

LXMG1617A-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

DESCRIPTION

The LXMG1617A-05-6x is a Single Output 6W Direct DriveTM CCFL (Cold from the system battery or AC adapter Cathode Fluorescent Lamp) Inverter directly to high frequency, high-voltage Module designed for driving LCD waves required to ignite and operate backlight lamps. It is typically ideal for CCFL lamps. A 12V input inverter is also driving 12.1" to 15" TFT panels.

LXMG1617A modules provide the designer with a superior display brightness the newer highly integrated LX1691B range. This brightness range is achievable CCFL backlight controller to provide with virtually any LCD display.

externally programmable over a range of 5 to 8mA in 1mA steps to allow the inverter to properly match to a wide array of LCD panel lamp current specifications. The topology include stable fixed-frequency modules include a dimming input that permits brightness control from a DC voltage source, a PWM signal or an external potentiometer.

The resultant "burst drive" energizes the lamp was designed to ensure higher that no premature lamp degradation replacement (see BRITE minimum input occurs, while allowing significant power voltage level) for those customers and savings at lower dim levels.

The module converts a DC voltage available (LXMG1617A-12-6x).

The LXMG1617A modules integrate wider dimming range (typically 100:1+) The maximum output current is and wider temperature range (-30°C to 80°C) compared to the existing solutions offered by Microsemi.

> Other benefits of the inverter's operation, secondary-side strike voltage regulation and both open/shorted lamp protection with fault timeout.

The new LXMG1617A ("A Series") that modules are designed therefore as a performance near drop-inapplications currently using the LXMG1617 inverters.

KEY FEATURES

- Externally Programmable Maximum Output Current
- Easy to Use Brightness Control
- Fixed Frequency Operation
- **Output Short-Circuit Protection** and Automatic Strike-Voltage Regulation and Timeout RangeMAX Wide Range
- Dimming
- Rated From -30°C to 80°C
- UL60950 E175910
- **RoHS** Compliant

APPLICATIONS

- Medical Instrument Displays
- Portable Instrumentation
- **Desktop Displays**
- Industrial Display Controls

BENEFITS

- Smooth, Flicker Free 2%-100% Full-Range Brightness Control
- Programmable Output Current Allows Inverter to Mate with a Wide Variety of LCD Panel's Specifications
- Output Open Circuit Voltage **Regulation Minimizes Corona Discharge For High Reliability**

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com Protected By U.S. Patents: 5,923,129; 5,930,121; 6,198,234; Patents Pending

Microsemi Analog Mixed Signal Group 11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570

XMG1617-05-6x

LXMG1617A-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Input Signal Voltage (V _{IN})	
Input Power Output Voltage, no load	
Output Current	
Output Power	
Input Signal Voltage (SLEEP Input)	
Input Signal Voltage (BRITE) Ambient Operating Temperature, zero airflow	
Storage Temperature Range	

Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

RECOMMENDED OPERATING CONDITIONS (R.C.)

This module has been designed to operate over a wide range of input and output conditions. However, best efficiency and performance will be obtained if the module is operated under the condition listed in the 'R.C.' column. Min. and Max. columns indicate values beyond which the inverter, although operational, will not function optimally.

Symbol	Recommer	Units			
Symbol	Min R.C. Max		Max	Units	
V _{IN}	4.75	5	5.25	V	
	4.5	5	5.5		
Po			6.0	W	
V _{BRT ADJ}	0 ¹		2.0	V	
VLAMP	545	640	735*	V _{RMS}	
IOLAMP	5		8	mA _{RMS}	
TA	-30		80	°C	
	Po Vbrt adj Vlamp Iolamp	$\begin{tabular}{ c c c c } \hline Symbol & \hline Min \\ \hline & & \\ \hline \\ \hline$	$\begin{tabular}{ c c c c c c } \hline Symbol & \hline Min & R.C. \\ \hline Min & R.C. \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

¹ The BRITE minimum input voltage level is 0V, whereas it is 0.5V in the original LXMG1617-05-6x inverter.

* Total output power must not exceed 6W. Higher voltage lamps may require maximum output current to be set lower than 8mA_{RMS}

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating condition and ambient temperature of 0° C to 60° C except where otherwise noted.

