield connector.
The DC2467 shield will plug into the top of the DC2026,
with corresponding pins lined up along both edges.
Figure 1 shows the proper arrangement.

 Set the DC2467 jumpers as follows:

JUMPER SETTING

ASEL0 LO

ASEL1 LO

GPIO_CFG LO

 Plug in the USB cable to the DC2026 and to the PC. The
USB connector powers the DC2026 and the LTC2970.
The DC2026 communicates with the PC through the
USB connection.

 Plug in the +12V wall adapter power source. This is
necessary to supply power to the two onboard DC/DC
converters on the DC2467. +12V is not necessary to
power the LTC2970 and initiate I2C communication.
The voltage should remain between 8V and 15V.

http://www.linear.com/solutions/linduino
http://www.linear.com/docs/43958

4
dc2467af

DEMO MANUAL DC2467A

LinDuino Quick start
3. Upload the Linduino sketch

 The Linduino has a microcontroller with nonvolatile
flash program memory. It stores instructions that
execute upon power-up or reset. The contents of the
Linduino flash memory should be updated to talk to the
LTC2970. The LTSketchbook contains a demonstration
sketch for the DC2467.

 Begin by opening the Arduino software. Select the
DC2467 sketch in the Arduino File menu (Figure 2):

 File→Sketchbook→Part_Number→2000→2900→
2970→ DC2467

Figure 2. Open the DC2467 Sketch from the Sketchbook Menu

 Ensure that the Arduino software is using the correct
COM port (see Note 3 at the end of this document).
Microsoft Windows communicates with the Linduino
through a serial port (COM port). You must tell the
Arduino software which COM port to use.

 Tools→Port→COMxx

 Note that every time you plug in the Linduino USB
connector your PC may select a different COM port
for it. Often the COM port number will be 5 or higher.

 Press the arrow button at the top of the window to
compile and upload the sketch (Figure 3).

Figure 3. Press the Compile and Upload Button

5
dc2467af

DEMO MANUAL DC2467A

LinDuino Quick start
4. Execute Linduino menu commands

 Now the Linduino is running the desired code and
ready to command the LTC2970. The primary user
interface is the serial port, which sends and receives
simple ASCII characters to the PC and can act on
simple menu-driven inputs and return basic responses
(Figure 5).

 Open the serial terminal by pressing the “Serial Moni-
tor” button at the top of the window (Figure 4). The
serial monitor opens in a new window.

Figure 4. Press the Serial Monitor Button

 When the Arduino software is configured correctly, the
Linduino prints a menu in the serial monitor window
(Figure 5). Select one of the menu actions by typing its
number in the command line at the top of the window
and pressing ENTER.

Figure 5. Serial Monitor Showing the Menu from the
Linduino and the DC2467

 The DC2467 Linduino sketch includes options for
exercising many of the features of the LTC2970. Each
option invokes a C-code procedure. When you select a
menu option the Linduino executes the code, sending
a series of commands over the I2C bus, then it stops,
freeing the bus for other traffic. This is important be-
cause it allows other I2C bus masters to communicate
with the LTC2970.

6
dc2467af

DEMO MANUAL DC2467A

Ltpowerplay Gui software
LTpowerPlay is a powerful Windows-based graphical user
interface (GUI) software tool that supports many Linear
Technology products, including the LTC2970 dual power
supply monitor and margining controller. LTpowerPlay
communicates with the LTC2970 on the DC2467 through
the DC1613 dongle connected to the 12-pin header on the
DC2467 shield board.

LTpowerPlay gives access to all of the LTC2970 configu-
ration and status registers. It allows the user to change
configuration register settings and read back status and
telemetry in real time. It can store and retrieve settings
in project files on the PC. It can also produce executable

lines of C code for the Linduino, encapsulating register
read and write operations.

The LTpowerPlay software includes an automatic update
feature to periodically check for updates and stay current
with the latest device drivers and documentation. Download
LTpowerPlay here:

http://www.linear.com/ltpowerplay

Access technical support documents for Linear Technology
products from within the tool by clicking on the Help→View
Online Help menu.

Figure 6. LTpowerPlay GUI Window

http://www.linear.com/ltpowerplay

7
dc2467af

DEMO MANUAL DC2467A

usinG Ltpowerplay with Dc2467

The procedure for using LTpowerPlay with the DC2467
and Linduino is simple:

1. Plug in the Linduino USB, the DC1613 dongle and
+12V power (Figure 7) (Note 6).

2. Load the DC2467 Linduino sketch (Figure 2 and
Figure 3).

3. Start LTpowerPlay on your PC.

 Because there are multiple USB-to-serial devices
connected (the Linduino and the DC1613), select the
"LTC DC1613" in the list of devices.

