
March 2007 Rev 1 1/146

AN2396
Application note

uPSD3400 series design guide for DK3400 using RIDE and CAPS

Introduction
This application note provides guidelines for creating and developing applications for the
Turbo+ uPSD Family of devices and shows a number of key steps to follow for creating a
design based on the DK3400 Development Kit. The Kit includes code examples discussed
in this document.

Here, the basic flow is provided for creating a project using the Raisonance Integrated
Development Environment (RIDE) tools. A simple application included in the Kit is
demonstrated using RIDE and shows the key features of RIDE. The key steps in designing
an application are enumerated in this document. CAPS, a key tool in using Turbo+ uPSD, is
explained in detail by illustrating the design used for the demonstration section. CAPS
supports ST's FlashLINK and Raisonance's JTAG programmer (RLINK-ST).

As shown in Figure 1, the uPSD3400 family is a series of 8051-class microcontrollers
(MCUs) containing a new fast Turbo+ 8032 core with a large dual-bank flash memory, a
large SRAM, many peripherals, programmable logic, and JTAG In-System Programming
(ISP). Please see the uPSD on-line resources page for latest documentation and other
referenced User Guides and Application Notes at the following URL: http://www.st.com/mcu.

www.st.com

http://www.st.com

AN2396

1/46

1 uPSD3400 family . 3

1.1 uPSD3400 family overview . 3

2 DK3400 development kit . 5

2.1 Overview . 5

2.2 Contents of DK3400 kit . 7

3 Project creation and sample design development process 8

3.1 Key design development steps . 8

3.2 Requirements . 9

3.3 Software installation and connections . 9

4 Using RIDE and RLINK-ST for creating a new project 11

5 Uploading and debugging with RIDE . 20

5.1 Purpose . 20

5.2 Upload project and program Flash memory . 20

5.3 Single-step and source-level debugging . 22

5.4 Device-specific formatted displays . 22

5.5 Breakpoints . 23

5.6 Symbolic debugging and variables watch . 23

5.7 Code iteration . 24

5.8 Instruction tracing, near real-time performance . 24

6 Conclusion . 27

Appendix A DK3400 jumpers selection and defaults . 28

Appendix B Interface display windows and code view. 30

Appendix C Importing an external application into RIDE 33

C.1 Overview . 33

C.2 Importing a Keil project into RIDE for debugging 33

C.3 Running the application on the target hardware . 34

C.4 Specifying the CAPS UPJ file information. 35

C.5 Executing simple commands such as Erase, Program and Blank Check . 36

AN2396

2/46

C.6 Specifying the CSIOP address . 37

C.7 Debugging the application on the target hardware using RIDE 37

C.8 Main features. 37

C.9 Trace mode . 37

C.10 Reliability of the trace/code coverage information. 39

Appendix D CAPS reports . 40

D.1 Project.rpt . 40

7 Revision history . 45

uPSD3400 family AN2396

3/45

1 uPSD3400 family

Figure 1. General block diagram of the uPSD3400

1.1 uPSD3400 family overview
The uPSD3400 family is a Turbo+ 4-clock per instruction 8032 MCU capable of being
clocked up to 40MHz at 3.3V or 5.0V at industrial operating temperature range. Currently
there are sixteen family members that contain different combinations of flash memory size,
operating voltage, and packaging (please see the full datasheet). In this Application Note,
uPSD3434E-40U6 is used as the example. The term "Turbo+ uPSD" is used throughout the
remainder of the document for brevity (see the Turbo+ uPSD3434 block diagram shown in
Figure 2).

The Turbo+ uPSD family has a unique memory structure that includes two independent
flash memory arrays (Main and Secondary) capable of read-while-write operations. This is
ideal for In-Application Programming (IAP) because the 8032 can fetch instructions from
one flash array while erasing/writing the other array. Individual sectors of each flash memory
array can be mapped to virtually any 8032 address by the Decode PLD (DPLD) for total
flexibility. The Turbo+ uPSD also contains a Page Register whose outputs feed the inputs of
the DPLD. This allows paging (or banking) of flash memory to break the 8032's inherent limit
of 64 Kbyte addresses. The 8032 may write to the Page Register at runtime.

PA0:7

PB0:7

PD1:2

PC0:7

MCU
Bus

P4.0:7

P1.0:7

P3.0:7

S
Y

S
T

E
M

 B
U

S

Dedicated
Pins

Supervisor:
Watchdog and Low-Voltage Reset

1st Flash Memory:
128K or 256K Bytes

2nd Flash Memory:
32K Bytes

SRAM:
4K or 8K Bytes

Programmable
Decode and
Page Logic

General
Purpose

Programmable
Logic,

16 Macrocells

(8) GPIO, Port A
(80-pin only)

(8) GPIO, Port B

(4) GPIO, Port C

(2) GPIO, Port D

JTAG DEBUG and ISP

8032 Address/Data/Control Bus
(80-pin device only)

VCC, VDD, GND, Reset, Crystal In

Turbo
8032
MCU

PFQ
&

BC

(3) 16-bit
Timer/

Counters

(2)
External
Interrupts

I2C

SPI

(8) 10-bit ADC

UART0

(8) GPIO, Port 1

(8) GPIO, Port 3

(8) GPIO, Port 4

USB+,
USB–

USB v2.0,
Full Speed

10
FIFOs

UART1
Optional IrDA

Encoder/Decoder

16-bit PCA
(6) PWM, CAPCOM, TIMER

Core

INST

DATA

16 bits

8 bits

AN2396 uPSD3400 family

 4/45

For more complex designs, the Turbo+ uPSD is capable of placing each of the flash memory
arrays (Main or Secondary) into 8032 code address space, into 8032 data space, or into
both code and data space on the fly. Mapping flexibility like this supports IAP because either
flash array may be temporarily placed into data space while the firmware is updated, then
moved back into code space when finished, all under control of the 8032.

Many peripherals are available in this Turbo+ uPSD, including: two UART channels, one
IrDA channel, one SPI channel, one I2C channel, six PWM channels, eight 10-bit ADC
channels, nine Timer/Counters, a watchdog timer, low-VCC detection with reset-out, a
general purpose PLD, many GPIO and a USB-JTAG Debugger.

All of the peripherals on Ports 1, 3, and 4 are controlled using 8032 Special Function
Registers (SFRs).

I/O Signals on ports A, B, C, and D are controlled one of two ways:

1. by a block of xdata memory mapped control registers, whose base address (csiop) can
be mapped anywhere using the DPLD; and

2. by the programmable logic

In addition, Turbo+ uPSD offers a Cross-Bar I/O, which means that Peripheral functions on
Port 1 are also available on Port 4 (cross-bar switch), providing more flexibility. There is no
need to sacrifice one peripheral function when two functions are available on a single pin,
just use the other port.

