
IOIO-OTG Hookup Guide




Introduction
The IOIO-OTG (pronounced “yo-yo-O-T-G"; the OTG stands for On-The-
Go) is a development board specially designed to allow developers to add
advanced hardware I/O capabilities to their Android or PC application. It
features a PIC microcontroller, which acts like a bridge that connects an
app on your PC or Android device to low-level peripherals like GPIO, PWM,
ADC, I C, SPI and UART. An app-level library helps you write control code
for these low level peripherals in the same way you’d write any other Java
app!

What separates the IOIO-OTG from previous IOIO boards is its ability to
leverage the USB On-The-Go specification to connect as a host or an
accessory. There are several ways to connect the IOIO to your Java app. If
the app is running on your Android device, the IOIO-OTG will act as a USB
host and supply charging current to your device (meaning the IOIO-OTG
will need its own power source). If your app is running on a Windows, Linux
or OSX machine, the IOIO-OTG will assume device mode and present itself
as a virtual serial port. When in device mode, the IOIO-OTG can be
powered by the host. Connecting a USB Bluetooth dongle will cause the
IOIO-OTG to show up as a Bluetooth serial connection, so you can go
wireless!

2

IOIO-OTG - V2.2
 DEV-13613

®

Page 1 of 26

IOIO-OTG Hookup Guide SparkFun Wish List

Required Materials

A USB Female A to Micro A OTG Cable should have been included with
the purchase of your IOIO-OTG.

In addition to the IOIO and this cable you will need these items to follow
along with this tutorial.

IOIO-OTG - V2.2
DEV-13613

Are you a Java developer looking to add advanced hardware I/O cap…

Bluetooth USB Module Mini
WRL-09434

This is a handy little Bluetooth USB mini-adapter. This adapter suppor…

Barrel Jack to 2-pin JST
TOL-08734

Two pin JST connector to a 2.1x 5.5mm barrel jack, 6.25 inch long ju…

Wall Adapter Power Supply - 9VDC 650mA
TOL-00298

High quality switching 'wall wart' AC to DC 9V 650mA wall power sup…

(2) USB microB Cable - 6 Foot
CAB-10215

USB 2.0 type A to micro USB 5-pin. This is a new, smaller connector f…

Suggested Reading

While not covered in this tutorial directly, the IOIO-OTG is capable of the
functions mentioned below. Should you find any of them unfamiliar, take a
detour over to that tutorial, then head on back here when finished.

The IOIO Wiki is full of great information that is helpful when read
beforehand.

You should have a good understanding of using the Command Line before
getting started with the IOIO-OTG.

IOIO Board Overview
This section will cover the various parts and features found on the IOIO-
OTG board.

USB Micro-AB Connector

The micro USB connector is used to connect the IOIO to a number of
devices. You can connect the IOIO to a PC using a micro-B USB Cable.
The supplied USB Female A to micro-A OTG Cable should be used
whenever connecting to an Android device, with the IOIO acting as host (for
charging the Android), OR to a Bluetooth dongle.

Please Note: This connector is a USB micro-AB connector, which
means it can accept both USB micro-A and USB micro-B connections.

Page 2 of 26

Power

Power LED

In the bottom-left corner of the image, we have the red power LED. This
illuminates when the IOIO is powered through either the USB port, the JST
connector or the VIN pins.

2-pin JST Female Power Jack

Used for power supply to the board. Voltage between 5V–15V should be
supplied. The simplest way to power the IOIO-OTG is to use a wall power
supply (5–15V) coupled with our Barrel Jack to JST adapter. Consider a
supply that is 1.5V+ higher than 5V. This will result in a more stable 5V
supply coming from the voltage regulator.

VIN pins (3 pins)

Used for outputting the supply voltage to your circuit, or as an alternative
input to the power jack.

5V Pins (3 pins)

5V output from the onboard regulator, which can be used in your circuit.

3.3V Pins (3 pins)

3.3V output from the onboard regulator, which can be used in your circuit.

You can read more about ways to power the IOIO-OTG here.

GPIO Pins

General Purpose Input/Output (GPIO) pins are the meat of the IOIO-OTG
and are the pins used to interface your applications to the physical world.
All 46 pins can be used as 3.3V digital input (pull-up / pull-down / floating)
or output (push-pull / open-drain). Several pins have additional functionality.
Luckily, there is a handy key located on the back of the IOIO to clarify which
pins are capable of which functions.

Page 3 of 26

To clarify, the key is as follows:

• Pins with Black Circles around them can be used as 5V Tolerant
I/O. Pins without circles should only be used with 3.3V devices.