4. Load the DC2467 project into LTpowerPlay

 The demo menu is a 1-click option for loading good
demo board defaults. You can also load your own file
through the File menu.

5. Use LTpowerPlay to read and write registers in the
LTC2970, view telemetry and save state to a project
file.

 The DC1613 dongle becomes I2C bus master while
LTpowerPlay is sending and receiving commands, so
it has the potential to conflict with the Linduino, which
also becomes bus master when it is talking to the
LTC2970. It is important that only one device talks on
the I2C bus at any given time, so we take precautions
to only allow one bus master. The primary way to do
this is to force LTpowerPlay offline when the Linduino
is communicating and to refrain from selecting any
Linduino menu commands while LTpowerPlay is online.

6. Go offline by pressing the button in LTpowerPlay:

7. Type a Linduino menu command number to execute
the code (Figure 5).

8. Go online by pressing the button in LTpowerPlay:

 Notice that while LTpowerPlay is online, the green SCL
LED on the DC2467 demo board flickers continually.
This indicates that I2C bus traffic is flowing from the
DC1613 dongle to the LTC2970.

LTpowerPlay has many features that make it helpful, not
only for visualizing what the LTC2970 is doing, but for
understanding what the whole system is doing. One such
feature is the scaling parameter list which allows some
parameters to be linearly scaled and shifted to more
meaningful values. This is especially useful in cases where
the register voltage reading must be transformed in order
to arrive at the actual measured quantity. This is the case

Figure 7. DC2467 with DC1613 Dongle Attached

Figure 8. LTpowerPlay Device List

8
dc2467af

DEMO MANUAL DC2467A

usinG Ltpowerplay with Dc2467
with current, which is measured as the voltage across a
0.02Ω resistor and negative regulator voltage, which is
level-shifted and scaled by a gain factor.

Figure 9 shows the Setup tab in LTpowerPlay. The tool
allows linear scaling and offset for CH0_A, CH0_B, CH1_A

Figure 9. LTpowerPlay Setup Tab

and CH1_B. Since the DC2467 uses CH0_B to measure
current, we scale its value by 1/0.02 = 50. Since CH1_A
measures a level-shifted negative voltage, we scale and
offset the register reading to display the voltage at the
turret on the demo board. These adjustments apply to the
servo voltages and OV and UV limits as well.

9
dc2467af

DEMO MANUAL DC2467A

writinG anD DebuGGinG coDe
The LTSketchbook contains a large set of code for talking
to many different Linear Technology ICs. These examples
are an excellent starting place for code development. Many
of the subtleties of using each particular part have been
coded in the examples.

Each example Linduino sketch is located in its own directory
in the LTSketchbook file tree. Each sketch is associated
with the chip and demo board by the directory structure.
Find code for the LTC2970 and the DC2467 here:

…/LTSketchbook/Part Number/2000/2900/2970/DC2467/
DC2467.ino

The DC2467.ino sketch calls a set of functions for control-
ling the LTC2970, such as configuring all of the registers,
enabling and disabling the GPIOs, soft connecting the
servo DACs to the regulators, margining the regulators
high and low, and reading telemetry and fault registers.
These functions are contained in a library, located here:

…/LTSketchbook/libraries/LTC2970/LTC2970.cpp

This makes it easy to program the LTC2970 because
most of the functions that a user will need are coded and
debugged. A typical user will use the Linduino code library
directly and only need to update how it accesses the I2C
bus in their system.

Writing Your Own

The Arduino software requires each sketch to reside in a
directory of the same name as the sketch file. A preexist-
ing template where you can insert your own code is here:

…/LTSketchbook/Part_Number/2000/2900/2970/
DC2467_TEMPLATE/ DC2467_TEMPLATE.ino

This is a framework for code experimentation. There are
comments in the template indicating useful places to insert
your own commands. Use your favorite code editor or the
Arduino software to edit the file. Below is a stripped down
example of a Linduino sketch, showing the structure of
the code (see the full sketch file for important details):

static uint8 _ t ltc2970 _ i2c _ address = 0x5B;
static LT _ SMBusNoPec *smbus = new LT _ SMBusNoPec();
uint16 _ t some _ var;
void setup()
{
 // CODE IN THIS SECTION RUNS ONCE
 // AT THE BEGINNING OF EXECUTION.
 // PLACE INITIALIZATION HERE
 Serial.begin(115200);
}
void loop()
{
 // CODE IN THIS SECTION RUNS IN A LOOP FOREVER
 // USUALLY THIS IS A MENU-DRIVEN LIST OF OPTIONS
 // COMMUNICATED OVER THE SERIAL PORT
 // THE USER CAN PLACE CODE INTO THE “SWITCH”
 // STATEMENT BELOW
 uint8 _ t user _ command;
 user _ command = read _ int();
 switch (user _ command){
 case 1 :
 Serial.print(F(“*INITIALIZE THE LTC2970*\n”));
 smbus→writeWord(ltc2970 _ i2c _ address,
 LTC2970 _ FAULT _ EN, 0x0DEF);
 some _ var = smbus→readWord(ltc2970 _ i2c _ address,
 LTC2970 _ IO);
 break;
 case 2 :
 // INSERT YOUR CODE HERE...
 break;
 }
}

10
dc2467af

DEMO MANUAL DC2467A

Notice several features of the sketch above. First, there is
no “main” function. A sketch is not a complete C program.
It contains an initialization routine, called setup(), and a
“loop forever” routine, called loop(). These functions do not
accept input parameters and do not provide return values.
Communicating between the setup() and loop() routines
must be done through global variables. When the Arduino
program on the PC compiles the sketch it adds all of the
necessary infrastructure to make a complete program.

The sketch accepts a user input through the read_int()
function and the switch statement operates on the value
returned when the user, using the Arduino serial monitor,
types a key and hits ENTER. The switch statement can
have any number of cases to handle all possible user
inputs. This code is written so that the loop() completes
once for every user input.

The sketch sends text back to the serial monitor through
the Serial.print() function. The “Serial” object is a C++
construct that communicates over the PC's COM port.
Serial.print is one of many methods of the Serial class.

The sketch sends I2C commands over the smbus object,
created as an instance of the LT_SMBusNoPec class.
The writeWord() method sends a word over the bus to
the LTC2970. The readWord() method reads a word from
the bus. Because the LTC2970 is an SMBus part, we take
advantage of the LT_SMBus library classes to simplify
communication with the part.

These are just a few of the many possibilities. The user
is encouraged to play with the DC2467_TEMPLATE.ino
sketch to explore and learn. Notice that the sketch file
contains more details that were omitted here for clarity.
Use the code in the libraries to find examples of complex
routines that control the various Linear Technology ICs.

Compile and upload your code to the Linduino with the
arrow button shown in Figure 3.

You may write your own C code to execute the desired
behaviors, or use LTpowerPlay, as outlined below.

LTpowerPlay and Code

LTpowerPlay has a feature that generates executable C
code from register operations. This feature produces
lines of code that correspond to individual register reads
and writes performed in the tool. Each line of code can
be pasted directly into the Linduino C code and executed.

To access this feature, click the “Reg Info” tab on the
right-hand side of the LTpowerPlay GUI (Figure 10). At
the top of the Reg Info window is a “Code Sequence
Clipboard” area that contains a running list of actions in
C code format. Each time the user updates a register us-
ing the F12 function key or reads register contents using
the F11 function key, LTpowerPlay inserts a line of code
in the Code Sequence Clipboard. Simply select a register
in the Config list, then press the F11 or F12 function key.
Cut and paste these lines of code directly into a Linduino
sketch, such as DC2467_TEMPLATE.ino, to perform the
same register reads and writes.

For example, click on the CH0_A_IDAC register in the
Config section of the LTpowerPlay window. Change a
setting, such as the value of the IdacDataValue. Press
F12 on the keyboard to send this updated register value
to the LTC2970. The resulting line of code in the Reg Info
tab will look similar to the code in Figure 10. Similarly,
pressing F11 on the keyboard will read from the register
and produce a line of C code that reads the register and
returns a result.

Note that the generated C code is executable, but it is only
the first step in the process. There are several things to
watch out for. A register read must return a value and the
example code returns to a variable called “some_var”.
Because this is an example, the name is as good as any
other. You can use it as is, or rename it in your code. An-
other subtlety is that the register names and I2C addresses
are defined in the LTC2970.h file by #define statements,
which LTpowerPlay does not use (see Note 4).

writinG anD DebuGGinG coDe

11
dc2467af

DEMO MANUAL DC2467A

Debugging

A very common method of debugging firmware code
involves running to a breakpoint then using a debugger
to examine the contents of registers and using equipment
to measure conditions in the circuit before allowing the
code to advance. In the Linduino environment, this task
is made simple with the addition of the LTpowerPlay GUI.
It is easy to use LTpowerPlay to observe the effects of
running Linduino code. It is also easy to make changes in
the LTpowerPlay GUI then paste the generated code into
the Linduino environment.