The JTAG channel on Port C is used for in-system programming (ISP) and debug of the
8032 MCU core. ISP is ideal for rapid code iterations during firmware development and for
Just-In-Time inventory management during manufacturing. JTAG ISP eliminates the need
for sockets and pre-programmed devices, and requires no participation of the 8032. JTAG
debug eliminates the need for expensive and intrusive hardware In-Circuit Emulator (ICE).

Figure 2. uPSD3434 block diagram

10-bit
ADC

Dedicated Memory
Interface Prefetch,

Branch Cache

Enhanced MCU Interface

Decode PLD
PSD Page Register SRAM

CPLD - 16 MACROCELLSJTAG ISP

Reset Logic
WDT

Internal
Reset

Port 1Port 3

Dual
UARTs

Interrupt

3 Timer /
Counters

256 Byte SRAM

Turbo 8032 Core

PSD Internal Bus

8032 Internal Bus

PSD
Reset

LVD

I2C
Unit

USB and
Trans-
ceiver

Port D
GPIO

Port C
JTAG and

GPIO

Secondary
Flash

Reset Input

uPSD3434

JTAG
DEBUG8-Bit/16-Bit

Die-to-Die Bus

Main Flash

PCA
PWM

Counters

Reset
Pin

Ext.
Bus

SPI

VCC Pins
3.3V

VDD Pins
3.3V or 5V

MCU Module

PSD Module

Port 3 - UART0,
Intr, Timers Port 1 - Timer, ADC, SPI

Port 4 - PCA,
PWM, UART1

Port 3
I2C

USB
pins

XTAL
Clock Unit

Port A,B,C PLD
I/O and GPIO

DK3400 development kit AN2396

5/45

2 DK3400 development kit

2.1 Overview
A picture of the DK3400 board is shown in Figure 3. A list of jumpers JP0 - JP12 and their
functions can be found on the DK3400 board's silk screen. For more detailed information on
these jumpers, please refer to Appendix A: DK3400 jumpers selection and defaults or the
DK3400 User's Manual (UM0131, Turbo Plus uPSD DK3400 Development Kit). Board layout
and schematics are also available in the User’s Manual. Connectors CON1, CON2, and
CON3 provide easy access to all Turbo+ uPSD signals for expansion or testing. One UART
is accessible on the connector marked CN6. The FlashLINK/ RLINK-ST/ ULINK JTAG ISP
cable connects at the connector, JTAG. The DK3400 includes a graphical LCD, real-time
clock, serial EEPROM, IrDA transceiver, serial flash, NAND flash, and an embedded RLINK.

The sample design example code used for this application note is a RIDE based project
which blinks the daughter board LED. The purpose of using this simple design project is to
illustrate and demonstrate the use of Raisonance RIDE software and tools with the RLINK-
ST adapter on a uPSD development board. The RIDE tools provide many features for
editing, compiling, programming, and debugging a uPSD3400 MCU Series from
STMicroelectronics. In the following sections, some of the main features are described to
give you a feel for the simplicity and capabilities of the tools used for this sample design. A
brief overview to the methods involved in importing applications developed with the Keil
compiler and debugging on DK3400 using RIDE Debugger is also provided in the
appendices of this document.

AN2396 DK3400 development kit

 6/45

Figure 3. DK3400 motherboard

Figure 4. DK3400 daughter-board

DK3400 development kit AN2396

7/45

2.2 Contents of DK3400 kit
STMicroelectronics provides a DK3400 Development Kit which is shipped with the following
contents:

● uPSD DK3400 daughter board- with a uPSD3434E-40U6 MCU

● Motherboard with Enhanced Graphic LCD

● RLINK-ST embedded on the DK3400 daughter board, a USB-based JTAG adapter
from Raisonance for debugging with Raisonance Integrated Development Environment
(RIDE)

● ULINK, a USB-based JTAG adapter from Keil for debugging with Keil's uVision Tools

● USB Cables and RS232 Cables

● 110/220V Universal Power Supply Adapter

● DK3400 CD from STMicroelectronics contains:

– STMicroelectronics Datasheets, Tools, Software, uPSD3400 sample projects

– User Manual and Application Notes

– Keil uVision3 Software and support Tools (Demo Version) for uPSD - (Limited to 2
Kbytes code size)

● RKit Development Suite from Raisonance contains:

– Trial version of RIDE C-Compiler and Assembler (limited to 4 Kbytes code size)

– RIDE Debugger Utility (no code size limit)

● ST's Configuration and Programming Software (CAPS) for configuring the
Programmable Logic inside the uPSD3400

AN2396 Project creation and sample design development process

 8/45

3 Project creation and sample design development
process

The sections below introduced the process of using RIDE for creating application Code
using the Development board and the associated tools supplied with the Kit. The key steps
for creating a new project with RIDE are described. This is followed by section that uses the
RIDE environment and DK3400 board to demonstrate the sample design. The main features
of RIDE and its usage are then shown by loading and debugging the sample application.

The Configuration and Programming Software (CAPS) is a unique tool required in project
development for the uPSD3400. It is used to design and configure the programmable logic
in the uPSD3400 as well as specifying the content that is programmed into the various Flash
sectors. It's covered in detail in a separate application note, but the sections that follow
explain how to use it along with RIDE for project setup.

3.1 Key design development steps
Design and development of applications using Turbo+ uPSD Family of products require use
of both Development Boards from STMicroelectronics or hardware developed by the user in
conjunction with Software and Tools that support uPSD Devices. It is important to follow
some simple steps and guidelines for successful implementation of the project.
STMicroelectronics provides full support with Hardware Development Kits and Software
Tools, utilities and support through the Support Website. The key design development steps
for using RIDE tools are as follows:

● Identify and select the right development Kits and Tools

● Design a Block Diagram of your Application in relation to the Turbo+ uPSD

● Design the Logic and connections to be used for the PLD available in uPSD

● Create Memory Maps and inputs for programming devices using CAPS tools

● Develop your application Code for the chosen Compiler (the Raisonance 8051 C
Compiler is used here)

● Verify the project needs and match with the device used

● Compile and create the firmware and applications Code

● Enter data from the Block diagram and memory maps using CAPS Design flow

● Merge hex files(s) generated by RIDE's linker and the PLD programming info (hex
format) to create a combined file with the name .OBJ.

● Upload code and data to the development board using one of the supported tool paths
(e.g., RLINK-ST / Flashlink).)

● Debug, make changes, reprogram and finalize the project

● Test and qualify the design

This application note provides guidelines for design by showing the key steps as mentioned
above. The document has been divided into sections that cover various areas. It is expected
that the reader has previous experience of programming and applications development
including the use of compilers.

In previous sections, you were introduced to the Turbo+ uPSD. The family basic block
diagram and features were introduced, followed by an overview of the DK3400 Development
Kit (Board). The sections that follow cover the installation of the kit and project creation. A

Project creation and sample design development process AN2396

9/45

simple example is used for demonstration and explained in detail to provide an
understanding of the RIDE tools and the DK3400 Development Kit. It is hoped that with this
information and other supporting documents available from STMicroelectronics, you can
design and develop your application/project using Turbo+ uPSD.

3.2 Requirements
In order to follow the examples and processes described here you will need:

● A Windows host system with USB support (Win98SE, Win2000, ME, XP);

● A DK3400 Development Kit.

The DK3400 Development Kit, as described in Section 2.2, includes all hardware and
software needed for the examples covered here.

Note: The examples here assume that CAPS has been installed and is used to create the
hardware configuration files. A current version of CAPS is included in the development kit,
along with a "quickstart" sheet for its installation and use. For more information on how to
use all the features of RIDE, see Ride.pdf (available in the RIDE installation directory
Ride\Doc or by selecting Help | PDF | Ride General | Ride in the RIDE program menu).

3.3 Software installation and connections

3.3.1 Software installation

● Insert the DK3400 CD in the drive.

● The auto-run brings up the home page or the main menu page. Select Install ST and
3rd Party Tools.

● First install CAPS, taking all the default choices.

● Next install RIDE, taking all the default choices.

● Go back to the home page.

● Select Copy Device Drivers and Demo Code.

● Unzip the files to the folder of choice on the hard drive.

3.3.2 Physical connections

There are several ways to establish a communications path between the host PC and the
uPSD device for uploading and debugging applications. All of them ultimately make use of
the JTAG port interface on the uPSD3400 package, but they use different means to access
that port.

One method supported by the Raisonance tools employs a small bridge device, referred to
elsewhere as the "RLINK dongle". On one side of the bridge device is a USB device socket,
for connecting to the host PC by a standard USB cable. On the other side is a short ribbon
cable that plugs in to a JTAG socket on the development board. This method is appropriate
when using the RIDE tools to upload application code and data to production boards with
minimal provision for external interfacing.

For the DK3400 development board, use of the RLINK dongle is possible but not required.
The board includes a USB device socket and support circuits that emulate the function of
the RLINK dongle. That enables the DK3400 board to be linked directly to the host PC via a

AN2396 Project creation and sample design development process

 10/45

standard USB cable. That is the easiest method of connection, and is assumed in the
remainder of this application note. The next steps for brining up the development
environment are then as follows:

● Connect DK3400 to your PC/Laptop using the supplied USB cable and let the USB
driver install on Windows.

● Make sure that the board is powered up using the Universal Adapter supplied with the
kit. The LCD displays various text messages to indicate the board is functioning.

● Make sure that the Jumpers are set correctly. (Refer to Appendix A: DK3400 jumpers
selection and defaults at the end of the document for Jumper settings).

Using RIDE and RLINK-ST for creating a new project AN2396

11/45

4 Using RIDE and RLINK-ST for creating a new project

In this section the key steps for using RIDE to create a new project are shown.

1. As shown in the section Section 3.1, there are a number of recommended steps
involved in creating a new uPSD project using the RIDE 8051 software development
tool from Raisonance. Please also refer to the general Users Guide for RIDE (included
on the RIDE CD).

2. With RIDE already running, select New from the Project pulldown menu and enter the
project name, path, and family as shown below (Figure 5) In this example, the name
"New_uPSD_project" is used. The directory path is C:\WORK\new_upsd_project. The
directory need not be an existing one; when necessary, RIDE creates the required
directories if they don't already exist.

Figure 5. Entering new project name and directory

AN2396 Using RIDE and RLINK-ST for creating a new project

 12/45

3. Click Next and the uPSD device selection dialog appears (Figure 6). Select the correct
uPSD device from within the ST folder. (Here, uPSD3434E-40 is selected as these are
used in the ST Development board’s DK3400)

Figure 6. Turbo+ uPSD device selection

4. Click Finish and RIDE creates the new project copying the needed uPSD files into your
project directory. RIDE also automatically adds the "startup.a51" and "uPSD_Init.c"
files to your RIDE project folder. These files comprise the firmware that is executed by
the uPSD3400 MCU upon a power-up or a reset event. It also creates a CAPS
directory and copy a default project file into that directory.

This is reflected in the RIDE environment as shown in Figure 7. The created files and
start up files are shown in the Project Window.

Figure 7. RIDE environment

Using RIDE and RLINK-ST for creating a new project AN2396

13/45

RIDE generates a default CAPS project by creating a folder and the CAPS project file.
The project file is named project.upj and resides in the folder named "CAPS". This new
folder is placed in your RIDE project folder. In this example, the path to the generated
CAPS project is C:\Work\new_upsd_project\CAPS. Certain settings in RIDE depend on
this structure so do not change the name of the generated CAPS project or its path.
This project is examined later in this document.

5. At this point, we are ready to start building the source code for the application. If we
were building a new application from scratch, we could use RIDE's File | New
command to open a new edit window, and enter our code there. Or, we could use our
favorite code editing program to create the files outside of RIDE, and move them into
the RIDE project directory. It doesn't really matter how the files are created. In this
case, however, we are just going to copy three existing files from the RIDE installation
directory to our new project directory. The source path for the copies is:
C:\RIDE\EXAMPLES\8051\DERIVATIVES\ST_UPSD\DK3400\UPSD3400\LED_BLINK

The three files are led_blink.c, upsd3400_timer.c, and upsd3400_timer.h. The first C
file contains our main program, and the second contains a support function that the
main program uses. Copy the three files into the folder C:\work\new_upsd_project.

6. Next we need to inform RIDE that our project depends on the files that we just copied
into our project folder. Right click on the root target in the project window (i.e., on
C:\WORK\NEW_UPSD_PROJECT\NEW_UPSD_PROJECT.AOF) and select the
Add node Source/Application command (Figure 8). This brings up a standard file
browser sub-window in the project directory (Figure 9). Select upsd3400_timer.c and
click Open. Repeat for led_blink.c. The result is as shown in Figure 10.

Figure 8. Adding source files

AN2396 Using RIDE and RLINK-ST for creating a new project

 14/45

Figure 9. Add File browser sub-window

Figure 10. RIDE environment after adding source files

Note that it is not necessary to add the .h file upsd3400.h. The tree displayed in RIDE's
Project window is actually a tree of make targets and dependencies. When it does a
program build after any new source files have been added, RIDE first runs the compiler
in a mode that identifies any file dependencies from #include statements. The included
files are then added automatically to the project dependency tree. If an included file is
subsequently changed, RIDE then knows that any dependent source file must be
recompiled.

It is also worth noting that RIDE is not actually fussy about where the source files
reside. The default location is in the project directory, and it was convenient to use that
for this example. However, the browser sub-window opened by Add New Source/

Using RIDE and RLINK-ST for creating a new project AN2396

15/45

Application command supports navigation to other locations. The full path name is
added to RIDE's project database.

7. With all source files added, we are now ready to do the initial project build. In the
Project pull-down menu, select Build All. RIDE runs its make utility, reporting status in
the make sub-window at the bottom of its main window (Figure 11). Note that the .c
files in the Project window are now prefixed with '+' boxes. Clicking on one of these
expands the dependency tree to show the .h and .inc files that were found during the
build.

Figure 11. Result after Build All

Although the application source files have now all been compiled, and initial versions of
the object and Intel Hex files have been built, the project is not yet ready to upload and
test on the DK3400 board. The hardware configuration files are incomplete. These are
the low-level files that program the PLD chip selects for the Flash memory sectors,
SRAM, and CSIOP registers, the programmable logic, and also specify what hex files
are programmed into each of the Flash sectors. The CAPS tool is used to create these
files and merge them into the object file for uploading. So the next step is to run CAPS.

AN2396 Using RIDE and RLINK-ST for creating a new project

 16/45

8. Bring up CAPS, click the Open icon on the menu bar, and browse to the CAPS project
file that RIDE created in step 4. Select that file in the browser sub-window and click
open. The result is shown in Figure 12 below.

Figure 12. CAPS project opened

9. Click on the Open Wizard button in the lower right portion of the above window to bring
up the CAPS project wizard. The resulting window is shown below. It is for the memory
mapping step of the configuration process. CAPS is preprogrammed with seven
standard memory maps. Map 7, the default shown here, is suitable for the example
used in this note. Click Next to accept it.

Figure 13. CAPS Wizard memory mapping window

Using RIDE and RLINK-ST for creating a new project AN2396

17/45

10. The next window for the CAPS configuration wizard is the Firmware Placement window
shown in Figure 14. Its purpose is to assign names for the files that are to be used to
program the code and data pages identified in the memory map. For the Code0 page,
the only one that is used in this example, click the Browse button and go one directory
up to find the Intel Hex file that was created in step 7. CAPS requires a valid .HEX file
for merging its firmware files.

Figure 14. Firmware Placement step

11. Click Next. This brings up the window shown in Figure 15, for setup of any external
chip select outputs required. For this example, the default presented is all that's
needed, so just click Next to continue.

AN2396 Using RIDE and RLINK-ST for creating a new project

 18/45

Figure 15. External chip select setup

12. The next step is for configuring the security bit, and the sector protection bits. Selecting
any of the sectors for protection prevents the selected sector from being altered, until
the configuration is changed to remove that protection. During development, there is
usually no reason to select any segment for protection. However, protection for
individual segments can be removed by rerunning CAPS to reconfigure the chip. The
Enable security bit, once programmed, prevents reading/writing of the Flash sectors via
JTAG. The security feature is disabled when a full erase of the device is performed.
Click Next to continue.

Figure 16. Security and Protection settings

Using RIDE and RLINK-ST for creating a new project AN2396

19/45

13. The final step of the CAPS setup Wizard creates the MCU firmware image according to
the configuration options selected and merges it into the object file. The result is
reported in the window shown in Figure 17. (The warning message about no data file
for the FS0:7 and the CSBOOT1:3 sectors can be ignored as this example does use
one.) The window gives options to program the device through the JTAG port at this
point, or to Save and Exit Wizard. Since we intend to debug the project in RIDE,
which has its own upload capability, we pick the latter and close CAPS.

Figure 17. JTAG ISP operations step

This completes the project creation and setup phase. The next chapter describes how the
RIDE debugger is used to upload applications to the DK3400 board and to run tests.

AN2396 Uploading and debugging with RIDE

 20/45

5 Uploading and debugging with RIDE

5.1 Purpose
The preceding chapter took you through the steps of using RIDE and CAPS to create a new
project, New_uPSD_project, and to build a simple application with the main program
led_blink. This chapter shows how RIDE, in conjunction with RLINK-ST, can be used to
upload, test, and modify application code running on the DK3400 board.

This simple demonstration project illustrates the powerful software development tools based
upon Raisonance RIDE software, and the RLINK-ST capabilities, which provides many
features for editing, compiling, programming, and debugging a µPSD33/3400 MCU Series
from STMicroelectronics. This demo quickly illustrates the specific features below to give
you a feel for their simplicity and capability:

● Compile Project and Program Flash Memory

● Single-Step Execution and Source-Level Debugging

● Device-Specific Formatted Displays

● Breakpoints

● Symbolic Debugging and Variables Watch

● Code Iteration

● Instruction Tracing approaching Real-Time performance

The DK3400 Development Board with its embedded RLINK tool (or your own designed
circuit board with a µPSD34xx MCU) is all that is needed to develop code. RIDE’s debugger
utility can be used to symbolically debug 8051 code generated by almost any 8051 compiler.
You may choose to use your existing 8051 compiler with the RIDE debugger (no code size
limit) or upgrade the evaluation version of the RIDE compiler to also compile with no code
size limit. See http://www.raisonance.com for more information on RIDE and upgrades.

5.2 Upload project and program Flash memory
If it is not already running, launch RIDE from the Windows programs menu (Raisonance Kit
6.1) or by clicking the RIDE icon on the desktop. On opening, a blank work area appears
with the RIDE title menu bar as shown in Figure 18.

Figure 18. RIDE Title Bar

● Open the demo project created in Section 4. In title menu bar click Project, then Open.
Next double-click the project named New_uPSD_project.prj, from the folder
C:\work\new_upsd_project. If you skipped Section 4, the same project can be found in
the RIDE installation directory. The project name there is led_blink, rather than
new_upsd_project. It is found in the folder:
\RIDE\EXAMPLES\8051\DERIVATIVES\ST_UPSD\UPSD3400\DK3400\LED_BLINK

● The RIDE environment displays new content in the project windows. The left window
shows the project files. Click on the "+" to expand the project component files and then
double-click on led_blink.c to open the file (Refer to Figure 19).

Uploading and debugging with RIDE AN2396

21/45

Figure 19. Project window

● Click Make All. If you are starting from the 'led_blink' project under the EXAMPLES
folder of the RIDE installation directory, this compiles and builds the project. If you are
continuing with the 'New_uPSD_project' from Section 4, the project has already been
compiled and built. In this case, clicking Make All effectively does nothing and is
harmless.

● Click Options | Debug and the "Debug Options" window will appear (Figure 32). In this
example, use RLINK-ST to debug your code under JTAG control. Select Real
Machine (Emulator or ROM-Monitor) as the "Tool" and RLINK-ST -uPSD in the drop
down box under "Tools." Click on the Advanced Options button and the "uPSD
debugger options" window appears as shown in Figure 33. Make sure the settings are
as shown in the figure. Of particular importance is the setting for "Merge Options." This
setting specifies the location and name of the CAPS project file associated with the
RIDE project. The path and filename must be correct for proper programming of the
device. In this example a relative path is used to point to the CAPS file. From this
window, various JTAG operations may be performed using the buttons near the bottom
of the window in the "Instant Checks" area. Once the settings have been confirmed,
click OK to close this window, then OK again to close the "Debug Options" window.

