RoHS HALOGEN FREE # **Precision Monolithic Quad SPST CMOS Analog Switches** #### **DESCRIPTION** The DG411 series of monolithic guad analog switches was designed to provide high speed, low error switching of precision analog signals. Combining low power (0.35 µW) with high speed (t_{ON}: 110 ns), the DG411 family is ideally suited for portable and battery powered industrial and military applications. To achieve high-voltage ratings and superior switching performance, the DG411 series was built on Vishay Siliconix's high voltage silicon gate process. An epitaxial layer prevents latchup. Each switch conducts equally well in both directions when on, and blocks input voltages up to the supply levels when off. The DG411, DG412 respond to opposite control logic as shown in the Truth Table. The DG413 has two normally open and two normally closed switches. #### **FEATURES** - Halogen-free according to IEC 61249-2-21 **Definition** - 44 V supply max. rating - ± 15 V analog signal range - On-resistance $R_{DS(on)}$: 25 Ω - Fast switching t_{ON}: 110 ns - Ultra low power P_D: 0.35 μW - TTL, CMOS compatible - Single supply capability - Compliant to RoHS Directive 2002/95/EC #### **BENEFITS** - Widest dynamic range - Low signal errors and distortion - Break-bevor-make switching action - Simple interfacing #### **APPLICATIONS** - Precision automatic test equipment - Precision data acquisition - Communication systems - Battery powered systems - Computer peripherals #### **FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION** | TRUTH TABLE | | | | | | |-------------|-------|-------|--|--|--| | Logic | DG411 | DG412 | | | | | 0 | ON | OFF | | | | | 1 | OFF | ON | | | | Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V | TRUTH TABLE | | | | | | |-------------|-----------------------------------|-----------------------------------|--|--|--| | Logic | SW ₁ , SW ₄ | SW ₂ , SW ₃ | | | | | 0 | OFF | ON | | | | | 1 | ON | OFF | | | | Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V Document Number: 70050 S11-1185-Rev. G, 13-Jun-11 | ORDERING INFORMATION | | | | |----------------------|--------------------|--|--| | Temp. Range | Package | Part Number | | | | | DG411DJ
DG411DJ-E3 | | | | 16-pin plastic DIP | DG412DJ
DG412DJ-E3 | | | | | DG413DJ
DG413DJ-E3 | | | - 40 °C to 85 °C | | DG411DY
DG411DY-E3
DG411DY-T1
DG411DY-T1-E3 | | | | 16-pin narrow SOIC | DG412DY
DG412DY-E3
DG412DY-T1
DG412DY-T1-E3 | | | | | DG413DY
DG413DY-E3
DG413DY-T1
DG413DY-T1-E3 | | | | | DG411DQ-E3
DG411DQ-T1-E3 | | | | 16-pin TSSOP | DG412DQ-E3
DG412DQ-T1-E3 | | | | | DG413DQ-E3
DG413DQ-T1-E3 | | | ABSOLUTE MAXIMUM RATINGS | | | | | |---|---------------------------------|---|------|--| | Parameter | | Limit | Unit | | | V + to V - | | 44 | | | | GND to V - | | 25 | | | | V_L | | (GND - 0.3) to (V+) + 0.3 | V | | | Digital Inputs ^a , V _S , V _D | | (V-) -2 to (V+) + 2
or 30 mA, whichever occurs first | | | | Continuous Current (Any terminal) | | 30 | mA | | | Peak Current, S or D (Pulsed at 1 ms, | 10 % duty cycle) | 100 | IIIA | | | Storage Temperature | (AK, AZ suffix) | - 65 to 150 | °C | | | Storage remperature | (DJ, DY suffix) | - 65 to 125 |] | | | | 16-pin plastic DIP ^c | 470 | | | | Device Dissipation (Dealers)b | 16-pin narrow SOIC ^d | 600 | m\\/ | | | Power Dissipation (Package) ^b | 16-pin CerDIP ^e | 900 | mW | | | | LCC-20 ^e | 900 | | | #### Notes: - a. Signals on S_X , D_X , or IN_X exceeding V + or V will be clamped by internal diodes. Limit forward diode current to maximum current ratings. - b. All leads welded or soldered to PC board. - c. Derate 6 mW/°C above 25 °C. - d. Derate 7.6 mW/°C above 75 °C. - e. Derate 12 mW/°C above 75 °C. | SPECIFICATIONS |) | T . A . IIII | | | | *** | | *** | 1 | |--|---------------------|--|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|------| | | | Test Conditions Unless Specified | | | | uffix