The general procedure for debugging is similar to the
technique given above in the section: Using LTpowerPlay
with DC2467. The key is to make sure that the Linduino
and LTpowerPlay take turns and do not conflict in their
use of the I2C bus. Use the “GO ON LINE” and “GO OFF
LINE” buttons in LTpowerPlay.

A prime example of using LTpowerPlay in debugging is
in decoding and deciphering fault conditions. Faults can
come in different varieties, may be transient and intermit-
tent, and are presented as bits in registers, which must be
decoded and deciphered. Most firmware code does not
decode the fault state and print helpful debug messages
to the serial monitor for human convenience. LTpowerPlay
does, however, and it contains a powerful set of helpful
tools for visualizing the fault registers and fault logs. If a
fault condition results during code execution, LTpowerPlay
helps to determine what happened.

Another example is using the VERIFY button to compare
the register state of the part to the register “expected
values” from a project file.

This is useful to determine what registers have been
changed by running code. Since LTpowerPlay maintains
a representation of the register states, it can compare
this representation against what it finds in the hardware
registers and present a compact report of any discrepan-
cies that it finds.

writinG anD DebuGGinG coDe

Figure 10. LTpowerPlay Reg Info Tab and Code Generation

12
dc2467af

DEMO MANUAL DC2467A

Ltc2970 functions

the Dc2467 boarD

DC2467 F11

LT3604

LTC2970

LT3581

LINDUINO
POWER

LINDUINO
µP

+5V

+5
V

SD
A

+1
2V

+12V
GND

USB +5V

VOUT_CH0

VOUT_CH1

I2C BUSGN
D

SC
L

+3.3V

12
-P

IN

SHIELD DC2467

LINDUINO DC2026

Figure 11. DC2467 Block Diagram

Turning On and Off

The LTC2970 has two programmable GPIO pins that can
function in several modes. On the DC2467 these two pins
are configured as enables for the two onboard regulators.
Setting a GPIO output high enables the attached regulator.
It also illuminates the associated GPIO LED on the board,
indicating that the channel is active.

Monitoring Voltage

The LTC2970 has two differential 14-bit ADC inputs for
monitoring voltage at the output of the regulators. These
inputs can measure inputs from 0V to 6V, so are ideally
suited for the +5V supply. For the negative supply we
use resistors to level-shift the voltage up above ground.
The Linduino code has scale and offset parameters to
compensate.

Margining High and Low

The LTC2970 has two 8-bit DAC outputs that create offset
currents to move the regulator outputs up and down.

The LTC2970 can affect a change at the regulator output
using one of two methods: open-loop DAC forcing, or
closed-loop servo. The open-loop method simply sets
the DAC voltage to a code and forces the regulator output
without measuring its voltage. The closed-loop method
measures the regulator output voltage and moves the
DAC to the code that produces the desired voltage. The
open-loop method is faster, but error prone. The closed-
loop method is slow, but can be as accurate as the ADC.

The Linduino code contains a menu item for soft-connecting
the DAC (to minimize regulator voltage disturbance) and
for servoing the voltages (with a closed loop). Because

13
dc2467af

DEMO MANUAL DC2467A

power outputs

Ltc2970 functions

The DC2467 has two switching regulators, one produc-
ing +5V and one producing –5V. Both are monitored and
controlled by the LTC2970, as shown in Figure 12 and
Figure 13.

The DC2467 requires power for the LTC2970 and power
for the DC/DC regulators. LTC2970 derives power from
the 5V supply in the USB. The Linduino and LTC2970 will
begin to communicate as soon as a USB connection is
established. The LTC3604 and LT3581 regulators require
a separate +12V supply. This must be plugged in to the
+12V DC jack on the Linduino before the regulators can
operate. If +12V is not present, the LTC2970 will read 0V
and 0A at its inputs.