● Start the Debugger by clicking Start. This programs the Flash and refreshes the RIDE
environment showing actions in the "Debug / Action/Status Window" (Figure 25).

The highlighted line indicates where MCU execution has stopped at the first line of
executable code in the main program. The Debugger now waits for your command.

AN2396 Uploading and debugging with RIDE

 22/45

5.3 Single-step and source-level debugging
● Click Go to see the program run full speed with the D6 red LED blinking at a couple Hz

frequency.

● Click Reset and the program returns to the first line of the main program. The blue line
should be on blink_delay = SHORT.

● Click Step-In twice. The debugger is now in the called function, timer0_init().

● Double click Disassembly Code in the left debugger window. This opens a tabbed
window, “code (led_blink)” showing both C and Assembly code source instructions.

● Click Step-Over a few times to see that code execution can be stepped one assembly
instruction at a time.

● Click Reset to return to the main program, led_blink.c.

● Click on LED_BLINK.C tab to return to the C code window.

5.4 Device-specific formatted displays
● Double-click Main Registers in the left debugger window to show the contents of the

MCU core registers (Refer to Figure 20).

● Double-click Port 1 in the left debugger window to show current value of pins on I/O
port 1.

● Go back to file led_blink.c by clicking on the tab at the bottom of the main display
window (Refer to Figure 25), and expand the window view back to full screen.

Figure 20. MCU registers

Uploading and debugging with RIDE AN2396

23/45

5.5 Breakpoints
Four hardware breakpoints are available on uPSD3400.

● Set two breakpoints by clicking on each of the green dots on the left of the two lines of
code timer0_delay(blink_delay), in the while(1) loop. The green dot and the
selected line both highlight in red.

● Click Go, the program runs until reaching a breakpoint. Notice the status of the red
LED.

● Click Go repeatedly. Notice that the red LED toggles from ON to OFF by repeatedly
clicking the Go icon.

● Now, remove the two breakpoints, by clicking in the margin on the two red icons. Click
Go again to resume program execution. The blinking routine is now running without
interruption.

5.6 Symbolic debugging and variables watch
● Click Stop to halt program execution. With the mouse, highlight (double-click) the entire

variable name “blink_delay” at the beginning of the main() function. Then, right-click
on the variable and select “Add Watch” to add this variable to the Watch Window, which
appears at the bottom left of the screen. You may also press the F6 key (refer to
Figure 25 and Figure 21).

Figure 21. Watch Window

● Remove any existing breakpoints.

● Click Reset.

● Click Go followed by Stop to see that the blink_delay value is updated in the watch
window and that it reports a value of 0x0A.

● While the code is running (Click Go again), place the mouse above the Value field
(which should read 0x0A), right-click, and select Evaluate. Then, enter 0x64 in New
Value field, followed by clicking on Modify. The LED should then blink at a rate 10 times
slower. (0x64 causes a 10x longer delay versus 0x0A). Notice that the debugger is
active while the code is running.

● Click Reset followed by clicking Go. The LED blinks again at the faster rate.

AN2396 Uploading and debugging with RIDE

 24/45

5.7 Code iteration
● Halt the debugging session to make the blink delay interval code change permanent in

Flash memory.

● Close the Debugger by clicking on the same icon that "starts" the Debugger.

● Now you are in the editor. Go to file led_blink.c by clicking on its file tab and change the
C code statement from,

blink_delay = SHORT;

to

blink_delay = LONG;

● Click Make All to recompile and rebuild the program.

● Start the Debugger by clicking Start to re-program this new code into Flash memory.

● Click Go and see that the LED is now permanently blinking at the slower rate. This
code modification now resides in Flash memory.

● Click Reset.

5.8 Instruction tracing, near real-time performance
The uPSD rapidly streams a record of all the MCU instruction steps out to the RLINK-ST
adaptor. From this data, RIDE creates a formatted file to help you find even the most
stubborn bugs, showing an MCU execution history depth of 500,000+ instruction steps.

Note: When trace mode is enabled, CPU performance can be expected to decrease about 20 to
30 percent.

● To enable Trace, select from the title bar Debug then Trace, and select trace Options
as shown in Figure 22. Then click OK.

Figure 22. Trace Options

● Open the Trace Display. Select from the title bar Debug, then Trace, then View. A blank
Trace window displays.

Uploading and debugging with RIDE AN2396

25/45

A Trace Display file can display program source code in both C and Assembly formats.
Tracing runs in the background with little impact to real-time performance in this project.

● Return to the file led_blink.c by clicking on its file tab.

● Set one breakpoint at the line of code immediately before while(1), at
PSD_reg.DATAOUT_D |= LED_OFF, by clicking on the green dot to the left of the line
of code. The breakpoint line highlights in red.

● Click Go, and the MCU runs until hitting the breakpoint, then a window opens showing
the Assembly source code.

Note that the red line indicates where the breakpoint is set, the blue line indicates the next
instruction to execute, and a pink line indicates where a breakpoint occurred.

● Now, open the Trace Display window by clicking on the file tab “Trace (led_blink)”
(Figure 23). At the bottom of the Trace display is the last instruction that was executed:
MCU Program Counter at 01B. Above this line is the history of all instructions executed
before hitting the breakpoint. There should be 13 records.

Figure 23. Trace window

● If you right-click on the trace windows and select Options, it is possible to list both C
and ASM code by selecting ASM and C sequential list.

● Return to file led_blink.c and click Go. Notice that the LED blinks normally and in real-
time.

● After about 10 seconds, click Stop. Notice the messages in the window that records the
actions (Figure 24). This window shows the number of non-sequential instructions
traced. Thousands of instructions are now showing in the Trace window.

AN2396 Uploading and debugging with RIDE

 26/45

Figure 24. Message window

Conclusion AN2396

27/45

6 Conclusion

Congratulations! You have seen the majority of steps to implement a Turbo+ uPSD design
on the DK3400 board. This design guide showed the basic steps to pre-configure the
memories with CAPS, compile, program in Flash and debug with RIDE Tools. The process
flow diagram steps were described so that the method for creating a new project from
scratch was shown and a detailed design and process, based upon the blink LED demo, has
also been described in detail with all the tools required.

There is additional documentation about the uPSD Turbo+ architecture on the DK3400 CD
ROM. There is also further documentation available through the website links provided
earlier. The trial version of the RIDE C compiler and tools supplied with the DK3400 limit the
Code size to 4KB. Any application larger than 4KB would require purchase of the full tools
from Raisonance.

The example code and the steps clearly demonstrate the powerful firmware development
and debugging capabilities of the RIDE environment with RLINK-ST for uPSD DK3400-
Development Board.

