

Power Supply IC Series for TFT-LCD Panels

# High-precision Gamma Correction ICs with built-in DAC

## BD8132FV, BD8139AEFV

No.09035EBT02

#### Description

These gamma correction voltage generation ICs feature built-in DACs and provide a single-chip solution with setting control via serial communications, a high-precision 10-bit DAC, an output amp (18-channel or 10-channel), and Vcom.

#### Features

- 1) Single-chip design means fewer components
- 2) Built-in 10 bit DAC (18ch: BD8132FV, 10ch: BD8139AEFV)
- 3) Built-in DAC output amp
- 4) Built-in Vcom amp
- 5) Built-in auto-read function
- 6) 3-line serial interface (BD8132FV) or 2-wire serial (BD8139AEFV)
- 7) Thermal shutdown circuit
- 8) SSOP-B40 package (BD8132FV) / HTSSOP-B40 package (BD8139AEFV)

#### Applications

These ICs can be used with TFT LCD panels used by large-screen and high-definition LCD TVs.

#### Absolute maximum ratings (Ta = 25°C)

| Paramet                  | er         | Symbol | Limit       | Unit |
|--------------------------|------------|--------|-------------|------|
| Power supply voltage 1   |            | DVcc   | 7           | V    |
| Power supply voltage 2   |            | Vcc    | 20          | V    |
| REFIN voltage            |            | REF    | 20          | V    |
| Amp output current capac | city       | lo     | 50*1        | mA   |
| Junction temperature     |            | Tjmax  | 150         | C°   |
| Dower dissinction        | BD8132FV   | БЧ     | 1125*2      |      |
| Power dissipation        | BD8139AEFV | Pu     | 1600*3      | mvv  |
| Operating temperature ra | nge        | Topr   | -30 to +85  | °C   |
| Storage temperature rang | je         | Tstg   | -55 to +150 | °C   |

\*1 Must not exceed Pd.

\*2 Reduced by 9.0 mW/°C over 25°C, when mounted on a glass epoxy board (70 mm × 70 mm × 1.6 mm).

\*3 Reduced by 12.8 mW/°C over 25°C, when mounted on a glass epoxy board (70 mm × 70 mm × 1.6 mm).

#### Recommended Operating Ranges

| Deremeter                            | Symbol       | Li   | mit  | Linit |
|--------------------------------------|--------------|------|------|-------|
| Falameter                            | Symbol       | Min. | Max. | Offic |
| Power supply voltage 1               | DVcc         | 2.3  | 4.0  | V     |
| Power supply voltage 2               | Vcc          | 6    | 18   | V     |
| REFIN voltage                        | REF          | 6    | 18   | V     |
| Amp output current capacity          | lo           | —    | 40   | mA    |
| Serial clock frequency (BD8132FV)    | fclk         | —    | 5    | MHz   |
| 2 wire serial frequency (BD8139AEFV) | <b>f</b> CLK | —    | 400  | kHz   |
| OSC frequency (BD8132FV)             | fosc         | 10   | 200  | kHz   |
| OSC frequency (BD8139AEFV)           | fosc         | _    | 400  | kHz   |

#### •Electrical Characteristics

BD8132FV(Unless otherwise specified, Vcc = 15 V, DVcc = 3.3 V, Ta = 25°C)

| Deveryeter                   | Ci irrah al |          | Limit   |      | 1.1  | Condition                                |  |
|------------------------------|-------------|----------|---------|------|------|------------------------------------------|--|
| Parameter                    | Symbol      | Min.     | Тур.    | Max. | Unit | Condition                                |  |
| [REFIN]                      |             |          |         |      |      |                                          |  |
| Sinking current              | Iref        | 25       | 50      | 75   | μA   | REF = 10 V                               |  |
| [Gamma correction amp block] |             |          |         |      |      |                                          |  |
| Output current capacity      | lo          | 150      | 300     | —    | mA   | DAC = 3V, OUTx = 0 V                     |  |
| Load stability               | ΔV          | _        | 5       | 20   | mV   | Io = +10 mA to -10 mA, OUTx = 6 V        |  |
| Slew rate                    | SR          | —        | 3.5     |      | V/µS | Ro = 100 kΩ, Co = 100 pF *               |  |
| OUT max. output voltage      | VOH         | Vcc-0.16 | Vcc-0.1 |      | V    | lo = -5 mA                               |  |
| OUT min. output voltage      | VOL         | —        | 0.15    | 0.24 | V    | lo = 5 mA                                |  |
| [Common amp block]           |             |          |         |      |      |                                          |  |
| Input bias current           | lb          | _        | 0       | 1    | μA   | VFB = 6 V                                |  |
| Output current capacity      | lo          | 150      | 300     |      | mA   | DAC = 3V, OUTx = 0 V                     |  |
| Load stability               | ΔV          |          | 5       | 20   | mV   | lo = +10 mA to -10 mA, OUTx = 3 V        |  |
| Slew rate                    | SR          |          | 3.5     |      | V/µS | Ro = 100 kΩ, Co = 100 pF *               |  |
| Input voltage range          | VFB         | 0        | _       | VDAC | V    | Ro = 100 kΩ, Co = 100 pF *               |  |
| OUT max. output voltage      | VOH         | Vcc-0.16 | Vcc-0.1 |      | V    | lo = -5 mA                               |  |
| OUT min. output voltage      | VOL         | —        | 0.15    | 0.24 | V    | lo = 5 mA                                |  |
| [DAC]                        |             |          |         |      |      |                                          |  |
| Resolution                   | Res         | —        | 10      | _    | Bit  |                                          |  |
| Nonlinearity error           | LE          | -2       | _       | 2    | LSB  | Ideal line error: 00A to 3F5             |  |
| Differential linearity error | DLE         | -2       | _       | 2    | LSB  | 1 LSB ideal increase error: 00A to 3F5   |  |
| [OSC]                        |             |          |         |      |      |                                          |  |
| Oscillating frequency        | fosc        |          | 80      |      | kHz  | Internal frequency mode                  |  |
| [Control signals]            |             |          |         |      |      |                                          |  |
| Sinking current              | Ictl        |          | 16      | 25   | μA   |                                          |  |
| Threshold voltage            | VTH         | 0.7      |         | 2.6  | V    | DVCC = 3.3 V                             |  |
| Reset time                   | trst        | —        | 45      | —    | μs   | CCT = 1000 pF                            |  |
| [Overall]                    |             |          |         |      |      |                                          |  |
| Total supply current         | lcc         | —        | 20      | _    | mA   | When all output voltages are set to 5 V. |  |