• Pins with Black Squares can be used as Analog Inputs.
• Pins marked with a ‘P’ can be used as Peripheral Inputs/Outputs.
• Pins marked with a ‘Pi’ can be used as Peripheral Inputs only.
• Pins marked with CL or DA can be used as the Clock and Data

lines for the various I C ports on the IOIO. There are three I C ports
available on the IOIO-OTG.

By default, pins might be damaged if exposed to voltage outside the
0V-3.3V range. 5V-tolerant pins extend this range to 0V-5V, thus allowing
us to communicate with 5V logic.

You can read more about the IOIO-OTG’s I/O pins here.

Status LED

Normally, this yellow LED is under application control (“pin 0”). In very few
special cases (e.g., bootloader mode), it has a special meaning (to indicate
entry into bootloader mode or an unconfigured oscillator).

Charge Current Trimpot (CHG)

The CHG adjusts the amount of current supplied on the VBUS line of the
USB when acting as a USB host (or when it is connected to your Android).
It is typically used in battery-powered applications to prevent battery drain.
Turning in the clockwise (+) direction increases charge current. Generally,
this can be left at the default factory setting, which is fully clockwise.

2 2

Page 4 of 26

Host/Device Switch

Not normally used. Keep switch in A mode. In “A” mode, the IOIO-OTG will
detect whether it should act as host or as device automatically, according to
whichever USB connector is plugged in (micro-A or micro-B). The only
reason to put it in H mode is when working with a non-standard USB-OTG
cable or adapter that doesn’t identify itself correctly on the host side or the
cable. This should never be the case with the provided USB-OTG cable.

MCLR and Boot Pins

MCLR

This pin hardly ever needs to be used by the user. This pin is for
programming a new bootloader onto the IOIO-OTG board.

BOOT

This pin will only be used on occasion by the user for firmware upgrades.
This pin is used to switch the IOIO-OTG into bootloader mode on power-up.
Note that this pin is shared with the Stat LED.

More information about the IOIO-OTG hardware can be found here.

Hardware Assembly
This section will cover attaching hardware to your IOIO-OTG. The
examples in this tutorial will only be making use of the on-board LED found
on the IOIO. However, the techniques you learn to control the on-board
LED will translate to a multitude of other hardware such as buttons, motors,
switches and knobs.

To make attaching other hardware to your IOIO, you’ll want to solder on
some headers. If you have never soldered before, we have a great guide to
get you started. We recommend using female headers. Alternatively, you
can also purchase the IOIO-OTG with headers pre-soldered.

Page 5 of 26

One additional part that may make your IOIO development that much
easier is the IOIO and Breadboard Holder Base Plate. Similar to our
Arduino and Breadboard Base Plate, this allows you to attach your IOIO
and a breadboard to the same plate, making cicuit building easier and
adding durability to your project. The holder comes with screws for
attaching the IOIO.

Please note: It is not necessary to solder headers to your IOIO to
follow along with this tutorial. Nor is the Base Plate necessary. These
are just suggestions to make development easier once you reach the
end of this guide.

With all the hardware suggestions in this section added, your platform
should look something like this:

IOIO-OTG - V2 (with Headers)
 DD-13964

IOIO and Breadboard Holder
 DEV-11632

Page 6 of 26

Software Downloads and Installation
This section will cover the installation of all the software necessary to get
started with the IOIO-OTG. All of these pieces of software will be used
throughout the tutorial, though not all of them will be used in each example.
If you only wish to use your PC to develop on the IOIO or, alternatively, only
want to develop on an Android device/emulator, you may only need to
install the software for those specific applications.

 Set Aside Some Time: Installing all of these pieces of software at
once will be time-consuming. Set aside 30-60 minutes, depending on
your computer's speed and internet connection.

Client Software and IOIO Application Firmware

Head over to the Downloads section of the IOIO wiki on GitHub. Scroll
down until you see the section titled Client Software and IOIO Application
Firmware Images. Under the Client-side Software column, download the
latest version, which will be delivered as a .zip file (App-IOIOxxxx, where
xxxx is the software/library version number). Unzip it, and place that folder
in a location of your choosing (we recommend your home directory).
Remember the location, as it will be used frequently throughout this tutorial.
You can also download it directly from the link below.

IOIO LIBRARY AND EXAMPLES

This folder contains all the Client-side software for the IOIO, including the
IOIO Library and the examples we will be using both on a PC and on an
Android device/emulator. These files will be necessary to get started with
the IOIO no matter which method you choose for development.

No further action is needed after downloading and unzipping this folder.

Note: If you are using an older IOIO board, make sure the version
number of your IOIO Library is less than or equal to the version
number of your firmware.

IOIO Bridge

Another piece of software we’ll need from the IOIO GitHub wiki is IOIO
Bridge, which can be found under the Tools section. Or, you can download
it directly using the link below.

IOIO BRIDGE



Page 7 of 26

This tool allows you to have your Android device and your IOIO plugged
into your computer at the same time, allowing for faster development.

No further action is needed after downloading and unzipping this folder.

IOIO Device Driver

To use the IOIO-OTG with your personal computer, download and install
the device driver for the IOIO. You may need to plug the IOIO-OTG into
your computer to complete the driver installation.

Windows

Provide this file (right-click, and choose Save Link As…) to the “Add
Hardware” wizard on your Windows machine.

Linux

Copy this udev rules file to the udev rules directory. More information can
be found here.

OSX

No driver installation is necessary if using the Mac OS.

You can find more information about interfacing your IOIO with your PC
over on the IOIO wiki.

Java Development Kit (JDK)

Whether you’re developing with the PC, an Android device or both, it’s
necessary to have Java installed. If it’s not installed already, you can find it
on Oracle’s website. Choose the correct file for your OS.

While it’s only necessary to have the Java Runtime Environment (JRE)
installed, you may find it easier to just install the entire Java Development
Kit (JDK). The version of Java pointed to by your command line may be an
outdated version. Installing the latest version of the JDK will update all
references to Java your system may need.

Note that your OS may come with Java already installed. You can check by
typing java ­version into your command line window on any OS. This
command will also let you know if the installation from above was
successful.

Android Studio and Android SDK

To create your own Android apps or to use existing Android app examples,
you will need to have Android Studio installed. If you wish to work
exclusively on your PC, you do not need to install Android Studio. If
needed, download it from the link below.

ANDROID STUDIO AND ANDROID SDK

Once downloaded, follow the appropriate instructions for your OS, and
install it as you would with other applications. Remember its location for
later use.

Follow the setup wizard. You will eventually reach a page verifying all the
installation settings to be installed. Take note of where the SDK Folder is,
as it will be needed following installation.

Page 8 of 26

We will need to use the Command line in conjunction with Android Studio.
You will most likely need to add the Android SDK platform­tools folder to
your $PATH, which can be found in the SDK Folder mentioned previously.

Windows users can find GUI $PATH instructions here. Command line
instructions can be found here. The command should look something like
this:

PATH %PATH%;~/Android/sdk/platform­tools/

Mac and Linux users can find $PATH instructions here. The command
should look something like this:

export PATH=$PATH:~/Library/Android/sdk/platform­tools/

In the Command line, type adb , which stands for Android Debug Bridge. If
you see a list of adb commands print out, the installation and $PATH
update was a success!

Gradle

Gradle is an open source build automation system used to compile Java
code. We will be using this to build our own PC application for the IOIO.
Android Studio comes with a copy of Gradle, so, if you wish to skip the PC
app sections and move straight to the Android app sections, you do not
need to install this separately.

Download Gradle here. You can grab the Binary only distribution.

Extract the .zip file, and place it somewhere you’ll remember. It’s
recommended you place it in your home directory.

You will most likely need to add the Gradle bin folder to your $PATH.

Windows users can find GUI $PATH instructions here. Command line
instructions can be found here. The command should look something like
this:

PATH %PATH%;~/gradle­2.12/bin/

Mac users can find $PATH instructions here. The command should look
something like this:

export PATH=$PATH:~/gradle­2.12/bin/

You can check to see if it worked by typing gradle ­v . You should see
some version info print out.

Page 9 of 26

More information on Gradle can be found on the IOIO Wiki.

Running Your First PC App
We will begin by running a PC application from the App-IOIOxxxx folder
downloaded from the IOIO GitHub repo. Download it now, if you have not
done so already. Using this known-good application will help to ensure
everything is working correctly, both on the hardware and software side.

Plug the IOIO into Your PC

Using a micro USB cable, plug the IOIO-OTG into your computer’s USB
port. You should see the red power LED illuminate. No other connections
are necessary at this time.

Find the IOIO’s Serial Port

Next, find the IOIO’s serial port so we can communicate with it through the
command line. Install the drivers mentioned in the Software Installation
section, if you have not done so already.

On Mac OSX or Linux, open the Command Line Interface (CLI) of your
choice and type:

ls /dev/tty.*

You should see the IOIO appear as tty.usbmodemXXXX, where the X’s are
some specific characters and numbers.

On Windows, open the Device Manager, and check to see which COM Port
the IOIO has enumerated as under the ports section. The IOIO will appear
as COMXX, where the X’s are a specific number.

Take note of this, as we will need it shortly.

Navigate to the Pre-Built App

In your command line, navigate to the App-IOIOxxxx folder. Then cd into
the bin folder. In here, there is a binary file titled
HelloIOIOConsole­5.07­standalone.jar . We’re going to run this

application from the command line. It will establish a connection with the
IOIO and allow you to control the onboard Stat LED from the command line.

To run the app, type the following:

java ­Dioio.SerialPorts=YOUR_IOIO_SERIAL_PORT ­jar HelloIOIOCo
nsole­5.07­standalone.jar

where YOUR_IOIO_SERIAL_PORT is replaced by the serial port from the
previous step.

On Mac and Linux, this will look something like:

java ­Dioio.SerialPorts=/dev/tty.usbmodemfd141 ­jar HelloIOIOC
onsole­5.07­standalone.jar

On Windows, this will look something like:

Page 10 of 26

java ­Dioio.SerialPorts=COM65 ­jar HelloIOIOConsole­5.07­stand
alone.jar

You should see some information printed to the command line. The most
important line is IOIO connection established . If you see that, you’re
connected to your IOIO through the command line!

Now, press enter. You should see some instructions print to the screen.

Unknown input. t=toggle, n=on, f=off, q=quit.

Press t + ENTER. You should see the stat LED turn on. Press t +
ENTER again, and it should turn off. You are now controlling your IOIO
from your PC! Try using the other commands.

You have just run your first IOIO PC application!

If you are having trouble getting the app to work, please visit the
Troubleshooting section.

Building Your First PC App
In the previous section, we ran a pre-built PC application. In this section we
will use that same application’s code to learn how to build/compile our own
PC application (.jar file) for the IOIO.

Download Gradle

To begin, we need to first download Gradle to compile the code. Gradle is
an open source build automation system used to compile code – Java in
this case.

Download Gradle here, if you have not done so already. You can grab the
Binary only distribution.

Extract the .zip file, and place it somewhere you’ll remember. It’s
recommended you place it in your home directory.

You will most likely need to add the Gradle bin folder to your $PATH.

Windows users can find GUI $PATH instructions here. Command line
instructions can be found here. The command should look something like
this:

PATH %PATH%;~/gradle­2.12/bin/

Mac users can find $PATH instructions here. The command should look
something like this:

export PATH=$PATH:~/gradle­2.12/bin/

You can check to see if it worked by typing gradle ­v . You should see
some version info print out.

More information on Gradle can be found on the IOIO Wiki.

Looking at the Code

Page 11 of 26

In the command line, navigate to the App-IOIOxxxx folder you downloaded
from GitHub previously. Then cd to the /src/applications/pc directory.
Here you will find all the PC applications and all their source code. The
application we used previously was the HelloIOIOConsole app. From here,
continue to navigate to this
directory: /HelloIOIOConsole/src/main/java/ioio/examples/hello_console/ .
In here you’ll find a HelloIOIOConsole.java file. This is the code we want
to have a look at. Open this file in vim or your favorite editor. You can copy
the line below.

vim /src/applications/pc/HelloIOIOConsole/src/main/java/ioio/e
xamples/hello_console/HelloIOIOConsole.java

You can also navigate to that folder from your file explorer and open the file
in your favorite code viewer.

The code you see should look like the code below:

Page 12 of 26

1 package ioio.examples.hello_console;
2
3 import java.io.BufferedReader;
4 import java.io.IOException;
5 import java.io.InputStreamReader;
6
7 import ioio.lib.api.DigitalOutput;
8 import ioio.lib.api.IOIO;
9 import ioio.lib.api.exception.ConnectionLostException;
10 import ioio.lib.util.BaseIOIOLooper;
11 import ioio.lib.util.IOIOConnectionManager.Thread;
12 import ioio.lib.util.IOIOLooper;
13 import ioio.lib.util.pc.IOIOConsoleApp;
14
15 public class HelloIOIOConsole extends IOIOConsoleApp {
16 private boolean ledOn_ = false;
17
18 // Boilerplate main(). Copy­paste this code into an
y IOIOapplication.
19 public static void main(String[] args) throws Excep
tion {
20 new HelloIOIOConsole().go(args);
21 }
22
23 @Override
24 protected void run(String[] args) throws IOExceptio
n {
25 BufferedReader reader = new BufferedReader
(new InputStreamReader(
26 System.in));
27 boolean abort = false;
28 String line;
29 while (!abort && (line = reader.readLine
()) != null) {
30 if (line.equals("t")) {
31 ledOn_ = !ledOn_;
32 } else if (line.equals("n")) {
33 ledOn_ = true;
34 } else if (line.equals("f")) {
35 ledOn_ = false;
36 } else if (line.equals("q")) {
37 abort = true;
38 } else {
39 System.out
40 .println("Unknown
input. t=toggle, n=on, f=off, q=quit.");
41 }
42 }
43 }
44
45 @Override
46 public IOIOLooper createIOIOLooper(String connectio
nType, Object extra) {
47 return new BaseIOIOLooper() {
48 private DigitalOutput led_;
49
50 @Override
51 protected void setup() throws Conne
ctionLostException,
52 InterruptedExceptio
n {
53 led_ = ioio_.openDigitalOut
put(IOIO.LED_PIN, true);
54 }

Page 13 of 26

55
56 @Override
57 public void loop() throws Connectio
nLostException,
58 InterruptedExceptio
n {
59 led_.write(!ledOn_);
60 Thread.sleep(10);
61 }
62 };
63 }
64 }

If you have programmed Arduinos or other microcontrollers before, you will
see some familiar lines of code. Starting on line 16, we have a variable
called ledOn_ . This boolean holds the state of the LED, true or false for
high or low.

Following that, we have the run() function on line 24. Then you can see
the if and if/else statements that control the state of the LED based on
the input received in the Command line.

Next, on line 51, there’s the void setup() function and the void loop()
function on line 57, with which you may be familiar. Inside the setup()
function on line 53, there is the led_ variable that is set to IOIO.LED_PIN .
This is telling the code to use the IOIO’s onboard Stat LED, “pin 0.”

Last, in the loop() function on line 59, there is the led_.write() function
that alters the state of the Stat LED, !ledOn_ , when the appropriate
characters are received from user input. The Thread.sleep(10); is just a
delay, having the loop check every 10ms.

Compile the Code

Now that we have a better understanding of what’s happening in the code,
it’s time to build our own executable .jar file that will allow us to run this PC
app on the IOIO.

To compile the code, change directories back to:

/src/applications/pc/HelloIOIOConsole

In this directory, you will see the src folder we were just exploring and a
build.gradle file. If you would like, you may open the build.gradle file in

your favorite editor to see how the compiler works. Going into those details
is beyond the scope of this tutorial.

Type gradle build . You should see some info print out followed by
BUILD SUCCESSFUL .

Run the Application

Page 14 of 26

Type ls once the compilation is complete. You should now see a folder
titled build . Inside that build folder is the .jar app we intend to run on the
IOIO. Navigate to:

cd build/libs

Here, you should see two .jar files. The one titled
HelloIOIOConsole­standalone.jar is the one we’re after.

Connect the IOIO to the PC if it isn’t connected already.

Back in your Command line, type the following to run the app. Don’t forget
to change YOUR_IOIO_SERIAL_PORT to the port to which your IOIO is
connected, as mentioned in the previous section.

java ­Dioio.SerialPorts=YOUR_IOIO_SERIAL_PORT ­jar HelloIOIOCo
nsole­standalone.jar

As in the previous section, you should see some info print out followed by
IOIO connection established . You can now control the IOIO Stat LED

just as before, typing t + ENTER to toggle its state.

Congratulations, you just built your first Java app for the IOIO!

From here, you can use this code as a base to start exploring the IOIO’s
capabilities. Change or add a few lines of code, compile with Gradle, and
see what happens!

For a complete list of all the commands you can issue to the IOIO, go back
to the IOIO folder you downloaded from GitHub. Inside that folder is another
folder titled doc . Navigate to doc , and open the index.html file in your
browser. There you will find a reference of all the IOIO classes. See if you
can get an LED to blink on one of the IOIO’s digital I/O pins.

Check the Resources and Going Further section for more information and
links to IOIO resources.

If you are having trouble getting the app to work, please visit the
Troubleshooting section.

Running Your First Android App
We will transition from using the PC to using an Android device or emulator
to run apps created for the IOIO.

Download Android Studio

If you have not done so already, you will need to download and install
Android Studio.

Once downloaded, follow the appropriate instructions for your OS, and
install it as you would with other applications. Remember its location for
later use.

Follow the setup wizard. You will eventually reach a page verifying all the
installation settings to be installed. Take note of where the SDK Folder is,
as it will be needed following installation.

Page 15 of 26

We will need to use the Command line in conjunction with Android Studio.
You will most likely need to add the Android SDK platform­tools folder to
your $PATH, which can be found in the SDK Folder mentioned previously.

Windows users can find GUI $PATH instructions here. Command line
instructions can be found here. The command should look something like
this:

PATH %PATH%;~/Android/sdk/platform­tools/

Mac user can find $PATH instructions here. The command should look
something like this:

export PATH=$PATH:~/Library/Android/sdk/platform­tools/

In the command line, type adb , which stands for Android Debug Bridge. If
you see a list of adb commands print out, the installation was a success!

Plug in Your Android Device to Your PC

Before plugging your Android device into your PC, you’ll need to first turn
on USB Debugging. To do so, navigate to your device’s Settings and
under the System heading click on Developer options. Then, under
Debugging, make sure the USB Debugging check box is checked.

Heads up! When switching from having your Android device plugged
into your PC and having the IOIO plugged into your device, you will
need to constantly turn on and off USB Debugging. Don't fret, though;
we'll show you a way around this in the IOIO Bridge section.

With USB Debugging enabled, you can now plug your Android device into
your PC. Once plugged in, you can check to see if your device is showing
up in the command line with the following command:

adb devices

You should see your device’s info print out after the
List of devices attached line.

Note: If you have not plugged your device into your PC before, you'll
need to wait for the PC to finish installing the device drivers before it
will show up using the adb devices command.

Check for any prompts on your Android device before continuing. Your
device may ask to allow USB Debugging for this computer. Click OK, and
check the ‘Always allow from this computer’ check box, if you desire.

Page 16 of 26

Upload App to Android Device

With your device connected to your PC, navigate to the bin folder in the
App-IOIOxxxx folder via the Command line. In this folder is a pre-compiled
app (.apk file) titled HelloIOIO­debug­unaligned.apk . Upload this app to
your device using the following command:

adb install HelloIOIO­debug­unaligned.apk

You should see the following success message print out:

On your Android device, navigate to your applications. You should now see
a HelloIOIO app on your device.

Plug in the IOIO to your Android Device

Heads up! Be sure to disable USB Debugging before you plug your
IOIO into your Android device.

Unplug your device from the PC, keeping the micro USB cable attached to
your Android device. Attach the red USB Female A to micro-A OTG Cable
to the end of the micro USB cable. Then attach the micro-A end of the OTG
cable to the micro-AB connector on the IOIO-OTG.

Provide power to your IOIO using the Barrel Jack-to-JST Adapter. The red
power LED should illuminate.

Open the HelloIOIO app. Your device may ask you if you want to
automatically open that app when the IOIO is plugged in. You will be
presented with this screen:

Page 17 of 26

Press the button on the touchscreen to turn the Stat LED on and off. You’ve
just uploaded and successfully used your first IOIO Android application!

If you are having trouble getting the app to work, please visit the
Troubleshooting section.

Building Your First Android App
Now that we know how to upload a known-good application, let’s see what
it takes to build our own using Android Studio.

Open Android Studio

Note: Going into detail about how to use Android Studio is beyond the
scope of this tutorial. This section will minimally cover how to upload
an app using this software. For more information on getting started
with Android Studio, we suggest you complete their Building Your First
App tutorial.

Open Android Studio. If this is the first time you’re opening it, it may take a
few minutes. There may be several setup/first-time-tips windows to
navigate through.

You should eventually be presented with the following screen asking what
action you’d like to perform:

Choose ‘Open an existing Android Studio project.’

Open HelloIOIO Application

Page 18 of 26

Inside the Android Studio file explorer window, navigate to
~/App­IOIO0507/src/applications , and open the folder titled HelloIOIO .

Heads up! Upon opening the project, Android Studio may yell at you
about there being mismatched versions of various pieces needed to
compile the code, such as the Android SDK or the Gradle Wrapper. It
will offer downloads of the version(s) needed to correct the mismatch.

Keep clicking OK and installing any missing platforms until Android
Studio is happy.

The project tree has many files. The file that contains the Java code for the
IOIO is in HelloIOIO→ scr→ ioio.examples.hello→ MainActivity.java.
Double click on the MainActivity.java file, and you should see this:

The MainActivity.java file contains the code that talks to the IOIO board. If
you want to change the UI (user interface or graphics) of your app, the res
→ layout → main.xml file is where you make the changes. Here you can
start writing code and changing the HelloIOIO sketch, if you desire.

Delete App from Android Device

Though we’ll be installing the same app as in the previous section (unless
you decided to alter the code), you will need to uninstall the app on your
Android device to ensure that Android Studio is working properly.

Page 19 of 26

Make sure that you are uninstalling the app and not just removing it from
your home page. On most devices, this requires long tapping the app and
dragging it to the Uninstall (trash bin) area at the top of the screen.

Plug in Your Android Device to Your PC

Plug your Android device into your PC.

Heads up! Be sure to enable USB Debugging before you plug in your
Android device.

Upload App to Android Device

With your device connected to your PC, click the ‘Run’ button:

Android Studio will ask to which device you’d like to upload the application.
Assuming you only have one device plugged in, there should only be one
option. You can also use the Android emulator if you do not have an
Android device.

You should see the build status at the bottom of the window. It will say
Gradle Build Running , followed by Gradle build finsihed .

On your Android device, navigate to your applications. You should now see
a HelloIOIO app on your device.

Plug in the IOIO to Your Android Device

Heads up! Be sure to disable USB Debugging before you plug your
IOIO into your Android device.

Page 20 of 26

Unplug your device from the PC, keeping the micro USB cable attached to
your Android device. Attach the red USB Female A to Micro A OTG Cable
to the end of the micro USB cable. Then attach the micro A end of the OTG
cable to the Micro A-B connector on the IOIO-OTG.

Provide power to your IOIO using the Barrel Jack-to-JST Adapter. The red
power LED should illuminate.

Open the HelloIOIO app, and you should be presented with this now
familiar screen:

Press the button on the touchscreen to turn the Stat LED on and off. You’ve
just successfully built, uploaded and used your first IOIO Android
application!

For a complete list of all the commands you can issue to the IOIO, go back
to the IOIO folder you downloaded from GitHub. Inside that folder is another
folder titled doc . Navigate to doc , and open the index.html file in your
browser. There you will find a reference of all the IOIO classes. See if you
can get an LED to blink on one of the IOIO’s digital I/O pins.

Check the Resources and Going Further section for more information and
links to IOIO resources.

If you are having trouble getting the app to work, please visit the
Troubleshooting section.

IOIO Bridge for Development

Page 21 of 26

By now you’ve come to realize how inefficient it can be to have to plug in
your device, turn on USB debugging, upload your app, unplug, turn off
debugging, plug in the IOIO, test and repeat for every change you want to
make. Luckily there’s a tool to help aid in your IOIO/Android development.

Download IOIO Bridge

If you have not done so already, go and download the latest version of IOIO
Bridge from the IOIO wiki on GitHub. It can be found under the Tools
section. Or, you can download it directly using the link below.

IOIO BRIDGE

Plug in Android Device and IOIO-OTG to Your
PC

Heads up! Be sure to enable USB Debugging before you plug in your
Android device.

Using two (2) micro USB cables, plug both your Android device and your
IOIO-OTG into your PC.

Find the IOIO’s Serial Port

If you have not done so already, find the IOIO’s serial port so you can
communicate with it through the Command line. You may need to install the
drivers mentioned in the Software Installation section.

On Mac OSX or Linux, open the Command Line Interface (CLI) of your
choice and type:

ls /dev/tty.*

You should see the IOIO appear as tty.usbmodemXXXX, where the X’s are
some specific characters and numbers.

On Windows, open the Device Manager, and check to see which COM Port
the IOIO has enumerated as under the ports section. The IOIO will appear
as COMXX, where the X’s are a specific number.

Take note of this, as we will need it shortly.

Run IOIO Bridge

Navigate to the IOIO Bridge folder, in your Command line, and run the IOIO
Bridge executable followed by the IOIO’s serial port.

On Mac and Linux, this will look something like:

./ioiobridge /dev/tty.usbmodemfd141

On Windows, this will look something like:

Page 22 of 26

ioiobridge COM65

You should see a printout stating connections to both devices were
successful and the bridge is running.

Note: If IOIO Bridge has stalled while waiting to connect to the
Android application, you will need to open the HelloIOIO app (or other
IOIO app) to establish that connection.

You can now interact with the application, and it should be controlling the
IOIO-OTG through IOIO Bridge and your PC! Try pressing the button to
control the Stat LED.

You can now upload applications to your device (PC or Android) while
leaving it plugged in. Then you can test the IOIO’s behavior right away so
long as IOIO Bridge is running. Be sure to turn off IOIO Bridge (Ctrl-C)
before uploading a new application and starting it once the app has been
uploaded.

Going Wireless with Bluetooth
The last thing we’ll cover is how to make your project wireless using
Bluetooth. Going wireless is another method to make development a little
easier as you don’t have to connect and disconnect the IOIO every time
you want to test changes made to your app.

Bluetooth Dongle

In order to utilize the IOIO’s Bluetooth capabilities, you’ll need to acquire a
Bluetooth dongle. Most models of dongles should work with the IOIO-OTG.
The dongle below has been tested with the IOIO and works great.

To connect the dongle, attach it to the larger end of the USB Female A to
Micro A OTG Cable, with the other end attached to the IOIO. Then, power
the IOIO-OTG with the Barrel Jack-to-JST Adapter.

Bluetooth USB Module Mini
 WRL-09434

Page 23 of 26

Some dongles may have a flashing LED to indicate they are receiving
power and awaiting a connection.

Bluetooth Connection

On your Android device, turn Bluetooth on, if it isn’t already. Search for new
devices. You should eventually see the IOIO appear. Pair your device with
the IOIO.

When your device asks for the passcode code to pair with the IOIO, enter:

4545

Your device should now be wirelessly connected to the IOIO-OTG.

Open the HelloIOIO app used in the previous examples. Press the button to
control the LED over the Bluetooth connection!

You can leave your device plugged in while you develop, all while
maintaining the wireless connection with the IOIO.

Troubleshooting

Driver Installation

If your IOIO is not showing up as a serial port, make sure you have installed
the drivers from the Software Installation section. Going through the
installation process again may solve any issues you may have with your PC
communicating with the IOIO-OTG.

Updating Java

Some users may have computers running an outdated version of Java. If
you encounter issues, please consider updating to the latest version.

To check which version of Java you are running, run this command in the
Command line:

java ­version

Download latest version here. Accept the License Agreement, and
download the version that matches your OS.

JDK vs JRE

Page 24 of 26

Using on an older MacBook to develop with the IOIO, I found that my Java
version was outdated. When just the JRE was installed, it still did not
update the version of Java pointed to by my Terminal. I found this Stack
Overflow post about the same issue. Downloading the entire JDK solved
my issue. However, if you do not wish to download the entire JDK, you can
visit that post to see how to tell your Command line which version of Java to
use.

USB Debugging

If you are having issues with your Android device not communicating with
your IOIO, check the USB Debugging.

Ensure that USB Debugging is ENABLED (checked) when you have your
Android device plugged into a computer.

Ensure that USB Debugging is DISABLED (not checked) when you have
your IOIO plugged into your Android Device.

Check USB Connections

If the IOIO or your Android device is not communicating with the computer,
check the micro USB connections. It’s easy to plug one end of the cable
most of the way in, but not quite enough.

Visit the Wiki

There is a plethora of information on IOIO’s GitHub wiki. Visit there for more
troubleshooting suggestions.

Contact SparkFun’s Technical Support

If you have any tutorial feedback, please visit the Comments or contact our
technical support team at TechSupport@sparkfun.com.

Resources and Going Further
You should now be well on your way to becoming a software and hardware
integration master. This tutorial has only scratched the surface of what the
IOIO-OTG is capable of. It is now up to you to choose your own adventure
and explore what possibilities the IOIO-OTG has in store for you.

Hardware Resources

• IOIO-OTG Schematic
• IOIO-OTG Eagle Files
• PIC24FJ256 Datasheet
• IOIO-OTG Hardware Files on GitHub
• Detailed Blog Post about the changes made in this latest revision of

the IOIO-OTG

IOIO-OTG Resources

• IOIO-OTG Wiki on GitHub - The main stop for all IOIO
documentation

• Using IOIO-OTG with a PC
• Collection of IOIO Projects
• IOIO-OTG Bootloader and IOIODude - Learn how to update the

firmware on your IOIO-OTG
• IOIO Google Group Forum

Android Resources

• Learn how to build your first app using Android Studio

Page 25 of 26

Looking for inspiration for your next project? Check out these other great
SparkFun tutorials:

LogicBlocks & Digital Logic
Introduction
Introducing fundamental digital logic
concepts and LogicBlocks

General Guide to SparkFun
Blocks for Intel® Edison
A general guide for using SparkFun
Blocks for Intel® Edison in your next
project!

MG2639 Cellular Shield
Hookup Guide
Learn how to equip your Arduino
with an MG2639 Cell Shield and use
it to send SMS or TCP via GPRS.

Getting Started with the
SparkFun Blynk Board
How to provision a Blynk Board - get
it connected to Wi-Fi and Blynk, so
you can start Blynking!

Page 26 of 26

10/11/2016https://learn.sparkfun.com/tutorials/ioio-otg-hookup-guide/all

