
STTH80S06

Turbo 2 ultrafast high voltage rectifier

Datasheet - production data

Features

- Ultrafast switching
- Low reverse current
- Low thermal resistance
- Reduces switching and conduction losses
- Repetitive peak reverse voltage specified from -40 °C to +175 °C

Description

The STTH80S06, which is using ST Turbo 2 600 V technology, is specially suited for use in switching power supplies, and solar inverters. Thanks to its low V_F characteristics, as well as fast recovery, this device exhibits high performance in free-wheeling applications or boost converters working at switching frequency up to 100 kHz.

Table 1. Device summary

Symbol	Value
I _{F(AV)}	80 A
V_{RRM}	600 V
T _j (max)	175 °C
V _F (typ)	1.65 V
t _{rr} (typ)	32 ns

Characteristics STTH80S06

1 Characteristics

Table 2. Absolute ratings (limiting values at T_i = 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit	
V_{RRM}	Repetitive peak reverse voltage	600	V	
I _{F(RMS)}	RMS forward current		113	А
I _{F(AV)}	Average forward current, $\delta = 0.5$ square wave	80	А	
I _{FSM}	Surge non repetitive forward current	400	А	
T _{stg}	Storage temperature range	-65 to +175	°C	
T _j	Operating junction temperature range	-40 to +175	°C	

Table 3. Thermal parameters

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case	0.3	°C/W

Table 4. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Reverse leakage current	T _j = 25 °C	V- - V	-	0.2	50	μA
'R`	Reverse leakage current	T _j = 150 °C	$V_R = V_{RRM}$	-	0.2	2	mA
		T _j = 25 °C	I _F = 20 A	-	1.7	2.2	
V _F ⁽²⁾ Forward vo	Forward voltage drop	T _j = 150 °C	1F = 20 A	-	1.0	1.3	V
		T _j = 150 °C	I _F = 80 A	-	1.65	2.15	

- 1. Pulse test: $t_p = 5$ ms, $\delta < 2\%$
- 2. Pulse test: t_p = 380 μ s, δ < 2%

To evaluate the conduction losses use the following equation:

$$P = 1.43 \times I_{F(AV)} + 0.009 \times I_{F}^{2}_{(RMS)}$$

Table 5. Dynamic electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
			$I_F = 0.5 \text{ A}, I_{rr} = 0.25 \text{ A}, I_R = 1 \text{ A}$	-	32	45	ns
t _{rr}	Reverse recovery time	T _j = 25 °C	$I_F = 1 \text{ A, V}_R = 30 \text{ V,}$ $dI_F/dt = -50 \text{ A/}\mu\text{s}$	-	55	75	ns
				-	110	-	ns
I _{RM}	Reverse recovery current	T _i = 125 °C	$I_F = 80 \text{ A},$ $dI_F/dt = -200 \text{ A/}\mu\text{s},$ $V_R = 400 \text{ V}$	-	14	-	Α
S _{factor}	Softness factor	$I_j = 125 \text{ C}$		-	0.4	-	-
Q _{rr}	Reverse recovery charges			-	900	-	nC
t _{fr}	Forward recovery time	T 05.00	$I_F = 80 \text{ A},$ $C = \frac{1}{4} \text{ G} = \frac{1}{4} \text{ C} = \frac{1}{4$	-	-	800	ns
V _{FP}	Forward recovery voltage	T _j = 25 °C		-	3.6	-	V

STTH80S06 Characteristics

Figure 1. Average forward power dissipation versus average forward current $\mathsf{P}_{\mathsf{F}(\mathsf{AV})}(\mathsf{W})$ 280 240 200 160 120 80 40 0 40 50 60 70 80 90 100 110

Figure 2. Forward voltage drop versus forward current (typical values) $I_F(A)$ 1000.0 100.0 10.0 1.0 0.1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 3. Forward voltage drop versus forward current (maximum values)