#### •Electrical Characteristics

BD8139AEFV (Unless otherwise specified, Vcc = 15 V, DVcc = 3.3 V, Ta = 25°C)

| Demonster                    | O mark at |          | Limit   |      | 11-14 | Que dition                               |
|------------------------------|-----------|----------|---------|------|-------|------------------------------------------|
| Parameter                    | Symbol    | Min.     | Тур.    | Max. | Unit  | Condition                                |
| [REFIN]                      |           |          |         |      |       |                                          |
| Sinking current              | Iref      | 25       | 50      | 75   | μA    | REF = 10V                                |
| [Gamma correction amp block] |           |          |         |      |       |                                          |
| Output current capacity      | lo        | 150      | 300     |      | mA    | DAC = 3 V, OUTx = 0 V                    |
| Load stability               | ΔV        | _        | 5       | 20   | mV    | Io = +10 mA to -10 mA, OUTx = 6 V        |
| Slew rate                    | SR        | —        | 3.5     |      | V/µs  | Ro = 100 kΩ, Co = 100 pF *               |
| OUT max. output voltage      | VOH       | Vcc-0.16 | Vcc-0.1 |      | V     | lo = -5 mA                               |
| OUT min. output voltage      | VOL       |          | 0.1     | 0.16 | V     | lo = 5 mA                                |
| [Common amp block]           |           |          |         |      |       |                                          |
| Input bias current           | lb        |          | 0       | 1    | μA    | VFB = 6 V                                |
| Output current capacity      | lo        | 150      | 300     |      | mA    | DAC = 3 V, OUTx = 0 V                    |
| Load stability               | ΔV        |          | 5       | 20   | mV    | Io = +10 mA to -10 mA, OUTx = 3 V        |
| Slew rate                    | SR        |          | 3.5     |      | V/µS  | Ro = 100 kΩ, Co = 100 pF *               |
| Input voltage range          | VFB       | 0        |         | VDAC | V     | Ro = 100 kΩ, Co = 100 pF *               |
| OUT max. output voltage      | VOH       | Vcc-0.16 | Vcc-0.1 |      | V     | lo = -5 mA                               |
| OUT min. output voltage      | VOL       |          | 0.1     | 0.16 | V     | lo = 5 mA                                |
| [DAC]                        |           |          |         |      |       |                                          |
| Resolution                   | Res       |          | 10      | _    | Bit   |                                          |
| Nonlinearity error           | LE        | -2       | _       | 2    | LSB   | Ideal line error: 00A to 3F5             |
| Differential linearity error | DLE       | -2       | _       | 2    | LSB   | 1 LSB ideal increase error: 00A to 3F5   |
| [OSC]                        |           |          |         |      |       |                                          |
| Oscillating frequency        | fosc      |          | 210     | _    | kHz   | Internal frequency mode                  |
| [Control signals]            |           |          |         |      |       |                                          |
| Sinking current              | lctl      |          | 16      | 25   | μA    | Except for osc_mode                      |
| Sinking current              | loscm     | 26       | 33      | 40   | μA    | Only osc_mode                            |
| Min. output voltage          | VSDA      | —        | —       | 0.4  | V     | ISDA = 3.0 mA *                          |
| Sinking current              | ILi       | -10      |         | 10   | μA    | 0.4 V to 0.9 V DVCC                      |
| Threshold voltage            | VTH       | 0.7      | _       | 2.6  | V     | DVCC = 3.3 V                             |
| Reset time                   | trst      | —        | 45      | _    | μs    | CCT = 1000 pF                            |
| [Overall]                    | 1         |          |         |      | 1     |                                          |
| Total supply current         | Icc       |          | 18      | _    | mA    | When all output voltages are set to 5 V. |

#### Reference Data

(Unless otherwise specified, Ta = 25°C, BD8132FV and BD8139AEFV)



Fig. 1 Vcc Total Supply Current



Fig. 2 Total Supply Current vs Temperature



Fig. 3 VDD Total Supply Current



Fig. 4 Vcc Total Supply Current











Fig. 7 High Output Voltage



Fig. 8 Low Output Voltage



#### Reference Data

(Unless otherwise specified, Ta = 25°C, BD8132FV and BD8139AEFV)



#### ●Pin Assignment Diagram [BD8132FV]



#### Block Diagram



Fig. 19 Pin Assignment Diagram & Block Diagram

| Pin<br>No. | Pin<br>name | Function                                      | Pin<br>No. | Pin<br>name | Function                         |
|------------|-------------|-----------------------------------------------|------------|-------------|----------------------------------|
| 1          | LATCH       | Serial latch input                            | 21         | FB          | Vcom amp negative feedback input |
| 2          | SDIN        | Serial data input                             | 22         | Vcom        | Vcom output pin                  |
| 3          | CLK         | Serial clock input                            | 23         | VH          | Gamma correction output pin      |
| 4          | SDOUT       | Serial data output                            | 24         | VG          | Gamma correction output pin      |
| 5          | GND         | GND input                                     | 25         | VF          | Gamma correction output pin      |
| 6          | R/W         | Auto-read on/off input (On = Low, Off = High) | 26         | VE          | Gamma correction output pin      |
| 7          | CS          | External memory selection output              | 27         | VD          | Gamma correction output pin      |
| 8          | MEMDO       | External memory output data signal            | 28         | VC          | Gamma correction output pin      |
| 9          | MEMDI       | External memory input data signal             | 29         | VB          | Gamma correction output pin      |
| 10         | OSC         | Tuning clock I/O                              | 30         | VA          | Gamma correction output pin      |
| 11         | DVcc        | Logic power supply input                      | 31         | V9          | Gamma correction output pin      |
| 12         | NC          | —                                             | 32         | V8          | Gamma correction output pin      |
| 13         | Vcc         | Buffer amp power supply input                 | 33         | V7          | Gamma correction output pin      |
| 14         | Vcc         | Buffer amp power supply input                 | 34         | V6          | Gamma correction output pin      |
| 15         | REFIN       | DAC reference input                           | 35         | V5          | Gamma correction output pin      |
| 16         | VDAC        | DAC voltage output                            | 36         | V4          | Gamma correction output pin      |
| 17         | СТ          | Power-on reset capacitance connection pin     | 37         | V3          | Gamma correction output pin      |
| 18         | DGND        | DAC GND input                                 | 38         | V2          | Gamma correction output pin      |
| 19         | GND         | GND input                                     | 39         | V1          | Gamma correction output pin      |
| 20         | GND         | GND input                                     | 40         | V0          | Gamma correction output pin      |

#### Pin Name and Function

#### Pin Assignment Diagram Block Diagram [BD8139AEFV] REFIN VDAC Vcc Ο -<del>-</del> Vcc GND 100kΩ ₹ A1 > VDAC DVcc NC A2 100kΩ ≹ VCC NC ×2 NC VREF V0 Register 0 OSC NC Register 1 ×2 V1 SLAVE/AR V0 TSD OSC\_MODE V1 VDAC ×2 V2 Register 2 SDA V2 ×2 V3 Register 3 DVcc V3 SCL x 2 A1 DAC V4 Register 4 V4 DGND A2 LOGIC ×2 ) V5 DACGND V5 Register 5 2wire SCL NC V6 serial I/F ×2 V6 SDA Register 6 NC V7 SLAVE/AR( ×2 9) V7 Register 7 СТ V8 $\frac{1}{2}$ ×2 ₿V8 Register 8 DVcc V9 Power NC ×2 うv9 VCOM Register 9 On СТ REFIN FB Reset ₽ Register A Vcom NC NC OSC DGND Vcc FB DGND NC NC $\frac{1}{2}$ VDAC DACGND GND DACGND NC NC 7 ₫. GND OSC\_MODE OSC

Fig. 20 Pin Assignment Diagram & Block Diagram

#### Pin Name and Function

| Pin | Pin      | Function                                                            | Pin | Pin  | Function                         |
|-----|----------|---------------------------------------------------------------------|-----|------|----------------------------------|
| No. | name     | Function                                                            | No. | name | Function                         |
| 1   | A1       | Slave/address setting pin<br>Auto-read/word address setting pin (1) | 21  | NC   | _                                |
| 2   | A2       | Slave/address setting pin<br>Auto-read/word address setting pin (2) | 22  | NC   | _                                |
| 3   | NC       |                                                                     | 23  | Vcc  | Buffer amp power supply input    |
| 4   | OSC      | Tuning clock I/O                                                    | 24  | NC   | _                                |
| 5   | SLAVE/AR | Slave/auto-read selection pin                                       | 25  | FB   | Vcom amp negative feedback input |
| 6   | OSC_MODE | OSC switching pin                                                   | 26  | Vcom | Vcom output pin                  |
| 7   | SDA      | Serial data input (2 wire serial)                                   | 27  | V9   | Gamma correction output pin 9    |
| 8   | SCL      | Serial clock input (2 wire serial)                                  | 28  | V8   | Gamma correction output pin 8    |
| 9   | DGND     | GND input                                                           | 29  | V7   | Gamma correction output pin 7    |
| 10  | DACGND   | DAC GND input                                                       | 30  | V6   | Gamma correction output pin 6    |
| 11  | NC       | —                                                                   | 31  | V5   | Gamma correction output pin 5    |
| 12  | NC       | _                                                                   | 32  | V4   | Gamma correction output pin 4    |
| 13  | СТ       | Power-on reset capacitance connection pin                           | 33  | V3   | Gamma correction output pin 3    |
| 14  | DVcc     | Logic power supply input                                            | 34  | V2   | Gamma correction output pin 2    |
| 15  | NC       | _                                                                   | 35  | V1   | Gamma correction output pin 1    |
| 16  | REFIN    | DAC reference input                                                 | 36  | V0   | Gamma correction output pin 0    |
| 17  | NC       | —                                                                   | 37  | NC   | —                                |
| 18  | NC       | —                                                                   | 38  | NC   | _                                |
| 19  | VDAC     | DAC voltage output                                                  | 39  | NC   | —                                |
| 20  | NC       | —                                                                   | 40  | GND  | GND input                        |

#### Block Operation

VDAC Amp

The VDAC Amp amplifies the voltage applied to REFIN by 0.5x and outputs it to the VDAC pin. Connect a 1  $\mu$ F phase compensation capacitor to the VDAC pin.

- DAC LOGIC
- The DAC LOGIC converts the 10-bit digital signal read to the register to a voltage.
- Amp

The Amp amplifies the voltage output from the DAC LOGIC by 2x. Input includes a sample and hold function and is refreshed by the OSC.

• OSC

The OSC generates the frequency that determines the Amp's refresh time.

External input can be selected using serial input. (For the BD8139AEFV, external input is selected using the external pin.) • Power On Reset

When the digital power supply DVCC is activated, each IC generates a reset signal to initialize the serial interface, auto-read functionality, and registers.

Adding a 1,000 pF capacitor to the CT pin ensures that reset operation can be performed reliably, without regard to the speed with which the power supply starts up.

TSD (Thermal Shut Down)

The TSD circuit turns output off when the chip temperature reaches or exceeds approximately 175°C in order to prevent thermal destruction or thermal runaway. When the chip returns to a specified temperature, the circuit resets. The TSD circuit is designed only to protect the IC itself. Application thermal design should ensure operation of the IC below the thermal shutdown detection temperature of approximately 175°C.

Register

A serial signal (consisting of 10-bit gamma correction voltage values) input using the serial interface or I<sup>2</sup>C bus interface is held for each register address. Data is initialized by the reset signal generated during a power-on reset.

Serial I/F(BD8132FV)

The serial interface uses a 3-line serial data format (LATCH, CLK, SDIN). It is used to set gamma correction voltages, specify register addresses, and select OSC I/O.

2 wire serial I/F(BD8139AEFV)

The serial interface uses a 2-line serial data format (SCL, SDA). It is used to set gamma correction voltages and specify register addresses.

Autoread

The BD8132FV uses the R/W, CLK, CS, and MEMDO pins to enable automatic reading of the IC's 1 kbit microwire type external memory.

The BD8139AEFV uses the SCL and SDA pins to enable automatic reading of the 2 wire serial bus format external memory.

#### [BD8132FV]

#### Serial communications

The serial data control block consists of a register that stores data from the LATCH, CLK, and SDIN pins, and a DAC circuit that receives the output from this register and provides adjusted voltages to other IC blocks.

When the IC's power supply is activated, the reset function operates to set the register to a preset value. The first bit is for testing use only and should always be set to 0. The next bit is used to select the OSC mode. Inputting a value of 0 selects internal frequency mode and uses a frequency of 80 kHz. Entering a value of 1 selects external frequency mode. Input an external clock signal from the OSC pin.



Fig. 21 Serial B

(1) Serial communications timing

The 17-bit serial data input from the SDIN pin is read into the shift register using the rising edge of the signal input to the CLK pin. This data is then loaded to the DAC register using the rising edge of the signal input to the LATCH pin. If the data loaded into the shift register while the LATCH pin is low consists of less than 17 bits, the loaded data is discarded. If the data exceeds 17 bits, the last 17 bits to be loaded are treated as valid.



Fig. 22 Serial Communications Timing Chart

#### (2) Serial data

The following table illustrates the format of serial data input to the SDIN pin.