Parameter	Symbol Test Conditions		LXMG1617A-05-6x			Units
Falameter	Symbol	Test conditions	Min	Тур	Max	Units
OUTPUT PIN CHARACTERISTICS						
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN} = 5V_{DC}$ $I_{SET1} = Ground$, $I_{SET2} = Ground$	4.4	5	5.6	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $V_{IN} = 5V_{DC}$ $I_{SET1} = Ground$, $I_{SET2} = Open$	5.4	6	6.6	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, SLEEP $\ge 2.0V$, $V_{IN} = 5V_{DC}$ I _{SET1} = Open, I _{SET2} = Ground	6.4	7	7.6	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V_{DC}$, SLEEP $\ge 2.0V$, $V_{IN} = 5V_{DC}$ I _{SET1} = Open, I _{SET2} = Open	7.4	8	8.6	mA _{RMS}
Min. Average Lamp Current	I _{L(MIN)}	$ \begin{array}{l} V_{\text{BRT}_\text{ADJ}} = 0V_{\text{DC}}, \ \overline{\text{SLEEP}} \geq 2.0V, \ V_{\text{IN}} = 5V_{\text{DC}} \\ I_{\text{SET1}} = I_{\text{SET2}} = \text{Gnd} \ I_{\text{L(MIN)}} = I_{\text{L(MAX)}} * \sqrt{(\text{Min Duty Ratio})} \end{array} $		0.6		mA _{RMS}
Lamp Start Voltage	V _{LS}	$-30^{\circ}\text{C} < \text{T}_{\text{A}} < 80^{\circ}\text{C}, \text{ V}_{\text{IN}} > 4.5\text{V}_{\text{DC}}$	1500	1650		V _{RMS}
Operating Frequency	f _O	$V_{BRT_ADJ} = 2.0V_{DC}, \ \overline{SLEEP} \ge 2.0V, V_{IN} = 5V$	57	60	63	kHz
Burst Frequency	f _{BURST}	Output Burst Frequency	222	234	246	Hz

ELECTRICALS

LXMG1617A-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

	Baramotor				LXMO	G1617A-	05-6x			
		Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit	
	BRITE IN	PUT								
-	Input Curr	ent		I _{BRT}	$V_{BRT_ADJ} = 0V_{DC}$		-13		μΑ _{DC}	
-	Minimum	Input for Max. L	amp Current	V	V _{BRT_ADJ} = 3V _{DC} I _{O(LAMP)} = Maximum Lamp Current		0	2		
-		•	· .	V _{BRT_ADJ}		0	1.9	2	-	
-		Input for Min. L		V _{BRT_ADJ}	I _{O(LAMP)} = Minimum Lamp Current	-			VDC	
	Minimum PWM Input Frequency SLEEP BAR INPUT		F _{BRT_PWM}		2			kHz		
-	RUN Mod	-		V _{SLEEP}		2.0		V _{IN}	V _{DC}	
-	SLEEP M			$V_{\overline{\text{SLEEP}}}$		-0.3		0.8	VDC	
•	SET _{1,2} INPUT						1	1	-	
		w Threshold		VL				0.4	V	
	Input Current		I _{SET}	V _{SET} = 0V		-220		μA		
•	POWER CHARACTERISTICS									
	Sleep Current		I _{IN(MIN)}	$V_{IN} = 5V_{DC}, \ \overline{SLEEP} \le 0.8V$		5	50	μA _D		
	Run Curre	ent		I _{RUN}	$V_{IN} = 5V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $I_{SET1} = Open$ $I_{SET2} = Ground$, $V_{LAMP} = 640V_{RMS}$		1090		mA□	
_	Run Current Ripple Voltage Efficiency		I _{RIPPLE}	$V_{IN} = 5V$, $\overline{SLEEP} \ge 2.0V$, $I_{SET1} = Open$ $I_{SET2} = Ground$, $V_{LAMP} = 640V_{RMS}$		330		mVp		
				η	$V_{IN} = 5V_{DC}$, $\overline{SLEEP} \ge 2.0V$, $I_{SET1} = Open$ $I_{SET2} = Ground$, $V_{LAMP} = 640V_{RMS}$		85		%	
	² The BRITE	E minimum input v	oltage level is 0	V, whereas i	t is 0.5V in the original LXMG1617-05-6x inverter.					
				FUNC.	FIONAL PIN DESCRIPTION					
		Pin			DESCRIPTION					
		53261-0871)	Mates with 51021-0800 housing, 50079-8100 pins. Mates with LX9501G input cable assembly							
	CN1 1							<u>}</u>		
	CN1-2 V _{IN} M		Main Input	Main Input Power Supply (4.75V \leq V _{IN} \leq 5.25V)						
	CN1-3	0.15								
	GND Power Su			er Supply Return						
	CN1-5	SLEEP	ON/OFF Control. (0V < SLEEP \leq 0.8 = OFF, SLEEP \geq 2.0V = ON							
	CN1-6	BRITE	Brightness Control (0V to $2.0V_{DC}$). $2.0V_{DC}$ gives maximum lamp current.							
				SET ₁ MSB Connecting this pin to ground decreases the output current (see Table 1)						

ELECTRICALS SET₁ MSB Connecting this pin to ground decreases the output current (see Table 1) SET₂ LSB Connecting this pin to ground decreases the output current (see Table 1) CN2 for LXMG1617A-05-61 and -62 (JST SM02(8.0)B-BHS-1-TB(LF)(SN) ; Yeon Ho 20015WR-05A00, SM02B-BHSS-1-High voltage connection to high Side of lamp. Connect to lamp terminal with shortest lead length. Connection to low side of lamp. Connect to lamp terminal with longer lead length.

CN1-8

CN2-1

CN2-2

 SET_2

Vн

 V_{LO}

TB(LF)(SN); Yeon Ho 35001WR-02A00) or equivalent

DO NOT connect to Ground.

DO NOT connect to Ground

LXMG1617A-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

TABLE 1 SETTING OUTPUT CURRENT

OUTPUT CURRENT SETTINGS

SET₁ (Pin 7)	SET ₂ (Pin 8)	Nominal Output Current
Open*	Open*	8.0mA
Open*	Ground	7.0mA
Ground	Open*	6.0mA
Ground	Ground	5.0mA

* If driven by a logic signal it should be open collector or open drain only, not a voltage source.

All dimensions are in millimeters, inches for reference only

SIMPLIFIED BLOCK DIAGRAM

Copyright © 2007 Rev. 1.0, 2007-09-28

Page 4

PACKAGE DATA

LXMG1617A-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

TYPICAL APPLICATION

- The brightness control may be a voltage output DAC or other voltage source, a digital pot or 500K manual pot. The inverter contains an internal 215K pull-up to 3V to bias the pot, if desired; add a resistor to set the lower threshold voltage above the absolute minimum dim level capability. A 3.3V Logic Level PWM signal from a micro-controller may also be used as shown in Figure 1A.
- If you need to turn the inverter ON/OFF remotely, connect to TTL logic signal to the SLEEP input.
- Connect V_{HI} to high voltage wire from the lamp. Connect V_{LO} to the low voltage wire (wire with thinner insulation). Never connect V_{LO} to circuit ground as this will defeat lamp current regulation. If both lamp wires have heavy high voltage insulation, connect the longest wire to V_{LO} . This wire is typically white.
- Use the SET₁ and SET₂ (see Figure 2) inputs to select the desired maximum output current. Using these two pins in combination allows the inverter to match a wide variety of panels from different manufacturers. Generally the best lamp lifetime correlates with driving the CCFL at the manufactures nominal current setting. However the SET₁ and SET₂ inputs allow the user the flexibility to adjust the current to the maximum allowable output current to increase panel brightness at the expense of some reduced lamp life.
- Although the SET pins are designed such that just leaving them open or grounding them is all that is needed to set the output current, they can also be actively set. Using an open collector or open drain logic signal will allow you to reduce the lamp current for situations where greater dim range is required, as an example in nighttime situations. In conjunction with a light sensor or other timer the panel could be set to higher brightness (maximum output current) for daytime illumination and lower brightness (minimum or typical output current) at nighttime. Since the dim ratio is a factor of both the burst duty cycle and the peak output current, using this technique the effective dim ratio can be increased greater than the burst duty cycle alone. Conversely, the SET inputs could be used to overdrive the lamp temporarily to facilitate faster lamp warm up at initial lamp turn on. Of course any possible degradation on lamp life from such practices is the user's responsibility since not all lamps are designed to be overdriven.
- The inverter has a built in fault timeout function. If the output is open (lamp disconnected or broken) or shorted the inverter will attempt to strike the lamp up to about one second, after which (without success) the inverter will shutdown, in this mode the inverter will draw about 8mA from VIN. In order to restart the inverter it is necessary to toggle the sleep input or cycle the V_{IN} input supply.

APPLICATION

LXMG1617A-05-6x

5V 6W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

NOTES

NOTES

www.Microsemi.com

PRODUCTION DATA – Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.