1000.0

100.0

10.0

1.0

1.0

0.1

0.0

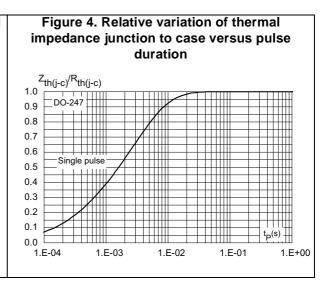
0.5

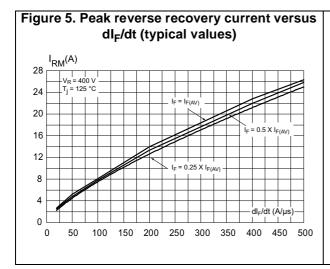
1.0

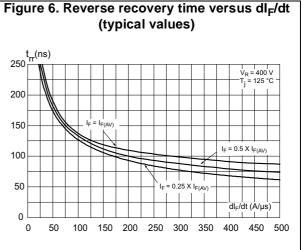
1.5

2.0

2.5

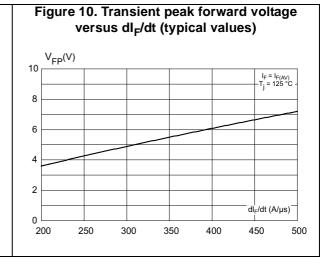

3.0

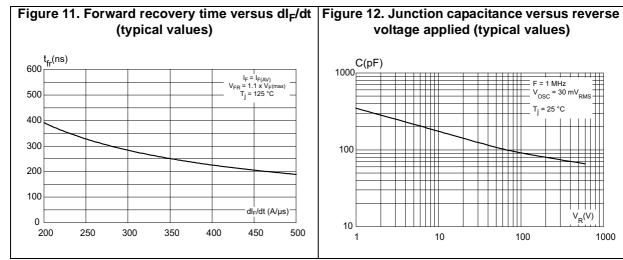

3.5


4.0

4.5

5.0




STTH80S06 Characteristics

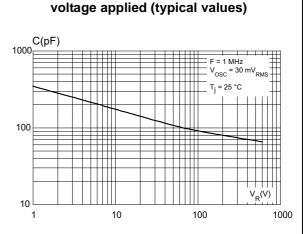

Figure 7. Reverse recovery charges versus dl_F/dt (typical values) $Q_{rr}(nC)$ 1600 -V_P = 400 V 1400 1200 1000 800 600 400 I_F = 0.25 X I_{F(AV} 200 0 0 100 150 200 250 300 350 400 450 500

Figure 8. Softness factor versus dl_F/dt (typical values) S_{factor} 2.0 V_P = 400 V = 125 °C 1.5 1.0 0.5 0.0 100 150 200 250 300 350 400 450 500

Figure 9. Relative variations of dynamic parameters versus junction temperature 2.4 2.0 Reference: T_j = 125 °C 1.6 0.0 25 50 75 100 125

Package information 2

Epoxy meets UL94, V0

Recommended torque value: 0.55 N·m

Maximum torque value: 1.0 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

2.1 DO-247 package information

Dia L5 L L2 L4 **1**L1↓ F3 L3 M Ε G

Figure 13. DO-247 package outline

Package information STTH80S06

Table 6. DO-247 package mechanical data

			Dimen	sions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.85		5.15	0.191		0.203
D	2.20		2.60	0.086		0.102
Е	0.40		0.80	0.015		0.031
F	1.00		1.40	0.039		0.055
F2		2.00			0.078	
F3	2.00		2.40	0.078		0.094
G		10.90			0.429	
Н	15.45		15.75	0.608		0.620
L	19.85		20.15	0.781		0.793
L1	3.70		4.30	0.145		0.169
L2		18.50			0.728	
L3	14.20		14.80	0.559		0.582
L4		34.60			1.362	
L5		5.50			0.216	
М	2.00		3.00	0.078		0.118
V		5°			5°	
V2		60°			60°	
Dia.	3.55		3.65	0.139		0.143

3 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STTH80S06W	STTH80S06W	DO-247	4.40 g	30	Tube

4 Revision history

Table 8. Document revision history

Date	Revision	Changes
22-Jul-2015	1	First issue.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