First  $\rightarrow$ 

| d0 | d1 | d2 | d3    | d4       | d5    | d6 | d7 | d8 | d9 | d10 | d11 | d12 | d13 | d14 | d15 | d16 |
|----|----|----|-------|----------|-------|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| 0  | Х  |    | Regis | ster add | dress |    |    |    |    |     | Da  | ata |     |     |     |     |
|    |    |    |       |          |       |    |    |    |    |     |     |     |     |     |     |     |

| Denisten   |    |    | Addres | s  |    | Debasianska data in second   | Pi    | eset valu | le    |
|------------|----|----|--------|----|----|------------------------------|-------|-----------|-------|
| Register   | d2 | d3 | d4     | d5 | d6 | Benavior when data increases | d7    | to        | d16   |
| Register 0 | 0  | 0  | 0      | 0  | 0  | V0 voltage value increases   | 00000 |           | 00000 |
| Register 1 | 0  | 0  | 0      | 0  | 1  | V1 voltage value increases   | 00000 |           | 00000 |
| Register 2 | 0  | 0  | 0      | 1  | 0  | V2 voltage value increases   | 00000 |           | 00000 |
| Register 3 | 0  | 0  | 0      | 1  | 1  | V3 voltage value increases   | 00000 |           | 00000 |
| Register 4 | 0  | 0  | 1      | 0  | 0  | V4 voltage value increases   | 00000 |           | 00000 |
| Register 5 | 0  | 0  | 1      | 0  | 1  | V5 voltage value increases   | 00000 |           | 00000 |
| Register 6 | 0  | 0  | 1      | 1  | 0  | V6 voltage value increases   | 00000 |           | 00000 |
| Register 7 | 0  | 0  | 1      | 1  | 1  | V7 voltage value increases   | 00000 |           | 00000 |
| Register 8 | 0  | 1  | 0      | 0  | 0  | V8 voltage value increases   | 00000 |           | 00000 |
| Register 9 | 0  | 1  | 0      | 0  | 1  | V9 voltage value increases   | 00000 |           | 00000 |
| Register A | 0  | 1  | 0      | 1  | 0  | VA voltage value increases   | 00000 |           | 00000 |
| Register B | 0  | 1  | 0      | 1  | 1  | VB voltage value increases   | 00000 |           | 00000 |
| Register C | 0  | 1  | 1      | 0  | 0  | VC voltage value increases   | 00000 |           | 00000 |
| Register D | 0  | 1  | 1      | 0  | 1  | VD voltage value increases   | 00000 |           | 00000 |
| Register E | 0  | 1  | 1      | 1  | 0  | VE voltage value increases   | 00000 |           | 00000 |
| Register F | 0  | 1  | 1      | 1  | 1  | VF voltage value increases   | 00000 |           | 00000 |
| Register G | 1  | 0  | 0      | 0  | 0  | VG voltage value increases   | 00000 |           | 00000 |
| Register H | 1  | 0  | 0      | 0  | 1  | VH voltage value increases   | 00000 |           | 00000 |
| Register I | 1  | 0  | 0      | 1  | 0  | Vcom voltage value increases | 00000 |           | 00000 |

→Last

#### Auto-read function

The auto-read function enables the IC's 1 kbit microwire type external memory to be automatically read.

This block operates in synchronization with the external input CLK's falling edge to output the external memory chip select signal CS as well as the memory read data signal MEMDO.

The read data signal consists of a start bit for the external memory, a read code, and a read address. When this signal is sent to the external memory, the memory outputs the data corresponding to the indicated address. Data output from the memory is read from the MEMDI pin, and this block automatically generates the serial DATA and LATCH signals and writes the memory data to the register. Memory reads are synchronized to the CLK's falling edge.

Read addresses start from address 00H and repeat until address 12H, so data must be stored from address 00H to address 12H. The auto-read function is controlled using the R/W signal. Read access to the external memory is performed continuously while the R/W signal is low. To access the external memory from another device, the R/W signal must be set to high. When the R/W signal is set to high, the CS and MEMDO pins enter a high-impedance state.



Fig. 23 Auto-read Timing Chart

| MSB External memory data format |                                                   |                         |                                        |                                                    |                                                                          |                                                                                        |                                                                                                      |                                                                               |                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|---------------------------------------------------|-------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LSB                             |                                                   |                         |                                        |                                                    |                                                                          |                                                                                        |                                                                                                      |                                                                               |                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                 |
| D14                             | 114 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 |                         |                                        |                                                    |                                                                          |                                                                                        |                                                                                                      |                                                                               |                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                 |
| d2                              | d3                                                | d4                      | d5                                     | d6                                                 | d7                                                                       | d8                                                                                     | d9                                                                                                   | d10                                                                           | d11                                                                                   | d12                                                                                                                                                                                                                                                           | d13                                                                                                     | d14                                                                                                            | d15                                                                                                          | d16                                                                                                                                                                                                                                                                                                                                             |
| Register address DAC data       |                                                   |                         |                                        |                                                    |                                                                          |                                                                                        |                                                                                                      |                                                                               |                                                                                       |                                                                                                                                                                                                                                                               |                                                                                                         |                                                                                                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                 |
|                                 | D14<br>d2                                         | D14 D13<br>d2 d3<br>Reg | D14 D13 D12<br>d2 d3 d4<br>Register ad | D14 D13 D12 D11<br>d2 d3 d4 d5<br>Register address | D14     D13     D12     D11     D10       d2     d3     d4     d5     d6 | D14     D13     D12     D11     D10     D9       d2     d3     d4     d5     d6     d7 | D14     D13     D12     D11     D10     D9     D8       d2     d3     d4     d5     d6     d7     d8 | External memory data forD14D13D12D11D10D9D8D7d2d3d4d5d6d7d8d9Register address | External memory data formatD14D13D12D11D10D9D8D7D6d2d3d4d5d6d7d8d9d10Register address | External memory data format         D14       D13       D12       D11       D10       D9       D8       D7       D6       D5         d2       d3       d4       d5       d6       d7       d8       d9       d10       d11         Register address       DAC | External memory data formatD14D13D12D11D10D9D8D7D6D5D4d2d3d4d5d6d7d8d9d10d11d12Register addressDAC data | External memory data formatD14D13D12D11D10D9D8D7D6D5D4D3d2d3d4d5d6d7d8d9d10d11d12d13Register addressDAC totata | External memory data formatD14D13D12D11D10D9D8D7D6D5D4D3D2d2d3d4d5d6d7d8d9d10d11d12d13d14Register addressDAC | External memory data format         D14       D13       D12       D11       D10       D9       D8       D7       D6       D5       D4       D3       D2       D1         d2       d3       d4       d5       d6       d7       d8       d9       d10       d11       d12       d13       d14       d15         PRegister address       EXTERNAL |

Fig. 24 External Memory Data Table



Fig.25





Fig.26

#### Timing standard values

| Baramotor        | Symbol |      | Limit |      |      |  |  |  |  |  |
|------------------|--------|------|-------|------|------|--|--|--|--|--|
| Falalletei       | Symbol | Min. | Тур.  | Max. | Unit |  |  |  |  |  |
| Latch setup time | tLC    | 0.1  | —     | _    | μs   |  |  |  |  |  |
| SDIN setup time  | tSC    | 0.1  | —     | _    | μs   |  |  |  |  |  |
| RW setup time    | tRC    | 0.1  | —     | —    | μs   |  |  |  |  |  |
| MEMDI setup time | tDIC   | 0.1  | —     |      | μs   |  |  |  |  |  |
| Clock high time  | tWH    | 0.1  | —     | —    | μs   |  |  |  |  |  |
| Clock low time   | tWL    | 0.1  | —     | —    | μs   |  |  |  |  |  |
| Latch hold time  | tCL    | 0.1  | —     |      | μs   |  |  |  |  |  |
| RW hold time     | tCR    | 0.1  | —     | —    | μs   |  |  |  |  |  |
| LATCH high time  | tLA    | 0.6  | —     | _    | μs   |  |  |  |  |  |
| RW high time     | tRW    | 0.6  | —     |      | μs   |  |  |  |  |  |
| MEMDO delay time | tCDO   | _    | _     | 0.1  | μs   |  |  |  |  |  |
| CS delay time    | tCCS   |      |       | 0.1  | μs   |  |  |  |  |  |

#### Gamma correction output setting (BD8132FV and BD8139AEFV)

Equation (1) describes the relationship between the gamma correction output voltage (V0 to VH) and the DAC setting. Output voltage (V0 to VH) = [(DAC setting + 1) / 1,024] × (REFIN / 2) × 2 (1)

The Vcom voltage can be set by attaching resistor R1 between the Vcom and FB pins and resistor R2 between the FB and GND pins.Equation (2) describes the relationship between the Vcom voltage and the DAC setting when using these resistors. Output voltage (Vcom) =  $[(DAC \text{ setting } + 1) / 1,024] \times (REFIN / 2) \times (R1 + R2) / R2$  (2)



Fig. 27 Vcom Voltage Setting Circuit Diagram

#### Power supply sequence

Activate the digital power supply DVcc before the Vcc power supply to prevent IC malfunctions due to undefined logic in the digital circuit. Input serial data after canceling the power-on reset. When turning off the IC's power supplies, turn off Vcc and then DVcc.



Fig. 28 Power Supply Sequence Diagram

#### Power supply sequence standard values

| Deremeter               | Symbol |      | Limit |      | Linit | Condition     |
|-------------------------|--------|------|-------|------|-------|---------------|
| Parameter               | Symbol | Min. | Тур.  | Max. | Unit  | Condition     |
| Serial input timing     | tDS    | 100  | —     | _    | μs    | Cct = 1000 pF |
| VCC activation timing   | tSV    | 0    | 10    | _    | μs    |               |
| REFIN activation timing | tVR    | 0    | 10    | _    | μs    |               |
| REFIN off timing        | tRV    | 0    | 10    | _    | μs    |               |
| Power supply off timing | tVD    | 0    | 10    | —    | μs    |               |
| Vcc startup timing      | tVCC   | 1    | _     | _    | ms    |               |

#### [BD8139AEFV]

#### Serial communications

The 2 wire serial control block consists of a register that stores data from the SCL and SDA pins and a DAC circuit that receives the output from this register and provides adjusted voltages to other IC blocks.

When the IC's power supply is activated, the reset function operates to set the register to a preset value.



Fig. 29 2 wire serial Control Block Diagram

#### (1) 2 wire serial timing chart

Slave mode (SLAVE/AR = low; supports write mode only; A0 = low)



Fig. 30 2 wire serial Timing Chart (Slave)

Of device addresses A7 to A0, A7 to A3 and A0 are specific to the gamma correction voltage generation IC and should be set as follows: (A7 to A0) = 11101(A2)(A1)0.

A1 and A2 can be set externally. Because these signals are pulled down internally, they are set to 0 when in the open state. When setting them to 1, connect them to the DVcc power supply. For this reason, A1 and A2 can be used to create 4 setting combinations. When using only slave mode, a maximum of 4 BD8139AEFV ICs can be connected to the 2 wire serial line.

The lower 4 bits of the second byte are used to store the register address. The following table describes the correspondence between register addresses and amp output. The third and fourth bytes are used to store the gamma correction voltage setting. The LSB acts as a parity check bit. The method for setting the LSB is described below.

| Pogiator name |    | Add | ress |    | Robovier when date increases    | Preset value |
|---------------|----|-----|------|----|---------------------------------|--------------|
| Register name | W3 | W2  | W1   | W0 | Denavior when data increases    | Data (9:0)   |
| Register 0    | 0  | 0   | 0    | 0  | V0 voltage value increases      | 00_000_0000  |
| Register 1    | 0  | 0   | 0    | 1  | V1 voltage value increases      | 00_000_0000  |
| Register 2    | 0  | 0   | 1    | 0  | V2 voltage value increases      | 00_000_0000  |
| Register 3    | 0  | 0   | 1    | 1  | V3 voltage value increases      | 00_000_0000  |
| Register 4    | 0  | 1   | 0    | 0  | V4 voltage value increases      | 00_000_0000  |
| Register 5    | 0  | 1   | 0    | 1  | V5 voltage value increases      | 00_000_0000  |
| Register 6    | 0  | 1   | 1    | 0  | V6 voltage value increases      | 00_000_0000  |
| Register 7    | 0  | 1   | 1    | 1  | V7 voltage value increases      | 00_000_0000  |
| Register 8    | 1  | 0   | 0    | 0  | V8 voltage value increases      | 00_000_0000  |
| Register 9    | 1  | 0   | 0    | 1  | V9 voltage value increases      | 00_0000_0000 |
| Register A    | 1  | 0   | 1    | 0  | Vcom voltage value increases    | 00_000_0000  |
| Register 0-A  | 1  | 1   | 1    | 1  | V0-Vcom voltage value increases | 00_000_0000  |

#### SDA serial data map

| SLAVE | mode(S | SLAVE/ | AR=L) |
|-------|--------|--------|-------|
|       |        |        |       |

| First (MS | SB)                         |                                        |                                                               |                                                                         |                                                                                                                                                                                                                                                                       | L                                                                                                                                                                                                                             | _ast (LSB)                                                                                                                                                                                                                                                        |
|-----------|-----------------------------|----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                             |                                        |                                                               | bit                                                                     |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   |
| 7         | 6                           | 5                                      | 4                                                             | 3                                                                       | 2                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                 |
|           | [                           | Device add                             | lress (1110                                                   | 1 <a2><a< td=""><td>1&gt;)</td><td></td><td>0</td></a<></a2>            | 1>)                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                 |
|           | Don't Care Register address |                                        |                                                               |                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   |
|           | data(9:3) PC                |                                        |                                                               |                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                   |
|           | data(2:0)                   | )                                      |                                                               | Don'i                                                                   | Care                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               | PC                                                                                                                                                                                                                                                                |
|           | First (MS                   | First (MSB)<br>7 6<br>Don<br>data(2:0) | First (MSB)<br>7 6 5<br>Device add<br>Don't Care<br>data(2:0) | First (MSB) 7 6 5 4 Device address (1110 Don't Care data(9:3) data(2:0) | First (MSB)         bit           7         6         5         4         3           Device address (11101 <a2><a< td="">         0         0         0         0           Don't Care         data(9:3)         0         0         0         0         0</a<></a2> | First (MSB)       bit         7       6       5       4       3       2         Device address (11101 <a2><a1>)       Don't Care       Register         Don't Care       data(9:3)       data(2:0)       Don't Care</a1></a2> | First (MSB)       I         7       6       5       4       3       2       1         7       6       5       4       3       2       1         Device address (11101 <a2><a1>)         Don't Care         data(9:3)         data(2:0)       Don't Care</a1></a2> |

It needs 4 byte for slave mode.