The DC2467 has several LEDs to indicate status. These
are labeled as follows:
Table 3. DC2467 LED Definitions
LABEL FUNCTION

PGOOD0 Power good indicator for VOUT_CH0

PGOOD1 Power good indicator for VOUT_CH1

GPIO_0 Active high GPIO_0 state (enable CH0)

GPIO_1 Active high GPIO_1 state (enable CH1)

ALERT Active low ALERTB state indicator

VDD_5V Power good: 5V Power from Linduino

VDD_12V Power good: 12V Power from Linduino

SCL I2C bus activity indication

the negative supply has ADC gain and offset terms, the
Linduino code uses an adjusted voltage target to make the
servo loop achieve the correct output voltage (similar to
the scale and offset parameters in LTpowerPlay—Figure 9).

Monitoring Current

The LTC2970 has two differential 14-bit ADC inputs for
monitoring current by measuring voltage across a current
sense resistor. These are the “CHn_B” ADC inputs, and
have the same specifications as the ADC inputs for volt-
age monitoring, so they can be used over a wide range.

For the +5V output rail, the channel 0 (CH0) ADC measures
voltage across a 0.02Ω sense resistor with 500µV preci-
sion, so the smallest current that it can resolve is 25mA.

For the –5V rail, the ADC cannot directly measure current,
since it cannot touch voltage below ground. Instead there
is a current sense amplifier (LTC6105) that translates the

current flowing in the sense resistor into a voltage above
ground at a factor of 1V/A.

Reading Faults

The LTC2970 has a complete set of fault monitoring ca-
pabilities for detecting limit excursions of any of its ADC
readings. In the DC2467 this amounts to limits on output
voltages and load currents. In addition, the LTC2970 can
throw faults for excursions on the +12V power supply
input and the VDD regulator voltage, as well as if the DAC
reaches code 0 or code 255, the limits of its control range.

The Linduino code can read the fault registers and report
if faults are present. The DC2467 sketch initializes the
LTC2970 to have reasonable fault limits for the DC2467
board. In addition, the DC2467 has an ALERT LED that
can be programmed to illuminate when the LTC2970
detects a fault.

14
dc2467af

DEMO MANUAL DC2467A

power outputs

LTC2970

LT3604

VIN0B ISENSEADC

VIN0A VSENSE

SERVO

ADC

+
–

VOUT0

GPIO0

IOUT0

VOUT1

GPIO1

IOUT1

+
–

FB
OUT

RUN

SGND

DC2467 F12

CH0: +5V

VIN1B ADC

VIN1A

12VIN

VIN

GND

ADC

10k

100k

10k VOUT
(+5V)

+12VIN

73.2k

0.02Ω

SOME DETAILS
OMITTED FOR CLARITY

Figure 12. LTC2970 Interface to +5V Rail

LOW-SIDE
CURRENT SENSE

VSREF

LTC2970

LT3581

VIN1B ISENSEADC

VIN1A VSENSE

SERVO

ADC

+
–

VOUT1

GPIO1

IOUT1

VOUT0

GPIO0

IOUT0

+
–

FB OUT

SHDN

GND

DC2467 F13

CH1: –5V

–

+

VIN0B ADC

VIN0A

12VIN

VIN

GND

ADC

10k

75k

226k

80k

20k

5k

VOUT
(–5V)

+12VIN

+12VIN49.9k

0.02Ω

100Ω

100Ω

SOME DETAILS
OMITTED FOR CLARITY

LTC6105

Figure 13. LTC2970 Interface to –5V Rail

15
dc2467af

DEMO MANUAL DC2467A

notes anD troubLeshootinG

Figure 14. MS Windows Device Properties Window for Linduino

Note 1: The Linduino documentation may recommend an
older version of the Arduino software. It is not necessary
to use this old version. In most cases the newer Arduino
software has improvements and enhancements that make
it superior. The code in the LTSketchbook usually compiles
cleanly with the newest software. If, however, you encounter
trouble compiling code in the LTSketchbook, you may need
to fall back to an older version of the Arduino software.

Note 2: A brand new Linduino, when it comes from the
factory, contains a special sketch, called the DC590B. This
sketch makes the Linduino perform the functions of the
DC590 dongle, translating from USB to I2C and enabling
the use of either LTpowerPlay or QuikEval™ with some
demo boards. It is possible to make LTpowerPlay talk
to the DC2467 through this DC590 emulator, but it is not
recommended. We leave it to the user to get LTpowerPlay
talking through this interface. It will function, but for vari-
ous technical reasons it is not optimal.

Note 3: COM port selection for the Arduino software is
something of an art. In MS Windows, the simplest way to
determine for certain which COM port is associated with
your Linduino is to open the Device Manager and look for
the “USB SERIAL CONTROLLER” (not the “LTC DC1613A”).
Clicking “Properties” should bring up a window containing
information about the COM port that it is using (Figure 14).
Of course, you can always use trial and error until you find
the correct COM port in the list, which may be a shortcut.

Note 4: Linduino uses C++ code architecture, with point-
ers to class objects defining the SMBus interface. Another
way to code the I2C bus transactions is with standard C
function notation (no objects or classes). Select this style
with the “Example Code” button at the top of the “Reg
Info” tab in LTpowerPlay. Make sure to use the C++ style
when running Linduino code. The difference looks like this:
// Linduino C++ notation:
some_var = smbus->readWord(0x5C, 0x50);
// standard C notation:
some_var = smbus_read_word(0x5C, 0x50);

Note 5: The Arduino software looks for the LTSketch-
book at start-up time and constructs its menu and its
pointers according to the files that it finds. If you add
or remove files from the directory tree while Arduino is
running, the tool will not show these changes until you
restart. This applies to the LTSketchbook itself. If you
pull down File→Preferences and change the “Sketchbook
location” field, you must restart Arduino before it will
find the new files.

Note 6: Linduino has a black 14-pin header. This will be
covered and hard to see when the DC2467 shield is attached.
Do not attempt to plug in the 12-pin ribbon cable from the
DC1613 dongle to the Linduino 14-pin header. People have
done this before and it never ends well. Instead, look for
the white 12-pin header on the DC1613 shield and plug
in the dongle there. Follow Figure 7.

16
dc2467af

DEMO MANUAL DC2467A

notes anD troubLeshootinG resources
Note 7: Linduino has a limited amount of memory, both
RAM and nonvolatile, in which to store programming and
variables. It is possible to write a program that is too large
to fit into nonvolatile memory, or takes too much RAM
during execution. This is rare, but it can cause unpredict-
able behavior. The Arduino compiler attempts to calculate
these limits and warn you when the program is too big.
Pay attention to the compiler log messages in the bottom
of the Arduino window during compilation and uploading.
They will look something like below:

Sketch uses 18,088 bytes (56%) of program
storage space. Maximum is 32,256 bytes.

Global variables use 566 bytes (27%) of
dynamic memory, leaving 1,482 bytes for
local variables.
Maximum is 2,048 bytes.

Look for percentages less that 90% to be safe. The Linduino
may behave badly at less than 100%. If your compiled
code exceeds the memory limits of the Linduino, you may
need to split your sketch into multiple smaller sketches
to fit into memory.

LTpowerPlay

http://www.ltpowerplay.com/download/
(contains its own documentation)

Arduino

http://www.arduino.cc/en/Guide/Windows

Linduino

A full description of the Linduino is located here:
http://www.linear.com/solutions/5334

Using Linduino with Power System Management:
http://cds.linear.com/docs/en/application-note/an153f.pdf

http://www.linear.com/solutions/5676

I2C bus

http://www.i2c-bus.org/i2c-bus/

Beagle (DC2294)

http://www.totalphase.com/products/beagle-i2cspi/

LTC2970

http://www.linear.com/product/LTC2970

LTC3604

http://www.linear.com/product/LTC3604

LT3581

http://www.linear.com/product/LTC3581

DC980

http://www.linear.com/solutions/3829

DC2294

http://www.linear.com/solutions/5718

http://www.ltpowerplay.com/download/
https://www.arduino.cc/en/Guide/Windows
http://www.linear.com/solutions/5334
http://cds.linear.com/docs/en/application-note/an153f.pdf
http://www.linear.com/solutions/5676
http://www.i2c-bus.org/i2c-bus/
http://www.totalphase.com/products/beagle-i2cspi/
http://www.linear.com/product/LTC2970
http://www.linear.com/product/LTC3604
http://www.linear.com/product/LTC3581
http://www.linear.com/solutions/3829
http://www.linear.com/solutions/5718

17
dc2467af

DEMO MANUAL DC2467A

Dc2467 boarD DetaiLs
TOP

BOTTOM

18
dc2467af

DEMO MANUAL DC2467A

schematic DiaGram

19
dc2467af

DEMO MANUAL DC2467A

Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

schematic DiaGram

20
dc2467af

DEMO MANUAL DC2467A

Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2016

LT 0616 • PRINTED IN USA

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT
OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete
in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety
measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union
directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date
of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU
OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR
ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims
arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all
appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or
agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance,
customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and
observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application
engineer.

Mailing Address:

Linear Technology

1630 McCarthy Blvd.

Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

