
GaAs MMIC 3 WATT T/R SWITCH, DC - 3 GHz

Typical Applications

The HMC595 / HMC595E is ideal for:

- Cellular/3G Infrastructure
- Private Mobile Radio Handsets
- WLAN, WiMAX & WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

Features

Low Insertion Loss: 0.3 dB High Input IP3: +65 dBm

Isolation: 30 dB

Positive Control: 0/+3V to 0/+10V Ultra Small Package: SOT26

Included in the HMC-DK005 Designer's Kit

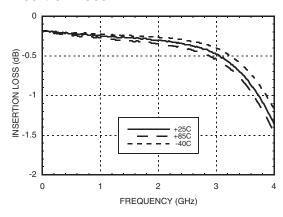
General Description

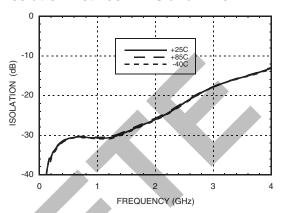
The HMC595 & HMC595E are low-cost SPDT switches in 6-lead SOT26 packages for use in transmit/receive applications which require very low distortion at high incident power levels. The device can control signals from DC to 3 GHz and is especially suited for Cellular/3G infrastructure, WiMAX and WiBro applications with only 0.3 dB typical insertion loss. The design provides a 3 watt power handling and +65 dBm third order intercept at +8 Volt bias. RF1 and RF2 are reflective shorts when "Off". Control inputs A & B are compatible with CMOS and some TTL logic families. These products are form, fit and function replacements for HMC195 & HMC195E while offering superior electrical performance.

Electrical Specifications,

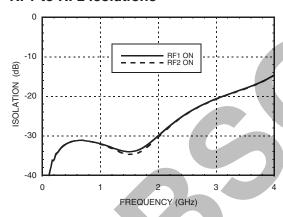
 $T_A = +25^{\circ}$ C, Vctl = 0/+5 Vdc (Unless Otherwise Stated), 50 Ohm System

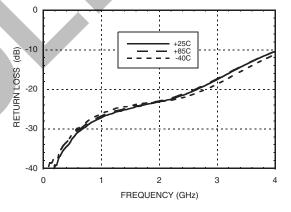
Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		0.25 0.3 0.4 0.5	0.5 0.6 0.7 0.8	dB dB dB dB	
Isolation		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	26 22 18 14	30 26 24 18		dB dB dB dB
Return Loss		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		30 25 22 20		dB dB dB dB
Input Power for 1dB Compression	VctI = 0/+3V VctI = 0/+5V VctI = 0/+8V	0.5 - 3.0 GHz	32 35 37	35 38 39		dBm dBm dBm
		0.5 - 3.0 GHz		47 64 65		dBm dBm dBm
Switching Characteristics		DC - 3.0 GHz				
tRISE, tFAL tON, tOFF (50% CTL			80 120		ns ns	