When register address "1111", it is updated same data on all addresses.

Auto-read mode (SLAVE/AR = high)

The auto-read function enables automatic reading of the I<sup>2</sup>C bus interface's 1 kbit built-in memory. When the reset signal is cleared, automatic reads from EEPROM begin.

In auto-read mode, A1 and A2 serve as the EEPROM word address setting pins.

When A1 and A2 are both set to low, read access is available for word addresses 0 through 21.

| A2 | A1 | Read start word address | Read end word address |
|----|----|-------------------------|-----------------------|
| L  | L  | 0 (00h)                 | 21 (h)                |
| Н  | L  | 32 (20h)                | 53 (35h)              |
| L  | Н  | 64 (40h)                | 85 (55h)              |
| Н  | Н  | 96 (60h)                | 117 (75h)             |

The following table describes the 22-word data format read from the EEPROM.

| 7          | 6                                     | 5                             | 4                                               | 3                                                                                                                                                   | 2                                                                                                                                                                                                          | 1                                                                                                                                                                                    | 0                                                                                                                                                                                            | Output                                                                                                                                                                                                                                                                                                                      |
|------------|---------------------------------------|-------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                       | l                             | Data (9:3                                       | )                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                      | PC                                                                                                                                                                                           | VO                                                                                                                                                                                                                                                                                                                          |
| Data (2:0) |                                       |                               | Don't Care                                      |                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                      | PC                                                                                                                                                                                           | VU                                                                                                                                                                                                                                                                                                                          |
|            | Data (9:3)                            |                               |                                                 |                                                                                                                                                     |                                                                                                                                                                                                            | PC                                                                                                                                                                                   | 1/4                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |
| l          | Data (2:0) Don't Care                 |                               |                                                 |                                                                                                                                                     |                                                                                                                                                                                                            | PC                                                                                                                                                                                   | VI                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                             |
|            | · · · · · · · · · · · · · · · · · · · |                               |                                                 |                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                      |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                             |
|            | Data (9:3)                            |                               |                                                 |                                                                                                                                                     |                                                                                                                                                                                                            | PC                                                                                                                                                                                   | Veem                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |
|            | Data (2:0                             | )                             |                                                 | Don't                                                                                                                                               | Care                                                                                                                                                                                                       |                                                                                                                                                                                      | PC                                                                                                                                                                                           | vcom                                                                                                                                                                                                                                                                                                                        |
|            | 7                                     | 7 6<br>Data (2:0<br>Data (2:0 | 7 6 5<br>Data (2:0)<br>Data (2:0)<br>Data (2:0) | 7     6     5     4       Data (2:0)     Data (9:3)       Data (2:0)     Data (9:3)       Data (2:0)     Data (9:3)       Data (2:0)     Data (9:3) | 7     6     5     4     3       Data (2:0)     Data (9:3)     Don't       Data (2:0)     Don't | 7     6     5     4     3     2       Data (9:3)       Data (2:0)     Don't Care       Data (9:3)       Data (9:3)       Data (2:0)     Don't Care       Data (9:3)       Data (2:0) | 7     6     5     4     3     2     1       Data (9:3)       Data (2:0)     Don't Care       Data (9:3)       Data (9:3)       Data (9:3)       Data (9:3)       Data (2:0)       Don't Care | 7     6     5     4     3     2     1     0       Data (9:3)     PC       Data (2:0)     Don't Care     PC       Data (9:3)     PC       Data (2:0)     Don't Care     PC       Image: Second colspan="4">PC       Data (9:3)     PC       Data (9:3)     PC       Data (9:3)     PC       Data (2:0)     Don't Care     PC |

The first and second words are used for the V0 setting, while the third and fourth words are used for the V1 setting. Including the Vcom setting, a total of 22 words of data are read. The LSB for all words contains an even parity check (PC). The LSBs for all EPROM data settings should be set. (Where the number 1 represents an even number.)

### <Example of setting for EEPROM>

|    | A1=L,A2=L              |            |    |    |    |    |     |    |    |    | REFIN      | 15   | V               |       |
|----|------------------------|------------|----|----|----|----|-----|----|----|----|------------|------|-----------------|-------|
|    |                        |            |    |    |    | da | ita |    |    |    |            |      |                 |       |
|    | EEPROM WORD<br>ADDRESS | BD8139AEFV | d7 | d6 | d5 | d4 | d3  | d2 | d1 | d0 | bin        | dec  | Setting voltage |       |
| 1  | 00h                    | V0①        | 1  | 1  | 1  | 0  | 0   | 1  | 0  | 0  | 1110010011 | 915  | 13.418          | V0    |
| 2  | 01h                    | V02        | 0  | 1  | 1  | 0  | 0   | 0  | 0  | 0  |            |      |                 |       |
| 3  | 02h                    | V1①        | 1  | 0  | 1  | 1  | 1   | 1  | 1  | 0  | 1011111010 | 762  | 11.177          | V1    |
| 4  | 03h                    | V1(2)      | 0  | 1  | 0  | 0  | 0   | 0  | 0  | 1  |            |      |                 |       |
| 5  | 04h                    | V2①        | 1  | 0  | 1  | 0  | 1   | 0  | 1  | 0  | 1010101100 | 684  | 10.034          | V2    |
| 6  | 05h                    | V2②        | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 1  |            |      |                 |       |
| 7  | 06h                    | V3①        | 0  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0111100001 | 481  | 7.061           | V3    |
| 8  | 07h                    | V3②        | 0  | 0  | 1  | 0  | 0   | 0  | 0  | 1  |            |      |                 |       |
| 9  | 08h                    | V4①        | 1  | 0  | 0  | 0  | 1   | 1  | 1  | 0  | 1000111110 | 574  | 8.423           | V4    |
| 10 | 09h                    | V4②        | 1  | 1  | 0  | 0  | 0   | 0  | 0  | 0  |            |      |                 |       |
| 11 | 0Ah                    | V5①        | 1  | 0  | 0  | 0  | 0   | 0  | 0  | 1  | 100000000  | 512  | 7.515           | V5    |
| 12 | 0Bh                    | V5②        | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  |            |      |                 |       |
| 13 | 0Ch                    | V6①        | 0  | 1  | 0  | 1  | 0   | 1  | 0  | 1  | 0101010111 | 343  | 5.039           | V6    |
| 14 | 0Dh                    | V6②        | 1  | 1  | 1  | 0  | 0   | 0  | 0  | 1  |            |      |                 |       |
| 15 | 0Eh                    | V7①        | 0  | 1  | 0  | 1  | 1   | 1  | 1  | 1  | 0101111111 | 383  | 5.625           | V7    |
| 16 | 0Fh                    | V7②        | 1  | 1  | 1  | 0  | 0   | 0  | 0  | 1  |            |      |                 |       |
| 17 | 10h                    | V8①        | 0  | 1  | 0  | 0  | 1   | 0  | 1  | 1  | 0100101010 | 298  | 4.380           | V8    |
| 18 | 11h                    | V8②        | 0  | 1  | 0  | 0  | 0   | 0  | 0  | 1  |            |      |                 |       |
| 19 | 12h                    | V9①        | 0  | 0  | 0  | 1  | 1   | 1  | 1  | 0  | 0001111010 | 122  | 1.802           | V9    |
| 20 | 13h                    | V9(2)      | 0  | 1  | 0  | 0  | 0   | 0  | 0  | 1  |            |      |                 |       |
| 21 | 14h                    | VCOM(1)    | 1  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | 1111111111 | 1023 | 7.500           | VCOM  |
| 22 | 15h                    | VCOM2      | 1  | 1  | 1  | 0  | 0   | 0  | 0  | 1  |            |      |                 | R1=R2 |