For more information, please refer to:

● Datasheet of the uPSD34xx MCU

● Getting Started with RIDE and µPSD (Application Note AN48-uPSD)

● Schematic for the DK3400 circuit board in the User Manual UM0131

Please see the ST web site for these documents and for the latest information on uPSD
products, tools, application notes, and other documentation: http://www.st.com/mcu

AN2396 DK3400 jumpers selection and defaults

 28/45

Appendix A DK3400 jumpers selection and defaults

The following Table describes the DK3400 Jumpers. See the Schematic and DK3400 User
manual for more information regarding the jumpers.

Table 1. DK3400 jumpers

Jumper
No.

Description Default Setting Comments

JP1
Enable SPI interface
Flash M25P80.

Closed M25P80 is enabled when JP1 is closed.

JP2 Reserved Open Please keep this jumper on open.

JP3
Enable USB auto-
disconnect function.

Closed
USB auto-disconnect function is enabled when
JP3 is closed.

JP4
select a power source
for JTAG port.

JP4.1
connected to
JP4.2

Keep JP4 on following status when ED3K4
works on Mode1, 2, 4 and 5: JP4.1 connected to
JP4.2.

Keep JP4 on open when ED3K4 works on Mode
3.

JP5

Select which power
source to be used as
USB power input of
power management
circuit, power from E-
RLINK USB cable or
power from uPSD
USB cable.

JP5.1
connected to
JP5.2

Keep JP5 on following status when ED3K4
powered from RLINK USB cable: JP5.2
connected to JP5.3.

Keep JP5 on following status when ED3K4
powered from uPSD USB cable: JP5.1
connected to JP5.2.

JP6
Provide a boot option
for ED3K4 board.

Open

ED3K4 boot from internal main flash when JP6
is closed.
ED3K4 boot from internal boot flash when JP6
is open.

JP7

Select clock
generation source,
external clock or
internal clock.

JP7.1
connected to
JP7.2

ED3K4 works with internal clock when JP7 is
set as following: JP7.1 connected to JP7.2.

ED3K4 works on external clock mode when JP4
is set as following: JP7.2 connected to JP7.3.

JP8 Enable NAND Flash. Closed
128Mbit NAND flash is enabled when JP8 is
closed.

JP9

Select JTAG circuit
operation mode along
with JP10 depending
on operation mode of
ED3K4.

Closed

Keeps JP9 on closed when ED3K4 works on
mode 1, 2, 3 and 5.
Keeps JP9 on open when ED3K4 works on
mode 4.

JP10

Select JTAG circuit
operation mode along
with JP9 depending on
operation mode of
ED3K4.

Closed

Keeps JP10 on closed when ED3K4 works on
mode 1, 2, 4 and 5.

Keeps JP10 on open when ED3K4 works on
mode 3.

DK3400 jumpers selection and defaults AN2396

29/45

JP11 Enable DEBUG signal. Open DEBUG signal is enabled when JP11 is closed.

JP12

Select which
transceiver to be
connected to UART1
port, RS232
transceiver or IrDA
transceiver.

JP12.2
connected to
JP12.4 and

JP12.1
connected to
JP12.3.

UART1 is connected to RS232 transceiver when
JP12 is set as following: JP12.1 connected to
JP12.3 and JP12.1 connected to JP12.4.

UART1 is connected to IrDA transceiver when
JP12 is set as following: JP12.3 connected to
JP12.5 and JP12.4 connected to JP12.6.

Jumper
No.

Description Default Setting Comments

AN2396 Interface display windows and code view

 30/45

Appendix B Interface display windows and code view

Figure 25. RIDE interface display windows

Interface display windows and code view AN2396

31/45

Figure 26. Code view (disassembly)

AN2396 Interface display windows and code view

 32/45

Figure 27. Trace display

Importing an external application into RIDE AN2396

33/45

Appendix C Importing an external application into RIDE

C.1 Overview
The RIDE IDE allows you to combine the building of the project and the debugging of the
built application. However, you could wish to simply debug an application that has been
written and compiled out of RIDE. In such a situation, choose Debug | Load. The following
window appears:

Figure 28. Debug application window

You can then select your application. You also need to specify the format of this application.
Take care that some of the listed formats does not contain any debug information (such as
HEX or Binary):

Figure 29. Format drop-down list

Debugging an external application and a built-in-RIDE application will be then exactly the
same.

If none of these formats matches with the format of your application, it is recommend that
you check if the tools you are using allow conversion from the original format into one from
this selection.

C.2 Importing a Keil project into RIDE for debugging
Here, the process is shown for importing the same application example as developed using
Keil Compiler. This is available in the Keil folder of your installed Keil software tools. Browse
through the application path and then select the correct file. (See note below). The Keil
AOM5F51 format required by RIDE has no extension and in this case it is the following path
and file name: right-click on the Format drop-down box and ensure that you select Keil
AOMF51.

AN2396 Importing an external application into RIDE

 34/45

Note: For Keil projects, the file name has no extension and is the same as the project name used
for developing the application. uPSD projects for Keil have the extension *.uv2.

Below, the RIDE screens are shown for importing the same blink LED project from Keil and
then loading in DK3400 and using RIDE tools to Debug. You may use this process to import
large codes into the Eval and demonstration version of RIDE for Debugging only.

Figure 30. Keil application path and format

RIDE generates the next screen shown below. Select the correct device.

Figure 31. Core selection

C.3 Running the application on the target hardware
To load and to debug your application using the RLINK-ST dongle, you have first to
configure the "Options | Debug" window as follows:

Figure 32. Debug options

Importing an external application into RIDE AN2396

35/45

Select the Real Machine option, Select in the "Tools" list, RLINK-ST-uPSD. If you then click
on Advanced Options, the following window is presented:

Figure 33. Debugger options screen

This window allows you:

● To specify the CAPS project file (UPJ).

● To specify the JTAG chain description file (if any) when the uPSD part is included into a
multiple-device JTAG chain.

● To execute simple commands such as Erase, Program and Blank-Check.

● To specify the CSIOP address.

C.4 Specifying the CAPS UPJ file information
In the above window, the file "project.upj" is a project you set up using CAPS, wherein all
associated information pertaining to this project resides.

AN2396 Importing an external application into RIDE

 36/45

Merging is the action of creating an OSF file, using an UPJ file generated by CAPS. An OSF
file is a file containing the code to be loaded in all the sectors of the part. This is the only
format supported by the loader.

It is strongly recommended to always keep the "Merge" option checked, unless you plan to
use the debugger as a simple downloader for programming a large number of boards, with a
program that you have already tested and validated.

Note that for merging, you MUST have CAPS properly installed on your computer. Indeed,
RIDE calls some ST utilities (present in the CAPS directory) to merge the PLD and the flash.
These utilities are the following:

UMERGE.EXE

UOBJOSF.EXE

If you have issues, please check that these files exist into your CAPS folder. Make sure that
you give the correct Keil folder path and get the CAPS files from the folder to ensure correct
code loading.

