

HALF SIZE Amber RELAY

R-RELAYS

UL File No.: E43149 CSA File No.: LR26550

- Amber sealed construction for automatic wave soldering and cleaning
- Latching types available
- High sensitivity TTL direct drive possible
- High speed Up to 500 cycle/sec. operations
- Wide switching range and high welding resistance
- Gold cobalt (AuCo) contact permits
- Wider switching range from low level up to high current: 10 μA to 1 A Higher sticking resistance to inrush current
- · Stable contact resistance from initial stage throughout life

SPECIFICATIONS

Contact				
Arrangeme	nt		1 Form C	
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			60 mΩ	
Initial conta	ict pressui	e	Approx. 5 g .18 oz	
Contact ma	aterial	Gold cobalt		
	Contact-	Sealed type	3 pF	
	Contact	Magnetically sealed type	4 pF	
Electrostatic	N.O.	Sealed type	4 pF	
capacitance	contact-coil	Magnetically sealed type	5 pF	
	N.C.	Sealed type	5 pF	
	contact-coil	Magnetically sealed type	6 pF	
	Nominal	switching capacity	1A 20 VDC, 0.3A 110 VAC	
	Max. swi	tching power	33 VA, 20 W	
Rating	Max. swi	tching voltage	110 V AC, 30 V DC	
(resistive)	Max. switching current		AC 0.3 A, DC 1 A	
	Min. swit	ching power	Approx. 100 mV 10μA	
UL/CSA rat	ting		0.3 A 125 V AC, 1 A 30 V DC	
	Mechanio	cal (at 500 cps.)	10 ⁹	
		1 A 20 V DC/0.3 A 110 V AC	10 ⁶ (at 1 cps.)	
Expected		0.5 A 30 V DC/0.1 A 110 V AC	3×10 ⁶ (at 2 cps.)	
life (min.	Electrical	0.25 A 30 V DC/0.25 A 30 V AC	5×10 ⁶ (at 5 cps.)	
operations)	(resistive)	0.2 A 24 V DC/0.2 A 24 V AC	10 ⁷ (at 25 cps.)	
		0.1 A 12 V DC/0.1 A 12 V AC	5×10 ⁷ (at 50 cps.)	
		0.1 A 9 V DC/0.1 A 9 V AC	10 ⁸ (at 100 cps.)	
			· · · · · · · · · · · · · · · · · · ·	

mm inch

Remarks

- *1 Measurement at same location as "Initial breakdown voltage" section
- *2 Min. 500M Ω at 100 VDC between coils of 2 coil latching type
- *³ Detection current: 10mA, Except for between coils of 2 coil latching type *⁴ Excluding contact bounce time
- $^{\star 5}$ Half-wave pulse of sine wave: 6ms; detection time: 10 μs
- *6 Half-wave pulse of sine wave: 6ms
- *7 Detection time: 10µs

*⁸ Although R relays are rated at 10 G/55 cps. vibration resistance, they will withstand up to 60 G/2,000 cps., provided they receive additional support such as anchoring to the PC board with epoxy resin.

*9 Refer to 5. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 49)

TYPICAL APPLICATIONS

Telecommunications equipment, alarm devices, machine tools, NC machines, automatic warehouse control, conveyors, air-conditioners, pressing machines, textile machinery, elevators, control panels, pin-board programmers, parking meters, industrial robots, detectors, annunciators, optical instruments,

Coil (polarized) (at 25°C 77°F)

Minimum	Single side stable	72 to 133 mW
operting	1 coil latching	41 to 45 mW
power	2 coil latching	72 to 107 mW
Nominal	Single side stable	147 to 300 mW
operating power	1 coil latching	74 to 153 mW
	2 coil latching	147 to 331 mW

Characteristics (at 25°C 77°F)

Character	isiles (at 25 C	,,,,,		
Max. operating speed			500 cps. (mechanical)	
Initial insula	ation resistance*	Min. 1000 M Ω at 500 V DC* ²		
Initial	Between live parts and ground		1,000 Vrms	
breakdown	Between open	contact	350 Vrms (500 V DC)	
voltage*3	Between conta	ct and coil	1,000 Vrms	
Operate tim	ne*4 (at nominal	voltage)	Max. 3 ms (Approx. 1 ms)	
Release tin (at nominal	ne(without diode voltage)	e)* ⁴	Max. 2 ms (Approx. 0.5 ms)	
Contact	Single side stal	ble	Approx. 0.5 ms	
bounce time	1-coil /2-coil lat	ching	Approx. 0.3 ms	
Temperatu	Temperature rise		Max. 35°C at 0.5 W operating power Max. 65°C at 1 W operating power	
Shock	Functional*5		Min. 980 m/s ² {100 G}	
resistance	Destructive*6		Min. 980 m/s ² {100 G}	
Vibration	Functional*7		98 m/s ² {10 G}, 10 to 55 Hz at double amplitude of 1.6 mm* ⁸	
resistance	Destructive		117.6 m/s ² {12 G}, 10 to 55 Hz at double amplitude of 2 mm	
transport a	Conditions for operation, transport and storage* ⁹ (Not freezing and condens-		−55°C to +65°C*¹⁰ −67°F to +149°F	
	emperature)	Humidity	5 to 85% R.H.	
Unit weight			Approx. 7 g .25 oz	