\*Must set "1" at d7 of 16ch.

#### Timing Chart



Fig. 31 2-wire serial Timing Chart (Auto-Read)

Only the EEPROM device address A3 = A2 = A1 = low is supported.

The auto-read function specifies the read start word address in EEPROM write mode. Then after resending the start signal, the data is read in read mode. When the parity check detects an error, a stop signal is sent and the auto-read function is repeated until no error is detected. If the auto-read function never completes, the EEPROM data settings should be reviewed.

• When operating in auto-read mode, a maximum of 2 BD8139AEFV ICs (A and B) can be connected to the I<sup>2</sup>C bus line. When using 2 ICs, change the CT pin capacitance value to avoid auto-read timing collisions. The following figure illustrates auto-read timing when using 2 ICs.



Fig 32 Auto-Read Timing Chart

Set the CT pin capacitance as follows:

Using an inappropriate capacitance setting may result in auto-read timing collisions, making it impossible to read data properly.

| BD8139AEFV A | CT = 1000 pF | Scatter: Within 5% |
|--------------|--------------|--------------------|
| BD8139AEFV B | CT = 3300 pF | Scatter: Within 5% |



\* SDA latches at the SCL rising edge. Fig 33

# ●2 wire serial bus data timing

#### Timing standard values

|                            |         |      | FAST-MODE            |      |      |
|----------------------------|---------|------|----------------------|------|------|
| Parameter                  | Symbol  | 2.3  | $V \leq DVcc \leq 4$ | 0 V  | Unit |
|                            | -       | Min. | Тур.                 | Max. |      |
| SCL frequency              | fSCL    | —    | —                    | 400  | kHz  |
| SCL high time              | tHIGH   | 0.6  | —                    | —    | μs   |
| SCL low time               | tLOW    | 1.2  | —                    | —    | μs   |
| Rise Time                  | tR      | —    | —                    | 0.3  | μs   |
| Fall Time                  | tF      | —    | —                    | 0.3  | μs   |
| Start condition hold time  | tHD:STA | 0.6  | —                    | —    | μs   |
| Start condition setup time | tSU:STA | 0.6  | —                    | —    | μs   |
| SDA hold time              | tHD:DAT | 100  | —                    | —    | ns   |
| SDA setup time             | tSU:DAT | 100  | —                    | —    | ns   |
| Acknowledge delay time     | tPD     | 0.1  | —                    | 0.9  | μs   |
| Acknowledge hold time      | tDH     | 0.1  |                      | _    | μs   |
| Stop condition setup time  | tSU:STO | 0.6  | —                    | —    | μs   |
| Bus release time           | tBUF    | 1.2  | _                    | —    | μs   |

#### Power supply sequence

Activate the digital power supply DVcc before the Vcc power supply to prevent IC malfunctions due to undefined logic in the digital circuit. Input serial data after canceling the power-on reset. When turning off the IC's power supplies, turn off Vcc and then DVcc.



Fig. 34 Power Supply Sequence Diagram

#### Power supply sequence standard values

| Parameter                      | Symbol | Limit |      |      | Lloit | Condition     |
|--------------------------------|--------|-------|------|------|-------|---------------|
| Falameter                      | Symbol | Min.  | Тур. | Max. | Unit  | Condition     |
| Serial input timing            | tDS    | 100   | —    | —    | μs    | Cct = 1000 pF |
| Vcc activation timing          | tSV    | 0     | 10   | —    | μs    |               |
| <b>REFIN</b> activation timing | tVR    | 0     | 10   | —    | μs    |               |
| REFIN off timing               | tRV    | 0     | 10   | —    | μs    |               |
| Power supply off timing        | tVD    | 0     | 10   | —    | μs    |               |
| Vcc startup timing             | tVcc   | 1     | —    | —    | ms    |               |

#### •Closing time for auto-read

(Input Vcc ~ Beginning auto-read ~ Taking time for auto-read, when 2use.)





# Time from input Vcc until final gamma output

| t total1 = t1 + t2 | (2 + 13 + 14) |      |             |
|--------------------|---------------|------|-------------|
|                    | min.          | typ. | max         |
| t1                 | 108           | 169  | 240         |
| t2                 | 730           | 1160 | 1660        |
| t3                 | 156           | 248  | 356         |
| t4                 | -             | -    | 145         |
| t total            | 1724          | 2737 | 4061        |
|                    |               |      | Unit : µsec |

Time from input voltage until first gamma output (condition of input Vcc already) t total2 = t1 + t5

|         | min. | typ. | max         |
|---------|------|------|-------------|
| t1      | 108  | 169  | 240         |
| t5      | 194  | 308  | 442         |
| t total | 302  | 477  | 682         |
|         |      |      | Unit : µsec |

%CT1=1000pF, CT2=3300pF, scatter within 5%

#### •When it inputs Vcc, it outputted the gamma output voltage.



DAC 1ch supports all gamma output amps by sample/hold function. So, each amp operates reflesh by Tref.

|      | Min. | Тур. | Max.        |
|------|------|------|-------------|
| Tref | 63   | 101  | 145         |
|      |      |      | Unit : usec |

Reflesh time of each amp is following.

tref = Tref / 11ch

Under condition of the small difference between setting voltage of amp and slew rate of Vcc is fast, when it inputs Vcc, it is possible that output voltage come from behind next output voltage.

$$\begin{cases} V0 = VDAC \times 2 \times \frac{n0+1}{1024} & (n0 : Setting voltage of 10bit) \\ V1 = VDAC' \times 2 \times \frac{n1+1}{1024} & VDAC' = VDAC + \frac{SR}{2} \times tref & (SR : Slew rate of Vcc) \end{cases}$$

Condition of non-reverse-voltage is following V0-V1>0

$$\frac{n0+1}{n1+1} > 1 + \frac{SR \times tref}{2VDAC}$$

Under condition of the big difference between output voltage or slew rate of Vcc is slow, reverse-voltage don't occur much. Worst condition is following.

n0 / n1 > 1.0469

Notice that the setting voltage between V0 and V1 is within 720mV. It is possible for reverse of voltage in transition.