o 125 °C | | uffix
to 85 °C | | | | | V + = 15 V, V - = - 15 V | | | | 120 0 | | | | | Parameter | Symbol | $V_L = 5 \text{ V}, V_{IN} = 2.4 \text{ V}, 0.8 \text{ V}^f$ | Temp.b | Typ. ^c | Min. ^d | Max. ^d | Min. ^d | Max. ^d | Unit | | Analog Switch | | | | | | | | | | | Analog Signal Range ^e | V_{ANALOG} | | Full | | - 15 | 15 | - 15 | 15 | V | | Drain-Source
On-Resistance | R _{DS(on)} | V += 13.5 V, V -= -13.5 V
$I_S = -10 \text{ mA}, V_D = \pm 8.5 \text{ V}$ | Room
Full | 25 | | 35
45 | | 35
45 | Ω | | Switch Off Leakage | I _{S(off)} | V + = 16.5, V - = - 16.5 V | Room
Full | ± 0.1 | - 0.25
- 20 | 0.25
20 | - 0.25
- 5 | 0.25
5 | | | Current | I _{D(off)} | $V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$ | Room
Full | ± 0.1 | - 0.25
- 20 | 0.25
20 | - 0.25
- 5 | 0.25
5 | nA | | Channel On Leakage
Current | I _{D(on)} | V + = 16.5 V, V - = -16.5 V
$V_S = V_D = \pm 15.5 \text{ V}$ | Room
Full | ± 0.1 | - 0.4
- 40 | 0.4
40 | - 0.4
- 10 | 0.4
10 | | | Digital Control | | | | | | | | | | | Input Current, V _{IN} Low | Ι _{ΙL} | V _{IN} under test = 0.8 V | Full | 0.005 | - 0.5 | 0.5 | - 0.5 | 0.5 | μΑ | | Input Current, V _{IN} High | I _{IH} | V_{IN} under test = 2.4 V | Full | 0.005 | - 0.5 | 0.5 | - 0.5 | 0.5 | μΛ | | Dynamic Characteristics | 5 | | | | | | | | | | Turn-On Time | t _{ON} | $R_L = 300 \ \Omega, \ C_L = 35 \ pF$ | Room
Full | 110 | | 175
240 | | 175
220 | | | Turn-Off Time | t _{OFF} | $V_S = \pm 10 \text{ V}$, see figure 2 | Room
Full | 100 | | 145
160 | | 145
160 | ns | | Break-Before-Make
Time Delay | t _D | DG413 only, $V_S = 10 \text{ V}$
R _L = 300 Ω, C _L = 35 pF | Room | 25 | | | | | | | Charge Injection | q | $V_g = 0 \text{ V, } R_g = 0 \Omega$
$C_L = 10 \text{ nF}$ | Room | 5 | | | | | рС | | Off Isolation ^e | OIRR | $R_1 = 50 \Omega$, $C_1 = 5 pF$, | Room | 68 | | | | | | | Channel-to-Channel
Crosstalk ^e | X _{TALK} | f = 1 MHz | Room | 85 | | | | | dB | | Source Off Capacitance ^e | C _{S(off)} | | Room | 9 | | | | | | | Drain Off Capacitance ^e | C _{D(off)} | f = 1 MHz | Room | 9 | | | | | pF | | Channel On
Capacitance ^e | C _{D(on)} | 1 – 1 WH2 | Room | 35 | | | | | Pi | | Power Supplies | <u> </u> | | | | | | I. | I. | | | Positive Supply Current | l+ | | Room
Full | 0.0001 | | 1
5 | | 1
5 | | | Negative Supply Current | l- | V + = 16.5 V, V - = - 16.5 V | Room
Full | - 0.0001 | - 1
- 5 | | - 1
- 5 | | μΑ | | Logic Supply Current | ΙL | $V_{IN} = 0 V \text{ or } 5 V$ | Room
Full | 0.0001 | | 1
5 | | 1
5 | μΑ | | Ground Current | I _{GND} | | Room
Full | - 0.0001 | - 1
- 5 | | - 1
- 5 | | | | SPECIFICATIONS ^a (for Unipolar Supplies) | | | | | | | | | | |---|---------------------|---|--------------|--------------------------------------|-------------------|-------------------------------|-------------------|-------------------|------| | Parameter | Symbol | Test Conditions
Unless Specified | Temp.b | Temp. ^b Typ. ^c | | A Suffix
- 55 °C to 125 °C | | uffix
to 85 °C | Unit | | rarameter | Cymbol | V += 12 V, V -= 0 V
$V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^f$ | Temp. | Typ. | Min. ^d | Max. ^d | Min. ^d | Max. ^d | | | Analog Switch | | | | | | | | | | | Analog Signal Range ^e | V_{ANALOG} | | Full | | | 12 | | 12 | ٧ | | Drain-Source
On-Resistance | R _{DS(on)} | V += 10.8 V,
$I_S = -10 \text{ mA}, V_D = 3 \text{ V}, 8 \text{ V}$ | Room
Full | 40 | | 80
100 | | 80
100 | Ω | | Dynamic Characteristics | | | | | | | | | | | Turn-On Time | t _{ON} | $R_L = 300 \ \Omega, \ C_L = 35 \ pF$ | Room
Hot | 175 | | 250
400 | | 250
315 | | | Turn-Off Time | t _{OFF} | $V_S = 8 V$, see figure 2 | Room
Hot | 95 | | 125
140 | | 125
140 | ns | | Break-Before-Make
Time Delay | t _D | DG413 only, $V_S = 8 V$
$R_L = 300 Ω$, $C_L = 35 pF$ | Room | 25 | | | | | | | Charge Injection | Q | $V_g = 6 \text{ V}, R_g = 0 \Omega, C_L = 10 \text{ nF}$ | Room | 25 | | | | | рС | | Power Supplies | | | | | | | | | | | Positive Supply Current | l+ | | Room
Hot | 0.0001 | | 1
5 | | 1
5 | | | Negative Supply Current | l- | V . 12 E V V . 0 V oz E V | Room
Hot | - 0.0001 | - 1
- 5 | | - 1
- 5 | | | | Logic Supply Current | ΙL | $V + = 13.5 \text{ V}, V_{IN} = 0 \text{ V or } 5 \text{ V}$ | Room
Hot | 0.0001 | | 1
5 | | 1
5 | μΑ | | Ground Current | I _{GND} | | Room
Hot | - 0.0001 | - 1
- 5 | | - 5 | | | #### Notes: - a. Refer to process option flowchart. - b.Room = 25 °C, Full = as determined by the operating temperature suffix. - c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. - d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. - e.Guaranteed by design, not subject to production test. - f. V_{IN} = input voltage to perform proper function. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) On-Resistance vs. V_D and Power Supply Voltage On-Resistance vs. V_D and Unipolar Supply Voltage #### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Leakage Current vs. Analog Voltage Charge Injection vs. Analog Voltage Input Switching Threshold vs. Supply Voltage I_D, I_S Leakages vs. Temperature Charge Injection vs. Analog Voltage Switching Time vs. Temperature # VISHAY. #### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted) Supply Current vs. Input Switching Frequency ### **SCHEMATIC DIAGRAM** (Typical Channel) #### **TEST CIRCUITS** Figure 2. Switching Time S11-1185-Rev. G, 13-Jun-11 #### **TEST CIRCUITS** C_L (includes fixture and stray capacitance) Figure 3. Break-Before-Make (DG413) Figure 4. Charge Injection Figure 5. Crosstalk Figure 6. Off Isolation Figure 7. Source/Drain Capacitances #### **APPLICATIONS** #### **Single Supply Operation:** The DG411, DG412, DG413 can be operated with unipolar supplies from 5 V to 44 V. These devices are characterized and tested for unipolar supply operation at 12 V to facilitate the majority of applications. In single supply operation, V+ is tied to V_L and V_T is tied to 0 V_T . See Input Switching Threshold vs. Supply Voltage curve for V_I versus input threshold requirments. #### **Summing Amplifier** When driving a high impedance, high capacitance load such as shown in figure 8, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output. Figure 8. Summing Amplifier Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?70050. SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012 | | MILLIMETERS | | INC | HES | | | | |----------------|--------------------------------|-------|-------|-------|--|--|--| | Dim | Min | Max | Min | Max | | | | | Α | 1.35 | 1.75 | 0.053 | 0.069 | | | | | A ₁ | 0.10 | 0.20 | 0.004 | 0.008 | | | | | В | 0.38 | 0.51 | 0.015 | 0.020 | | | | | С | 0.18 | 0.23 | 0.007 | 0.009 | | | | | D | 9.80 | 10.00 | 0.385 | 0.393 | | | | | Е | 3.80 | 4.00 | 0.149 | 0.157 | | | | | е | 1.27 | BSC | 0.050 | BSC | | | | | Н | 5.80 | 6.20 | 0.228 | 0.244 | | | | | L | 0.50 | 0.93 | 0.020 | 0.037 | | | | | 0 | 0° | 8° | 0° | 8° | | | | | ECN: S-0 | ECN: S-03946—Rev. F. 09-Jul-01 | | | | | | | DWG: 5300 PDIP: 16-LEAD | | MILLIN | IETERS | INC | HES | | | | |----------------|--------------------------------|--------|-------|-------|--|--|--| | Dim | Min | Max | Min | Max | | | | | Α | 3.81 | 5.08 | 0.150 | 0.200 | | | | | A ₁ | 0.38 | 1.27 | 0.015 | 0.050 | | | | | В | 0.38 | 0.51 | 0.015 | 0.020 | | | | | B ₁ | 0.89 | 1.65 | 0.035 | 0.065 | | | | | С | 0.20 | 0.30 | 0.008 | 0.012 | | | | | D | 18.93 | 21.33 | 0.745 | 0.840 | | | | | E | 7.62 | 8.26 | 0.300 | 0.325 | | | | | E ₁ | 5.59 | 7.11 | 0.220 | 0.280 | | | | | e ₁ | 2.29 | 2.79 | 0.090 | 0.110 | | | | | e _A | 7.37 | 7.87 | 0.290 | 0.310 | | | | | L | 2.79 | 3.81 | 0.110 | 0.150 | | | | | Q ₁ | 1.27 | 2.03 | 0.050 | 0.080 | | | | | S | 0.38 | 1.52 | .015 | 0.060 | | | | | ECN: S-0 | ECN: S-03946—Rev. D, 09-Jul-01 | | | | | | | DWG: 5482 Document Number: 71261 www.vishay.com 06-Jul-01 #### **CERDIP: 16-LEAD** | | <u> </u> | |-----------|----------------| | | | | // | # \ | | C | e _A | | | MILLIMETERS INC | | INC | HES | | | | |----------------|--------------------------------|-------|-------|-------|--|--|--| | Dim | Min | Max | Min | Max | | | | | Α | 4.06 | 5.08 | 0.160 | 0.200 | | | | | A ₁ | 0.51 | 1.14 | 0.020 | 0.045 | | | | | В | 0.38 | 0.51 | 0.015 | 0.020 | | | | | B ₁ | 1.14 | 1.65 | 0.045 | 0.065 | | | | | С | 0.20 | 0.30 | 0.008 | 0.012 | | | | | D | 19.05 | 19.56 | 0.750 | 0.770 | | | | | E | 7.62 | 8.26 | 0.300 | 0.325 | | | | | E ₁ | 6.60 | 7.62 | 0.260 | 0.300 | | | | | e ₁ | 2.54 | BSC | 0.100 | BSC | | | | | e _A | 7.62 BSC | | 0.300 | BSC | | | | | L | 3.18 | 3.81 | 0.125 | 0.150 | | | | | L ₁ | 3.81 | 5.08 | 0.150 | 0.200 | | | | | Q_1 | 1.27 | 2.16 | 0.050 | 0.085 | | | | | S | 0.38 | 1.14 | 0.015 | 0.045 | | | | | ∞ | 0° | 15° | 0° | 15° | | | | | ECN: S-0 | ECN: S-03946—Rev. G, 09-Jul-01 | | | | | | | Document Number: 71282 www.vishay.com 03-Jul-01 www.vishay.com #### **20-LEAD LCC** | | MILLIMETERS | | INC | HES | | | | |----------------|--------------------------------|------|-------|-------|--|--|--| | Dim | Min | Max | Min | Max | | | | | Α | 1.37 | 2.24 | 0.054 | 0.088 | | | | | A ₁ | 1.63 | 2.54 | 0.064 | 0.100 | | | | | В | 0.56 | 0.71 | 0.022 | 0.028 | | | | | D | 8.69 | 9.09 | 0.342 | 0.358 | | | | | E | 8.69 | 9.09 | 0.442 | 0.358 | | | | | е | 1.27 BSC | | 0.050 | BSC | | | | | L | 1.14 | 1.40 | 0.045 | 0.055 | | | | | L ₁ | 1.96 | 2.36 | 0.077 | 0.093 | | | | | ECN: S-03 | ECN: S-03946—Rev. B, 09-Jul-01 | | | | | | | DWG: 5321 #### **RECOMMENDED MINIMUM PADS FOR SO-16** Recommended Minimum Pads Dimensions in Inches/(mm) Return to Index Ш ## **Legal Disclaimer Notice** Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. # **Material Category Policy** Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 Document Number: 91000