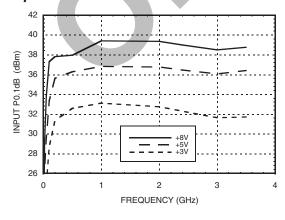

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

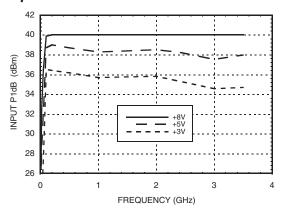


GaAs MMIC 3 WATT T/R SWITCH, DC - 3 GHz

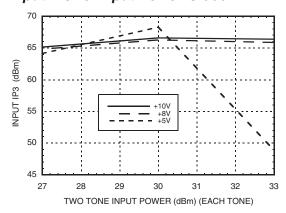

Insertion Loss

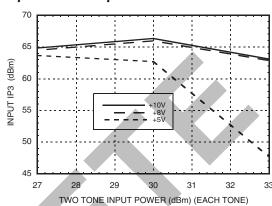

Isolation Between RFC and RF1/RF2


RF1 to RF2 Isolations

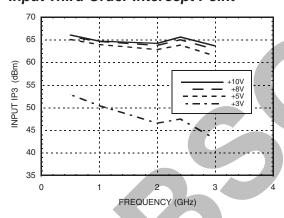

Return Loss

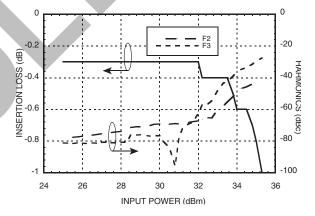
Input P0.1dB vs. Vctl

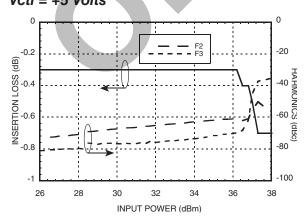

Input P1dB vs. Vctl

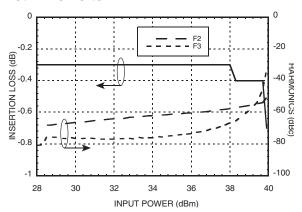


GaAs MMIC 3 WATT T/R SWITCH, DC - 3 GHz


Input IP3 vs. Input Power @ 900 MHz

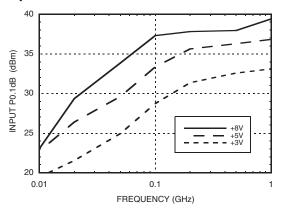

Input IP3 vs. Input Power @ 1900 MHz

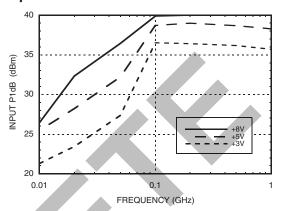

Input Third Order Intercept Point


2nd & 3rd Harmonics @ 900 MHz Vctl = +3 Volts

2nd & 3rd Harmonics @ 900 MHz Vctl = +5 Volts

2nd & 3rd Harmonics @ 900 MHz Vctl = +8 Volts





GaAs MMIC 3 WATT T/R SWITCH, DC - 3 GHz

Input P0.1dB vs. Vctl

Input P1dB vs. Vctl

Absolute Maximum Ratings

Max. Input Power $V_{ctl} = 0/+8V$	0.5 - 2.5 GHz	39 dBm
Control Voltage Ra	nge (A & B)	-0.2 to +12 Vdc
Hot Switching Power V _{ctl} = 0/+8V	39 dBm	
Channel Temperate	150 °C	
Continuous Pdiss ((derate 6 mW/°C at	0.38W	
Thermal Resistanc	173 °C/W	
Storage Temperatu	-65 to +150 °C	
Operating Tempera	-40 to +85 °C	
ESD Sensitivity	Class 1A	

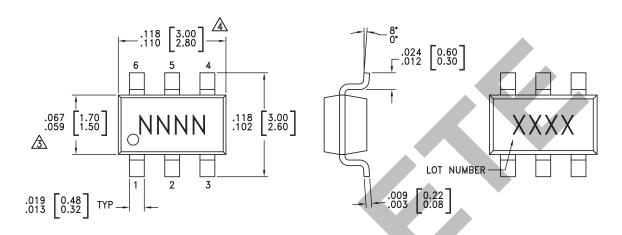
DC Blocks are required at ports RFC, RF1 and RF2

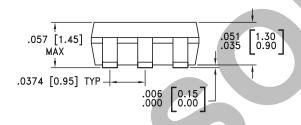
Control Voltages

State	Bias Condition
Low	0 to +0.2 Vdc @ 10 μA Typical
High	+3 Vdc @ 2μA Typical to +8 Vdc @ 40 μA Typical (± 0.2 Vdc)

Truth Table

Control Input (Vctl)		Signal Path State		
A B		RFC to RF1	RFC to RF2	
High	Low	Off	On	
Low	High	On	Off	





GaAs MMIC 3 WATT T/R SWITCH, DC - 3 GHz

Outline Drawing

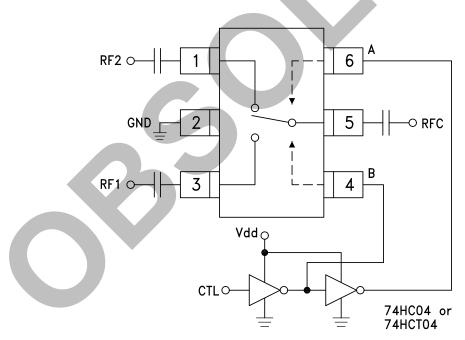
NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number		Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC595		Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H595 XXXX
HMC595E	RoHS-0	compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	595E XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

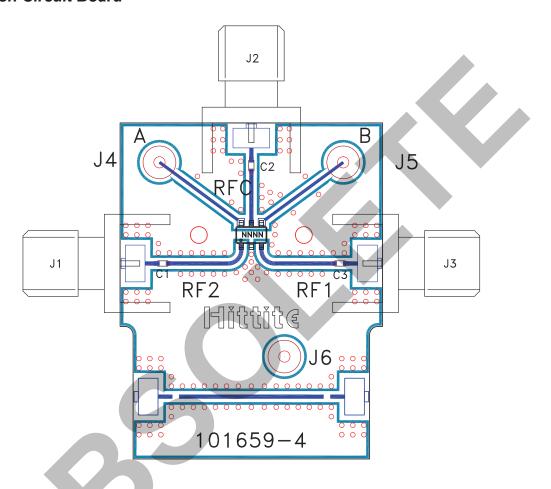


GaAs MMIC 3 WATT T/R SWITCH, DC - 3 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 5	RF2, RF1, RFC	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.	
2	GND	This pin must be connected to RF/DC ground.	○ GND =
4	В	See truth table and control voltage table.	R
6	А	See truth table and control voltage table.	± c

Typical Application Circuit


Notes:

- 1. Set logic gate and switch Vdd = +3V to +5V and use HCT series logic to provide a TTL driver interface.
- 2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of +3 to +8 Volts applied to the CMOS logic gates.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with V set to +10V. The switch will operate properly (but at lower RF power capability) at bias voltages down to +3V.

GaAs MMIC 3 WATT T/R SWITCH, DC - 3 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB 101675 [1]

	/	
Item		Description
J1 - J3		PCB Mount SMA RF Connector
J4 - J6		DC Pin
C1 - C3		330 pF capacitor, 0402 Pkg.
U1		HMC595 / HMC595E T/R Switch
PCB [2]		101659 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Notes:

