
H2OhNo!




Tiny Power
H2OhNo! is a water sensor alarm. When water is detected across the
sense pins an alarm goes off and an LED starts blinking. If you’ve ever had
a water heater explode or tried to create submersible electronics you know
how important it is to be able to detect when water is around! You can buy
one here.

The assembled H2OhNo! ATtiny development board

Underneath the default function of H2OhNo! is a small but powerful
development board for the ATtiny85 microcontroller. The board includes a
buzzer, LED, a coin cell battery, and the ability to detect analog and digital
sensors. This mixture of create a great low-cost tool to learn how to
program and how to sense things!

Please note that this kit is not a professional water sensor kit and should
not be used in crucial or life support applications. It’s a great educational kit
and can be used for a large number of applications including sensing when
water has gotten too high or two low (like in a fish tank), or it can be
programmed to detect an analog voltage and turn on an LED when the
voltage has gotten too low (like a low battery indicator).

Suggested Reading

Before going further with this guide, you should be familiar with the topics
covered in these tutorials:

• How to Solder
• Polarity

Page 1 of 12

• Using the Tiny AVR Programmer

Assembly
The H2OhNo! is a great beginner soldering kit and a great way to learn
electronics and microcontrollers. It’s very easy to put together and should
take around 20 minutes or less. If you’ve never soldered before consider
reading the How to Solder tutorial.

Before you dive in and begin soldering, please review the Remote Water
Sensor and Remote LED sections below!

Kit Contents:

The kit contents

• Slide switch
• CR2032 coin cell battery and holder
• 0.1uF decoupling capacitor
• 8-pin DIP socket
• 8-pin ATtiny85 microcontroller
• 2kHz Piezo buzzer
• Super bright LED
• 1 jumper wire

Optional materials:

• Wire to locate the status LED off the board
• Heat shrink to cover up solder joints and strength connections

Remote Water Sensor

Water sense pins on a 3" extension

The water sensor works best when it is located a few inches from the
board. This is accomplished by cutting the jumper wire in half and heat
shrinking the two pins next to each other.

Page 2 of 12

Remote LED

LED on a 2" extension

If the sensor will be installed in a remote location (like the inside of an
underwater camera enclosure), you may want to locate the LED off the
board to allow better visibility.

Stress Relief

Stress relief holes

There are two small holes located next to the sense and LED pins to relieve
stress on the solder connection. Route the wires through these holes before
soldering the wires in place.

Basic Assembly

Step 1: Cap, switch and buzzer

Step 1) All parts go into the top side of the PCB. Start with the 0.1uF
capacitor, slide switch, and buzzer. None of these parts are polarized
meaning they can go in either way. Using flush cutters, clip off any excess.

Page 3 of 12

Step 2: Battery holder

Step 2) Solder the battery holder in place. This part is polarized, but it’s
easy to see how it should fit; just be sure the holder lines up with the
silkscreen outline. Don’t insert the battery yet.

DIP socket with notch pointing up. ATtiny aligned correctly with pin one.

Step 3: Insert DIP socket then fold over two pins to hold it in place

Step 3) Solder the 8-pin DIP socket in place. This part is polarized. Be sure
the notch at the top of the socket is on the same end where the dot is. You
can now insert the ATtiny85. Be sure to align the small dot on the ATtiny85
with the dot of the silkscreen and notch of the socket.

Step 4b: LED located off board

Step 4a) Now decide if you want the LED on or off the board. If you want
the LED located on the board, line up the flat side of the LED with the flat
line on the silkscreen. Solder the LED into place, and cut off any excess.

Insert wires through stress relief holes before soldering the wires to the

Page 4 of 12

PCB

Step 4b) If you want the LED located off the board, cut two pieces of wire
the same length. Strip both ends of the wires about 5mm. Cut the legs of
the LED to about 5mm of exposed metal. Then, solder the wire to the short
LED legs. Use heat shrink to cover up the joints. Now, insert the other end
of the wires into the stress relief holes. Solder the wires into the LED pins.
Remember that LEDs are polarized, so you’ll need to solder the wire that
extends from the flat side of the LED to the hole next to the flat line on the
silkscreen. Once both wires are soldered, cut off any excess wire.

Step 5: Sense pins held together with heat shrink

Step 5) To create the water sensor cut the pin off the end of each jumper
wire. Strip 5mm from both wires. Insert the cut and stripped ends through
the stress relief holes, then solder them into place. Use a piece of heat
shrink to hold the pins next to each other.

Step 6: Battery installed with label pointing up

Step 6) Once you’ve got everything soldered together, insert the coin cell
battery into the holder. The label on the battery goes up.

Flip the switch to on and you should hear the buzzer emit two short beeps.
To test the water sensor, lick your finger, and touch the two pins. The LED
should start blinking, and the alarm should go off. Congratulations! You’ve
got a water alarm.

Installation

We recommend the board be located at least an inch away from where
water might be. CR2032 batteries are wonderful in that they can take a lot
of abuse, but the kit will last much longer in a nice, dry environment.

Page 5 of 12

Use 4-40 screws and nuts to attach your kit to the surrounding
environment.

Reprogramming
H2OhNo! will work as a water alarm out of the box, but the real fun begins
when you start to re-purpose the device!

H2OhNo is programmed using the Arduino IDE, but Arduino doesn’t
support the ATtiny series by default. To get Arduino to work with ATtiny
microcontrollers you need to install a David Mellis' mod. Checkout the AVR
Tiny Programmer tutorial for a full description of how to get the drivers and
software setup.

Programming the ATtiny

Once you’ve got the Arduino IDE configured, we need to get our new code
onto the ATtiny. The H2OhNo! development board was designed to be
programmed with the Tiny AVR Programmer (originally designed by David
Mellis - he’s a wizard).

AVR Tiny Programmer with DIP support

To load a new sketch onto the ATtiny, remove the 8-pin DIP from the
H2OhNo!, and insert it into the DIP socket on the Tiny AVR Programmer.
Plug the programmer into your computer’s USB port. Select the ATtiny85
(internal 8MHz clock) from the Tools > Board menu, then hit upload. If you
plan to use SoftwareSerial with your ATtiny, you will need to increase the

Page 6 of 12

internal clock to 8MHz by setting the fuse bits through the Burn Bootloader
function. See Configuring the ATtiny to run at 8MHz on David’s tutorial for
more information.

Hardware Connections

Basic schematic for the H2OhNo!

When loading new code you’ll need to know where each pin is connected.
This simplified schematic should help. You can also grab the schematic
here. Be sure to checkout the H2OhNo! github repo for the open source
hardware design files, as well as the example firmware.

Thank you David Mellis and Mark Sproul for building ATtiny support into the
Arduino IDE!

Blink and Annoy
Now that you’ve got your programmer setup and working we can load fun
new code onto the H2OhNo!.

Basic Blink Firmware

Basic Blink demonstrates how to blink the LED and make some noise. It’s a
great starting point. Copy and paste this code into the Arduino IDE, and
reprogram your ATtiny.

Page 7 of 12

//Pin definitions for ATtiny
const byte buzzer1 = 0;
const byte buzzer2 = 1;
const byte statLED = 4;

void setup()
{
pinMode(buzzer1, OUTPUT);
pinMode(buzzer2, OUTPUT);
pinMode(statLED, OUTPUT);

}

void loop()
{
digitalWrite(statLED, HIGH);
alarmSound();
delay(1000);

digitalWrite(statLED, LOW);
alarmSound();
delay(1000);

}

//This is just a unique (annoying) sound we came up with, ther
e is no magic to it
//Comes from the Simon Says game/kit actually: https://www.spa
rkfun.com/products/10547
//250us to 79us
void alarmSound(void)
{
// Toggle the buzzer at various speeds
for (byte x = 250 ; x > 70 ; x­­)

 {
for (byte y = 0 ; y < 3 ; y++)

 {
digitalWrite(buzzer2, HIGH);
digitalWrite(buzzer1, LOW);
delayMicroseconds(x);

digitalWrite(buzzer2, LOW);
digitalWrite(buzzer1, HIGH);
delayMicroseconds(x);

 }
 }
}

Original H2OhNo! Firmware

If you’re reprogramming the ATtiny you may want to get back to the original
code that shipped with the kit. Grab the latest code by going to the
H2OhNo! github repo. Click ‘raw’, then copy and paste the code into
Arduino.

Annoy-A-Tron Firmware

We know you will eventually come across the idea of an Annoy-a-tron. The
original Annoy-A-Tron was created by Think Geek, and everyone knows
how annoying a low-battery beep of a fire alarm can be. This is a very basic
Annoy-A-Tron example that will beep every 5 minutes. We intentionally
didn’t build in low-power control so that if you happen to use this code you
will only annoy your enemy for a few hours before the coin cell battery gives
out.

Page 8 of 12

//Pin definitions for ATtiny
const byte buzzer1 = 0;
const byte buzzer2 = 1;

void setup()
{
pinMode(buzzer1, OUTPUT);
pinMode(buzzer2, OUTPUT);

}

void loop()
{
alarmSound();

delay((long)1000 * 60 * 5); //5 minute delay
}

//This is just a unique (annoying) sound we came up with, ther
e is no magic to it
//Comes from the Simon Says game/kit actually: https://www.spa
rkfun.com/products/10547
//250us to 79us
void alarmSound(void)
{
// Toggle the buzzer at various speeds
for (byte x = 250 ; x > 70 ; x­­)

 {
//for (byte y = 0 ; y < 3 ; y++)
for (byte y = 0 ; y < 1 ; y++) //Slightly modified to be

a shorter beep
 {

digitalWrite(buzzer2, HIGH);
digitalWrite(buzzer1, LOW);
delayMicroseconds(x);

digitalWrite(buzzer2, LOW);
digitalWrite(buzzer1, HIGH);
delayMicroseconds(x);

 }
 }
}

This is what happened to an Annoy-A-Tron after it was discovered by the
victim. The board met its end in the jaws of a vice with a pipewrench and a

cheater pipe extension. Please annoy responsibly.

Creating projects to prank people is a fantastic way to learn electronics!
Annoying them with incessant beeping is an ok start, but consider getting a
lot more creative with your pranks.

Low-Power ATtiny

Page 9 of 12

The firmware behind H2OhNo! is simple in theory and long in practice. We
need to establish that when water is present then sound the alarm. But
what do we do for the weeks and months when there is no water detected?
Let’s go to sleep and save power!

We’ve written some lengthier tutorials on getting the ATmega328 into very
low power sleep. In this tutorial we will show you how to get the ATtiny into
sleep mode as well.

Under normal conditions the ATtiny will consume 10-12mA running at
8MHz. Assuming the CR2032 battery contains 200mAh, that gives us
(200mAh / 20mA) 10 hours of run time. Pretty good. But what if I told you I
could get you 4,000 hours?

Watchdog Sleepy Time

The ATtiny can reach about 1uA in low-power sleep. Because we only need
to periodically check for water let’s put the ATtiny into sleep and wake it up
every once and awhile.

A watchdog timer is good for two things:

• A watchdog can reset the processor when it gets locked into an
endless loop - also known as going off into the weeds. This is a good
way to protect a project needs to run all the time without user
intervention. If the device ever gets locked up, the watchdog can
cause the system to reset and (hopefully) return to regular operation.

• A watchdog can wake the processor from deep sleep. When we put
a microcontroller into deep sleep, we can use the watchdog timer as
an interrupt, causing the processor to return to normal 8MHz (without
a full reset).

The watchdog is just a counter. When that counter gets to the size the user
specifies, the processor will either reset or an interrupt will fire. Reset can
be useful (as explained above), but an interrupt is what we need.

The watchdog behavior in different states

This table is key to the whole operation. If the watchdog is enabled (WDE)
and the watchdog interrupt enable (WDIE) is not set, then the processor will
reset. However, if the interrupt enable is set (WDIE = 1), then an interrupt
occurs. As long as we set WDIE before we go to sleep, we’ll wake up from
an interrupt, and the program will continue from the point in the code where
the sleep command was issued.

Here’s the program operation we’re aiming for:

• Go to sleep for a few seconds
• When the watchdog counter overflows use the interrupt to wake us

up (not reset)
• Once awake, take a analog reading to check for water
• If there’s no water, go back to sleep until the watchdog wakes us up

again

Additional information about how to configure the watchdog timer can be
found on the AVR Libc page on sleep.h. While sleep.h is good for getting us
to sleep, it was Lab III’s tutorial that provided the code that allows us to use
the watchdog without resetting.

Here’s the basic code that puts the ATtiny to sleep in the main loop():

Page 10 of 12

setup_watchdog(6); //Setup watchdog to go off after 1sec
sleep_mode(); //Go to sleep! Wake up 1sec later and check wate
r

Putting the ATtiny to sleep for a second then waking up and doing
something means it will be at 0.250mA for 1sec and 10mA for 0.0001
second. Overall, this is much lower power than the original 10mA.

But we can go even lower! There are a few peripherals that also use power,
namely the analog to digital converter. Because we will not be doing any
ADC while sleeping, we can shut it down as well:

void loop()
{
 ADCSRA &= ~(1<<ADEN); //Disable ADC, saves ~230uA

setup_watchdog(6); //Setup watchdog to go off after 1sec
sleep_mode(); //Go to sleep! Wake up 1sec later and check

water
 ADCSRA |= (1<<ADEN); //Enable ADC

//Now check for water!
checkForWater();

}

This is basically how H2OhNo! works. Power everything off, go to sleep,
wakeup, do something useful (check for water), go back to sleep. By
disabling the ADC during sleep, we can get the sleep current consumption
down to 5uA! That’s 0.005mA, or 2000 times lower than our original rate.

Remember that while the ATtiny is doing work (checking for water or
making noise or blinking an LED) it will use the normal 10mA while it’s
awake. So between sleeping at 0.005mA and doing work every second at
10mA, on average we found the H2OhNo! uses about 50uA. That means
on a 200mAh coin cell we should expect the board to run for (200mAh /
0.050mA =) 4,000 hours or about 167 days.

The H2OhNo! will wake up every second and check for water. This is
probably far more often than a real-world application needs. The longest
period the watchdog can be configured to fire is 8 seconds. To sleep for
longer periods of time and squeeze even longer battery life from your
board, try using a counter within the watchdog interrupt:

//This runs each time the watch dog wakes us up from sleep
ISR(WDT_vect) {
 watchdog_counter++;
}

void loop()
{
sleep_mode(); //Go to sleep!

if(watchdog_counter > 30)
 {
 watchdog_counter = 0;

alarmSound(); //Make noise!!
digitalWrite(buzzer1, LOW);
digitalWrite(buzzer2, LOW);

 }
}

This will wake the board up every second but immediately go back to sleep
until 30 seconds have gone by.

Page 11 of 12

Resources and Going Further
The ATtiny is a wonderful simple workhorse. With a coin cell battery and
low-power sleep modes you can create some really amazing projects. For
your next project consider building:

• An intrusion detection system
• A temperature alarm for a reptile habitat
• Use the internal EEPROM to datalog 512 light levels
• Count the number of times your front door is opened

Resources

• H2OhNo! schematic
• Water alarm example firmware
• The open source board files are available on the H2OhNo! github

repo

Page 12 of 12

8/4/2016https://learn.sparkfun.com/tutorials/h2ohno/all