#### Input equivalent circuit diagrams



Fig.37 I/O Equivalent Circuit Diagrams

#### [BD8139AEFV]

30k Q ≹ 10Ω

<sub>30kΩ</sub> 귀



#### Notes for use

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure such as a fuse should be implemented when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.

2) GND potential

Ensure a minimum GND pin potential in all operating conditions.

3) Setting of heat

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

4) Pin short and mistake fitting

Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting may result in damage to the IC. Shorts between output pins or between output pins and the power supply and GND pins caused by the presence of a foreign object may result in damage to the IC.

5) Actions in strong magnetic field

Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.

6) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process.

7) Ground wiring patterns

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring patterns of any external components.

8) Regarding input pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P/N junctions are formed at the intersection of these P layers with the N layers of other elements to create a variety of parasitic elements.For example, when the resistors and transistors are connected to the pins as shown in Fig.39, a parasitic diode or a transistor operates by inverting the pin voltage and GND voltage.The formation of parasitic elements as a result of the relationships of the potentials of different pins is an inevitable result of the IC's architecture. The operation of parasitic elements can cause interference with circuit operation as well as IC malfunction and damage. For these reasons, it is necessary to use caution so that the IC is not used in a way that will trigger the operation of parasitic elements, such as the application of voltages lower than the GND (P substrate) voltage to input and output pins.



Fig.39 Example of a Simple Monolithic IC

9) Overcurrent protection circuits

An overcurrent protection circuit designed according to the output current is incorporated for the prevention of IC damage that may result in the event of load shorting. This protection circuit is effective in preventing damage due to sudden and unexpected accidents. However, the IC should not be used in applications characterized by the continuous operation or transitioning of the protection circuits. At the time of thermal designing, keep in mind that the current capacity has negative characteristics to temperatures.

10) TSD (Thermal shutdown) circuit

This IC incorporates a built-in TSD circuit for the protection from thermal destruction. The IC should be used within the specified power dissipation range. However, in the event that the IC continues to be operated in excess of its power dissipation limits, the attendant rise in the chip's junction temperature Tj will trigger the TSD circuit to turn off all output power elements. The circuit automatically resets once the junction temperature Tj drops.

Operation of the TSD circuit presumes that the IC's absolute maximum ratings have been exceeded. Application designs should never make use of the TSD circuit.

11) Testing on application boards

At the time of inspection of the installation boards, when the capacitor is connected to the pin with low impedance, be sure to discharge electricity per process because it may load stresses to the IC. Always turn the IC's power supply off before connecting it to or removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure, and use similar caution when transporting or storing the IC.

# BD8132FV, BD8139AEFV

#### Ordering part number



#### SSOP-B40



#### HTSSOP-B40



|                            | Notes                                                                                                                                                                                                                                 |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No cop<br>consent          | ying or reproduction of this document, in part or in whole, is permitted without the of ROHM Co.,Ltd.                                                                                                                                 |
| The con                    | tent specified herein is subject to change for improvement without notice.                                                                                                                                                            |
| The cor                    | ntent specified herein is for the purpose of introducing ROHM's products (hereinafte                                                                                                                                                  |
| "Produc                    | ets"). If you wish to use any such Product, please be sure to refer to the specifications                                                                                                                                             |
| which c                    | an be obtained from ROHM upon request.                                                                                                                                                                                                |
| Example                    | es of application circuits, circuit constants and any other information contained hereir                                                                                                                                              |
| illustrate                 | e the standard usage and operations of the Products. The peripheral conditions mus                                                                                                                                                    |
| be take                    | n into account when designing circuits for mass production.                                                                                                                                                                           |
| Great c                    | are was taken in ensuring the accuracy of the information specified in this document                                                                                                                                                  |
| Howeve                     | rr, should you incur any damage arising from any inaccuracy or misprint of such                                                                                                                                                       |
| informa                    | tion, ROHM shall bear no responsibility for such damage.                                                                                                                                                                              |
| The tech                   | nnical information specified herein is intended only to show the typical functions of and                                                                                                                                             |
| example                    | es of application circuits for the Products. ROHM does not grant you, explicitly o                                                                                                                                                    |
| implicitl                  | y, any license to use or exercise intellectual property or other rights held by ROHM and                                                                                                                                              |
| other pa                   | arties. ROHM shall bear no responsibility whatsoever for any dispute arising from the                                                                                                                                                 |
| use of s                   | uch technical information.                                                                                                                                                                                                            |
| The Pro<br>equipmonication | ducts specified in this document are intended to be used with general-use electronic<br>ent or devices (such as audio visual equipment, office-automation equipment, commu-<br>devices, electronic appliances and amusement devices). |
| The Pro                    | ducts specified in this document are not designed to be radiation tolerant.                                                                                                                                                           |
| While F<br>Product         | OHM always makes efforts to enhance the quality and reliability of its Products, a may fail or malfunction for a variety of reasons.                                                                                                  |
| Please I                   | be sure to implement in your equipment using the Products safety measures to guard                                                                                                                                                    |
| against                    | the possibility of physical injury, fire or any other damage caused in the event of the                                                                                                                                               |
| failure c                  | of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM                                                                                                                                                |
| shall be                   | ar no responsibility whatsoever for your use of any Product outside of the prescribed                                                                                                                                                 |
| scope c                    | or not in accordance with the instruction manual.                                                                                                                                                                                     |
| The Pro                    | oducts are not designed or manufactured to be used with any equipment, device or                                                                                                                                                      |
| system                     | which requires an extremely high level of reliability the failure or malfunction of which                                                                                                                                             |
| may res                    | sult in a direct threat to human life or create a risk of human injury (such as a medica                                                                                                                                              |
| instrum                    | ent, transportation equipment, aerospace machinery, nuclear-reactor controller                                                                                                                                                        |
| fuel-cor                   | ntroller or other safety device). ROHM shall bear no responsibility in any way for use o                                                                                                                                              |
| any of the                 | he Products for the above special purposes. If a Product is intended to be used for any                                                                                                                                               |
| such sp                    | ecial purpose, please contact a ROHM sales representative before purchasing.                                                                                                                                                          |
| If you ir                  | ntend to export or ship overseas any Product or technology specified herein that may                                                                                                                                                  |
| be cont                    | rolled under the Foreign Exchange and the Foreign Trade Law, you will be required to                                                                                                                                                  |
| obtain a                   | a license or permit under the Law.                                                                                                                                                                                                    |



Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

# ROHM Customer Support System

http://www.rohm.com/contact/