Low Capacitance Diode Array for ESD Protection in Four Data Lines

NUP4301MR6T1 is a MicroIntegration™ device designed to provide protection for sensitive components from possible harmful electrical transients; for example, ESD (electrostatic discharge).

Features

- Low Capacitance (1.5 pf Maximum Between I/O Lines)
- Single Package Integration Design
- Provides ESD Protection for JEDEC Standards JESD22

Machine Model = Class C

Human Body Model = Class 3B

• Protection for IEC61000-4-2 (Level 4)

8.0 kV (Contact)

15 kV (Air)

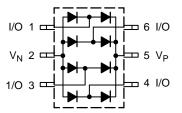
- Ensures Data Line Speed and Integrity
- Fewer Components and Less Board Space
- Direct the Transient to Either Positive Side or to the Ground

Applications

- USB 1.1 and 2.0 Data Line Protection
- T1/E1 Secondary IC Protection
- T3/E3 Secondary IC Protection
- HDSL, IDSL Secondary IC Protection
- Video Line Protection
- Microcontroller Input Protection
- Base Stations
- I²C Bus Protection

MAXIMUM RATINGS (Each Diode) (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	70	Vdc
Forward Current	ΙF	200	mAdc
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc
Repetitive Peak Reverse Voltage	V_{RRM}	70	V
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	I _{F(AV)}	715	mA
Repetitive Peak Forward Current	I _{FRM}	450	mA
Non-Repetitive Peak Forward Current $t = 1.0 \mu s$ $t = 1.0 ms$ $t = 1.0 S$	I _{FSM}	2.0 1.0 0.5	А


1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor®

http://onsemi.com

PIN CONFIGURATION AND SCHEMATIC

CASE 318F PLASTIC

MARKING DIAGRAM

64 = Specific Device Code d = Date Code

ORDERING INFORMATION

Device	Package	Shipping		
NUP4301MR6T1	TSOP-6	3000/Tape & Reel		

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Ambient	$R_{ heta JA}$	556	°C/W
Lead Solder Temperature Maximum 10 Seconds Duration	TL	260	°C
Junction Temperature	TJ	-40 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

$\textbf{ELECTRICAL CHARACTERISTICS} \; (T_J = 25^{\circ}C \; \text{unless otherwise noted}) \; (\text{Each Diode})$

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Reverse Breakdown Voltage (I _(BR) = 100 μA)	V _(BR)	70	-	-	Vdc
Reverse Voltage Leakage Current $ \begin{array}{c} (V_R=70 \text{ Vdc}) \\ (V_R=25 \text{ Vdc}, T_J=150^{\circ}\text{C}) \\ (V_R=70 \text{ Vdc}, T_J=150^{\circ}\text{C}) \end{array} $	I _R	- - -	- - -	2.5 30 50	μAdc
Capacitance (between I/O pins) (V _R = 0 V, f = 1.0 MHz)	C _D	-	0.8	1.5	pF
Capacitance (between I/O pin and ground) (V _R = 0 V, f = 1.0 MHz)	C _D	-	1.6	3	pF
Forward Voltage $ \begin{array}{c} (I_F=1.0 \text{ mAdc}) \\ (I_F=10 \text{ mAdc}) \\ (I_F=50 \text{ mAdc}) \\ (I_F=150 \text{ mAdc}) \end{array} $	V _F	- - - -	- - - -	715 855 1000 1250	mV _{dc}

^{1.} FR-5 = $1.0 \times 0.75 \times 0.062$ in. 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

Curves Applicable to Each Cathode

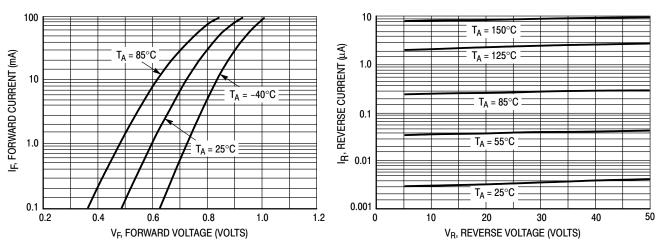


Figure 1. Forward Voltage

Figure 2. Leakage Current

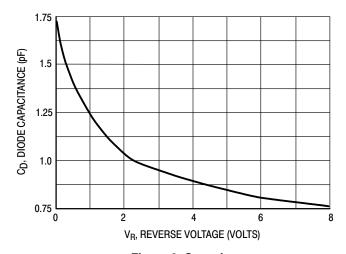


Figure 3. Capacitance

PACKAGE DIMENSIONS

TSOP-6 CASE 318F-04 **ISSUE J**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES
- LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 318F-01, -02, -03 OBSOLETE. NEW STANDARD 318F-04.

	INC	INCHES MILLIMETER		
DIM	MIN	MAX	MIN	MAX
Α	0.1142	0.1220	2.90	3.10
В	0.0512	0.0669	1.30	1.70
С	0.0354	0.0433	0.90	1.10
D	0.0098	0.0197	0.25	0.50
G	0.0335	0.0413	0.85	1.05
Н	0.0005	0.0040	0.013	0.100
J	0.0040	0.0102	0.10	0.26
K	0.0079	0.0236	0.20	0.60
L	0.0493	0.0649	1.25	1.65
M	0 °	10°	0 °	10°
S	0.0985	0.1181	2.50	3.00

MicroIntegration is a trademarks of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051

Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com For additional information, please contact your local

Sales Representative