¹⁰ Total temperature (ambient temperature plus temperature rise in coil) should not exceed 90°C 194°F for single side stable, and 105°C 221°F for latching relays. See Reference Data for determination of coil voltage versus temperature.

ORDERING INFORMATION

(Notes) 1. Power types and 1 Form A types are available on request.

For UL/CSA recognized types, delete "N" at head portion of part No. and add suffix UL/CSA, when ordering. Ex. <u>RSD-12V UL/CSA</u>
 Standard packing Carton: 50 pcs., Case: 500 pcs.

TYPES AND COIL DATA at 25°C 77°F

Single side stable (R-SD)

R

	()			-		
Nominal coil voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage V DC (min.)	Maximum allowable voltage, V DC (40°C)	Coil resistance, Ω (±10%)	Nominal operating power, mW	Inductance, Henrys
5	3.5	0.5	13	170	147	0.050
6	4.7	0.6	14	220	164	0.075
12	9.3	1.2	28	890	162	0.3
24	16	2.4	42	2,000	288	0.66
42	28	4.2	85	8,000	221	2.7

1 coil latching (R-SLD)

5.	, 1		1		
Nominal coil voltage, V DC	Pick-up voltage, V DC (max.)	Maximum allowable voltage, V DC (40°C)	Coil resistance, Ω (±10%)	Nominal operating power, mW	Inductance, Henrys
5	3.5	18	340	74	0.12
6	4.3	20	450	80	0.16
12	8.0	30	1,500	96	0.66
24	17	75	6,000	96	2.4
42	23	110	12,000	147	3.9

2 coil latching (R-SL2D)

Nominal coil voltage,	Pick-up voltage, V DC (max.)	Maximum allowable voltage,	Coil resistance, Ω (±10%)		Nominal operating power, mW	Inductance, Henrys
V DC	V DC (max.)	V DC (40°C)	Set coil	Reset coil		-
5	3.5	13.0	170	170	147	0.024
6	4.3	14.0	225	225	160	0.04
12	8.0	26.0	650	650	230	0.14
24	17.0	50.0	2,700	2,700	213	0.35
42	23.0	75.0	5,500	5,500	321	0.8

(Notes) 1. Maximum allowable operating power: 1000 mW at 25°C 77°F.

2. Change rate of pick-up voltage vs. temperature is described in Data on page 157.

DIMENSIONS

Terminal No.	Thickness	Width	
1, 7	0.5 .020	0.6 .024	
4	0.3 .012	0.7 .028	
2, 3, 5, 6, 0.5 DIA. ground terminal .020 DIA.			

mm inch

General tolerance: ±0.5 ±.020

Tolerance: ±0.2 ±.008

SCHEMATIC

1. Single side stable (2, 6: free terminals)

Same operation as the conventional magnetic relays.
(a) During deenergization, terminals No. 4 (COM) and No. 1 (N.C.) are on "make".

2. Latching type

Once energizaed, the **COM** contact is kept under the same condition without further energizing continuously.

1 coil latching (2, 6: free terminals)

(a) When terminals No. 5 (-) and No. 3 (+) are energized, terminals No. 4 and No. 7 are switched to "make". (or stay on "make"). when the coil current is switched off, terminals No. 4 and No. 7 are held on "make."

2 coil latching

(a) When terminals No. 5 (+) and No. 6 (-) or terminals No. 3 (+) and No. 2 (-) are energized terminals No. 4 and No. 7 are switched to "make". (or remain on "make"). When the coil current is switched off, these terminals are held on "make".

Special use of 2 coil latching

2 coil latching can be used in the same manner as 1 coil latching by shorting $No.\ 5$ and $No.\ 2$ or $No.\ 3$ and $No.\ 6$

1. The latching type of R relay can be used as the memory element to be operated by a pulse supplied from one or two different sources.

2. With the 2 coil latching type, when simultaneously applying one polarity to one coil and the opposite polarity to the other, the previously energized coil will take priority of operation and will maintain the contact condition.

(b) During energization with the indicated polarity, terminals **No. 4** and **No. 7 (N.O.)** are on "make".