C.5 Executing simple commands such as Erase, Program and
Blank Check
It is recommended first to check that both the RLINK-ST dongle and the target board are
properly connected and powered. The communication can be checked by clicking onto:

1. Connect to Rlink" to check that the USB dongle answers,

2. Connect to target" to check that the uPSD answers to the dongle.

Then, the first command available is Erase.

1. Erase Full Chip allows to erase both the PLD and the FLASH.

2. Erase Flash Sectors allows to erase only the FLASH, keeping intact the contents of
the PLD.

3. Do not Erase makes sense only when the debug session is started and that the only
selected options are executed at the loading time.

Once Erased (which is done by clicking on Erase Now!), a blank check can be performed by
clicking on the Blank-Check button. Then, programming can be done with the exact same
options as Erasing.

Warning: Note that the settings of "Erase" and "Program" are used
when launching a debug session. You need, before clicking
on "OK" to keep the settings required for debugging. In most
cases, it is recommend to set either "Erase Flash Sectors"
and "Program Flash Sectors" if you don't need to update the
PLD (but keep the "Merge" option checked), or "Erase Full
Chip" and "Program Full Chip" when you are still working on
the design of the PLD.

Importing an external application into RIDE AN2396

37/45

C.6 Specifying the CSIOP address
This information is mandatory when the application is larger than 64KB and uses the bank-
switching technique. In this case, the RIDE debugger needs to read the PAGE register to
calculate the current PC. This PAGE register is found within the CSIOP segment (that can
be relocated anywhere in the XDATA segment).

C.7 Debugging the application on the target hardware using
RIDE
Refer to Section 3 of this document and also to RIDE documentation.

C.8 Main features
● Hardware breakpoints: the embedded debug module provides four hardware

breakpoints that can be used either as standard breakpoints in the program, or as data
breakpoints (See RIDE documentation for how to set breakpoints). Note that the RIDE
debugger needs also to set temporary breakpoints to perform most of the HLL
commands (step over/into/ out…). Therefore, it is highly recommended to disable the
breakpoints when they are not used.

Note: When the four breakpoints are already set, the debugger displays a message to report this
situation.

● Execution control (Step into/over/…),

● Data/SFR visualization,

● Trace mode (see next paragraph).

C.9 Trace mode
The on-chip debug system of the Turbo+ uPSD core features a powerful trace mode. To
either enable or disable this mode, choose Debug | Trace | Options and the dialog shown
in Figure 34 appears.

AN2396 Importing an external application into RIDE

 38/45

Figure 34. Trace options window

When enabled, the CPU transfers the destination address at every non-sequential
instruction (e.g. JMP, CALL, RET…) into a JTAG buffer that is read by the RLINK-ST dongle.
In the case where two non-sequential instructions are executed almost consecutively, the
bit-rate on the JTAG communication is not sufficient to read the previous destination
address, and the execution is paused automatically (and released as soon as the JTAG
buffer is empty). Therefore, setting the TRACE mode could slow down the overall execution.

Moreover, the standard breakpoint mechanism is no longer available when the trace mode
is enabled. The breakpoints can be set, but they only trigger an interrupt instead of freezing
the execution.

Table 2 summarizes the restrictions that are present when the trace is enabled.

Table 2. Execution performance with trace ON/OFF

● When the trace mode is set, the breakpoints behave differently. Executing an
instruction with a breakpoint sets the breakpoint interrupt flag. Therefore, the execution
is stopped only one or two instructions later.

● The execution is stopped ONLY if the interrupt is currently enabled. When the execution
is launched, RIDE enables the breakpoint interrupt. However, your program must avoid
disabling the global interrupts or the debug breakpoint interrupt.

Trace OFF Trace ON

Transparency
HW breakpoints stop the
execution (the CPU clock is
disabled)

HW breakpoints trigger an interrupt

EA must be kept set to allow breakpoints

Breakpoint interrupt vector () must be reserved

Real-time Full-speed
Wait states are added (depending on the
program) when non-sequential instructions are
too frequent.

Importing an external application into RIDE AN2396

39/45

C.10 Reliability of the trace/code coverage information
Due to the dynamic mechanism used for tracing, Trace and Code Coverage has some
limitations which needs to be noted. Some known issues are listed below:

1. When several conditional jumps branch to the same address, it's not possible to detect
the effective branch.

2. When an interrupt occurs, the current instruction (when non-sequential) is unknown.
The following instructions are listed in the trace buffer until encountering the next-
nonsequential instruction. But a correction is done in the code coverage to avoid
counting twice these instructions.

AN2396 CAPS reports

 40/45

Appendix D CAPS reports

D.1 Project.rpt
This report is generated by CAPS after the Fit design to silicon step. The report for the LED
BLINK example is listed here.
**
* Project file generated by CAPS Version 1.00 - 4/25/2006 16:52:01
* Project Name : project
* Project Folder : C:\Work\new_upsd_project\CAPS
* Project Description :
* Target Device : uPSD3434E-40U6
* Design Entry Mode : Wizard mode
**
--
System Memory Map
=================
 Main Flash memory will reside in this space at power-up : Program Space Only
 Secondary Flash memory will reside in this space at power-up : Data Space Only

 fs0 = (address >= ^h0000) & (address <= ^h7FFF);
 fs1 = (page == 0) & (address >= ^h8000) & (address <= ^hFFFF);
 fs2 = (page == 1) & (address >= ^h8000) & (address <= ^hFFFF);
 fs3 = (page == 2) & (address >= ^h8000) & (address <= ^hFFFF);
 fs4 = (page == 3) & (address >= ^h8000) & (address <= ^hFFFF);
 fs5 = (page == 4) & (address >= ^h8000) & (address <= ^hFFFF);
 fs6 = (page == 5) & (address >= ^h8000) & (address <= ^hFFFF);
 fs7 = (page == 6) & (address >= ^h8000) & (address <= ^hFFFF);
 csboot0 = (address >= ^h8000) & (address <= ^h9FFF);
 csboot1 = (address >= ^hA000) & (address <= ^hBFFF);
 csboot2 = (address >= ^hC000) & (address <= ^hDFFF);
 csboot3 = (address >= ^hE000) & (address <= ^hFFFF);
 rs0 = (address >= ^h0000) & (address <= ^h1FFF);
 csiop = (address >= ^h7F00) & (address <= ^h7FFF);

 Assigned Firmware Files

 Mapping mode : Direct

 File File
 Memory BlockStart AddressEnd AddressFirmware File

 fs0 0000 7FFF
C:\Work\new_upsd_project\NEW_UPSD_PROJECT.HEX
 fs1 8000 FFFF
 fs2 8000 FFFF
 fs3 8000 FFFF
 fs4 8000 FFFF
 fs5 8000 FFFF
 fs6 8000 FFFF
 fs7 8000 FFFF
 csboot08000 9FFF
 csboot1A000 BFFF
 csboot2C000 DFFF
 csboot3E000 FFFF
--
External Chip-Select Equations
==============================