Note: Energization with an opposite polarity does not switch the contact. Apply proper polarity to switch the contact.

To switch over the contact, energy with an opposite polarity should be applied to the coil.

- (b) When energized with reverse polarity terminals No. 4 and No. 1 are switched to "make" and held on "make" until energized again with an opposite polarity.
- (b) When terminals No. 5 (-) and No. 6 (+) or terminals No. 3 (-) and No. 2(+) are enaergized in the reverse of condition (a), terminals No. 4 and No. 1 are switched to "make" and held on "make" until energized in an opposite polarity once again.

3. In practical use, switching either from a_1 to b_2 or from a_2 to b_1 is recommendable.

DIFFERENCES BETWEEN R RELAYS AND REED RELAYS

	R relays	Reed relays
Structure	Stationary Epoxy Coil Coil terminals "Getter" hole Permanent magnet Stationary Coil coil terminals	Contact (magnetic substance)
Contact arrangement	1 Form C	1 Form A or 1 Form B
Contact capacity	20 W (high contact pressure)	5 to 15 W
Operating function	Single side stable Latching	Single side stable
"Getter" hole	Yes	No

"Getter" holes are formed on both pole shoes to obtain uniform contact resistance throughout life. Film-forming phenomena on contacts is thus fully prevented.

R REFERENCE DATA

1.-(1) Contact reliability Test sample: R-SD-24V 54 pcs. Circuits: (A) Following figure with diode (B) Following figure without diode

Item to be checked: Detect with the circuit stopped Circuits:

- (A) Diode provided: The circuit does not stop throughout 100 million times.
- (B) Diode not provided: $\lambda_{60} = 2.5 \times 10^{-8}$ times

1.-(2) Contact reliability TEST CONDITION Sample: R-SD-24V, 10 pcs. Contact voltage: 100 mV Contact current: 10 μ A Cycle rate: 50 cps. Detection level: 100 Ω Testing operation: 3×10^7 m = 1.9 σ = 2.5×10⁷ μ = 4.7×10⁷ 95% reliability limit: 1.15×10⁷ (Mean time between failure) F(tt)(%) 99.9

3.-(1) Operate time including bounce time (Single side stable)

5.-(1) Leaving at high temperature (Change of pick-up and drop-out voltages) Tested sample: R-SD-24V, 30 pcs. Condition: Deenergized leaving at 90°C 194°F (constant temperature)

3.-(2) Operate time including bounce time (2 coil latching)

5.-(2) Leaving at high temperature (Change of contact resistance)

Tested sample: R-SD-24V, 30 pcs. Condition: Deenergized leaving at 90°C 194°F (constant temperature)

4. Release time including bounce time (Single side stable)

6. High frequency characteristics Tested sample: R-SD-24V Tested condition:

7. Contact sticking resistance

TEST CONDITION

The purpose of this test was to confirm contact sticking resistance and contact stability against coil ripples.

Tested Sample: R-SD-24V, 10 pcs.

Test method: Following coil ripples were applied. Test period: 500 hours

9.-(1) Rate of change in pick-up and drop-out voltage (Single side stable)

10.-(2) Mechanical life (Change of contact resistance) Tested Sample: R-SD-24V, 10 pcs. Operation frequency: 500 cps

11.-(3) Electrical life

Tested Sample: R-SD-12V, 10 pcs. Load: 54 mA 12 V DC inductive load with diode protection (4 relay coils in parallel of NR-SD-12V) Frequency: 50 cps

TEST RESULT No occurance of sticking was observed. Contact resistance: Fig. 1 R-SD-24V: 29 m Ω to 30.4 m Ω

In actual application, above coil ripples should be avoided and use of a capacitor in the circuit is recommended to keep the ripple factor below 5%.

9.-(2) Rate of change in pick-up voltage (2 coil latching)

11.-(1) Electrical life (1 A 20 V DC resistive load) Tested sample: R-SD-24V, 10 pcs. F(t)(%) 99.9

11.-(4)Electrical life (327 mA 24 V DC relay coil load) Tested sample: R-SD-24V, 5 pcs. Condition: HP2-DC24×6 pcs. in parallel, diode protector provided

8. Distribution of contact resistance

Tested sample: R-SD-24V (WG type) 105 pcs.

10.-(1) Mechanical life (Change of pick-up and drop-out V) Tested Sample: R-SD-24V, 10 pcs. Operation frequency: 500 cps

11.-(2) Electrical life Tested Sample: R-SD-24V, 10 pcs. Load: 60 mA 24 V DC resistive load

R

R

APPLICATION HINTS

Contact protection circuit

When using R relays in inductive load circuits, a contact protection circuit is recommended.

Examples:

CR	CR	Diode
s Relay contact	<u></u>	S
L : Inductive load		
 r = more than 20 to 30 ohms In an AC circuit impedance of L is to be somewhat smaller than impedance of r and c. 	Can be used for both AC and DC circuits. Use 500 to 1000 ohms for r and 0.1 μF to 0.2 μF 200 V for c in a general 12 to 24 V load circuit.	For DC circuits only.

100

1,000 2,000

Exposure time, hr

The following is life data under our HP2 relay load.

Contact voltage	Contact current	Contact protection circuit	Operating speed	Expected life, min. op.
6 V DC	232 mA	0.2 μF + 1kΩ or diode	2 op./s	3×10 ⁷
12 V DC	106 mA	$0.2 \mu\text{F} + 1 k\Omega$ or diode	2 op./s	3×10 ⁷
24 V DC	54 mA	$0.1 \mu\text{F} + 1 k\Omega$ or diode	2 op./s	3×10 ⁷
100 V DC	15 mA	$0.1 \mu\text{F} + 1 k\Omega$ or diode	2 op./s	2×10 ⁷
24 V DC	80 mA	0.2 μF + 1kΩ	2 op./s	3×10 ⁷
100 V DC	20 mA	0.1 μ F + 1k Ω or varistor	2 op./s	2×10 ⁷
200 V DC	10 mA	0.1 μF + 1kΩ	2 op./s	2×10 ⁷

(Notes)

1. When inrush current occurs in the capacitor load circuit or incandescent lamp load circuit, reduce it to less than 5 A. Electrical life of "AuCo" contact types is 10,000 operations in a 5 A inrush current circuit.

2. When 5 A to 10 A inrush current occurs in the capacitor load circuit or incandescent lamp load circuit, the use of power types is recommended.

2 coil latching types

A) The circuit at right is recommended when using one coil for latching and the other coil for reset.

R relays are sensitive enough to be operated by the discharge of energy accumulated in the inner-coil capacitance. The use of a diode of over 200 V breakdown will prevent misoperation from this source.

In order to maintain the insulation between the two coils, connection of the terminal No. 3 and No. 6 or the terminal No. 2 and No. 5 is recommended, as shown in the right figure. Rectifiers should be inserted in this circuit when the nominal coil voltage of the R relay is more than 24 V DC.

2

5

No. of operations, ×10⁶

15

0

15

B) No damage will occur to the coil of either the one or two coil bistable types even if the operating voltage is as much as 2 or 3 times the nominal coil voltage.
C) If separate pulses are applied to each coil of the 2 coil bistable types, the first pulse will operate when the pulses are of equal voltage. When voltages differ the higher voltage will cause operation provided the voltage difference is greater than the measured pick-up voltage.

Continuous bias voltage after an operating pulse lowers contact pressure and vibration resistance.

Ripple factor

Coils should be operated on pure DC. Rectified AC may cause changes in the pick-up/drop-out characteristics because of the ripple factor. Use of a capacitor in

reduce contact pressure proportionately.

Voltage difference on the coils will

the circuit is recommended to keep the ripple factor below 5%.

When designing R relay circuits

Care should be taken when designing relay circuits since the response of the relay is so fast that bouncing or chattering from conventional relays in the circuit may cause false operation.

When using long lead wires

When long wires (as long as 100 m or more) are to be used, the use of resistance (10 to 50 Ω) in series with the contact is required in order to eliminate the effect of the possible inrush current due to the stray capacitance existing between the two wires or between the wire and ground.

AC operation of latching relays

When using circuits such as those at the right, avoid continued or extended latching or resetting power input.

Capacitor discharge operation of latching types

When operating bistable (latching) types by discharge of a capacitor, more reliable operation can be expected if the time to reach pick-up voltage is greater than 2 ms at 5 to 10 μ F: (24 V type).

Automatic coil circuit interruption

Misoperation may occur in self-operated cutoff circuits such as shown at right. This can be avoided by adding a resistor and capacitor and increasing the pick-up voltage to above that specified. In a timer circuit, step-pulse voltage from PUT (Programmable Unijunction Transistor) or SBS (Silicon Bilateral Switch) is recommended.

Residual voltage

When single side stable types or latching types are driven by transistor or UJT, residual voltage is sometimes applied to the coils and decreases contact pressure at N.O. side even if the transistor or UJT are in OFF condition. As a result, characteristics of relays may be harmed. Design your circuits in principle to make such residual voltage zero.

Short circuit prevention between N.C. and N.O.

The separation of loads or insertion of a resistor for circuit protection are recommended for the circuits where large current flows due to arcing. (See Fig. 1).

ACCESSORIES

PC board terminal sockets (with hold-down clip)

mm inch