CAPS reports AN2396

41/45

 N/A
--
Additional Setting
==================

 Device Security Protection : Off

 Sector Protection :
 Main Flash Protection Status
 ---------- -----------------
 Sector 0 unprotected
 Sector 1 unprotected
 Sector 2 unprotected
 Sector 3 unprotected
 Sector 4 unprotected
 Sector 5 unprotected
 Sector 6 unprotected
 Sector 7 unprotected

 2nd Flash Protection Status
 ---------- -----------------
 Sector 0 unprotected
 Sector 1 unprotected
 Sector 2 unprotected
 Sector 3 unprotected
--
I/O Pin Assignment
==================
 Pin Function Signal Name Pin Number
 ------------ ----------- ----------
 ALE output ale 4
 Dedicated JTAG - TDO tdo 6
 Dedicated JTAG - TDI tdi 7
 JTAG debug pin JTAG_debug_pin 8
 USB+ bus USB_plus 11
 USB- bus USB_minus 14
 Dedicated JTAG - TCK tck 17
 Dedicated JTAG - TMS tms 20
 Data/Address line a0 36
 Data/Address line a1 37
 Data/Address line a2 38
 Data/Address line a3 39
 Data/Address line a4 41
 Data/Address line a5 43
 Data/Address line a6 45
 Data/Address line a7 47
 Xtal1 Xtal1 48
 Xtal2 Xtal2 49
 Bus control output _wr 62
 Bus control output _psen 63
 Bus control output _rd 65
 Reset In _Reset_In 68
 VREF input VREF 70

--
Fitting Result
==============

 | |

AN2396 CAPS reports

 42/45

 |1] pd2 adio4 [41| Address
Bus a4/Data Port d4, ad4
 |2] p3_3 p3_5 [42|
 |3] pd1 adio5 [43| Address
Bus a5/Data Port d5, ad5
 ale |4] pd0 p3_6 [44|
 |5] pc7 adio6 [45| Address
Bus a6/Data Port d6, ad6
 tdo, TDO |6] pc6/TDO p3_7 [46|
 tdi, TDI |7] pc5/TDI adio7 [47| Address
Bus a7/Data Port d7, ad7
 JTAG_debug_pin |8] debug Xtal1 [48| Xtal1
 |9] pc4/TERR Xtal2 [49| Xtal2
 |10] 3.3V VCC 5.0V VCC [50|
 USB_plus |11] USBp N/C [51|
 |12] 5.0V VCC p1_0 [52|
 |13] GND N/C [53|
 USB_minus |14] USBm p1_1 [54|
 |15] pc3/TSTAT N/C [55|
 |16] pc2 p1_2 [56|
 tck, TCK |17] pc1/TCK N/C [57|
 |18] p4_7 p1_3 [58|
 |19] p4_6 p1_4 [59|
 tms, TMS |20] pc0/TMS p1_5 [60|
 |21] pa7 p1_6 [61|
 |22] pa6 cntl0 [62| _wr
 |23] p4_5 cntl2 [63| _psen
 |24] pa5 p1_7 [64|
 |25] p4_4 cntl1 [65| _rd
 |26] pa4 pb7 [66|
 |27] p4_3 pb6 [67|
 |28] pa3 Reset_In [68| _Reset_In
 |29] GND GND [69|
 |30] p4_2 Vref [70| VREF
 |31] p4_1 pb5 [71|
 |32] pa2 AVcc [72|
 |33] p4_0 pb4 [73|
 |34] pa1 pb3 [74|
 |35] pa0 p3_0 [75|
 ad0, Address Bus a0/Data Port d0 |36] adio0 pb2 [76|
 ad1, Address Bus a1/Data Port d1 |37] adio1 p3_1 [77|
 ad2, Address Bus a2/Data Port d2 |38] adio2 pb1 [78|
 ad3, Address Bus a3/Data Port d3 |39] adio3 p3_2 [79|
 |40] p3_4 pb0 [80|
 | |

 ===== Resource Usage Summary =====

Total Product Terms Used: 15

Device Resources used / total
--
Port A: (pins 35 34 32 28 26 24 22 21)
I/O Pins : 0 / 8
 GP I/O or Address Out : 0
 Peripheral I/O : 0
 Logic Inputs : 0
 Address Latch Inputs : 0
 PT Dependent Latch Inputs : 0
 PT Dependent Register Inputs : 0

CAPS reports AN2396

43/45

 Combinatorial Outputs : 0
 Registered Outputs : 0
Other Information
 Microcells : 0 / 8
 Micro-Cells AB :
 Buried Microcells : 0
 Output Microcells : 0
 Product Terms : 0 / 24
 Control Product Terms : 0 / 34

Port B: (pins 80 78 76 74 73 71 67 66)
I/O Pins : 0 / 8
 GP I/O or Address Out : 0
 Logic Inputs : 0
 Address Latch Inputs : 0
 PT Dependent Latch Inputs : 0
 PT Dependent Register Inputs : 0
 Combinatorial Outputs : 0
 Registered Outputs : 0
Other Information
 Microcells : 0 / 8
 Micro-Cells AB :
 Buried Microcells : 0
 Output Microcells : 0
 Micro-Cells BC :
 Buried Microcells : 0
 Output Microcells : 0
 Product Terms : 0 / 24
 Control Product Terms : 0 / 34

Port C: (pins 20 17 16 15 9 7 6 5)
I/O Pins : 4 / 8
 GP I/O or Address Out : 0
 Logic Inputs : 0
 Address Latch Inputs : 0
 PT Dependent Latch Inputs : 0
 PT Dependent Register Inputs : 0
 JTAG signals : 4
 Standby Voltage Input : 0
 Rdy/Bsy signal : 0
 Standby On Indicator : 0
 Combinatorial Outputs : 0
 Registered Outputs : 0
Other Information
 Microcells : 0 / 8
 Micro-Cells BC :
 Buried Microcells : 0
 Output Microcells : 0
 Product Terms : 0 / 32
 Control Product Terms : 0 / 34

Port D: (pins 4 3 1)
I/O Pins : 1 / 3
 GP I/O or Address Out : 0
 Logic Inputs : 0
 Chip-Select Input : 0
 Clock Input : 0
 Control Signal Input : 1
 Fast Decoding Outputs : 0
Other Information

AN2396 CAPS reports

 44/45

 Product Terms : 0 / 3
 Control Product Terms : 0 / 3

 ==== OMC Resource Assignment ====

 Resources PT User
 Used Allocation Name

Micro-Cell AB :

Micro-Cell BC :

External Chip Select :

 ========= Equations =========

DPLD EQUATIONS :
=======================
 fs0 = !pdn & !a15;

 fs1 = !pdn & !pgr2 & !pgr1 & !pgr0 & a15;

 fs2 = !pdn & !pgr2 & !pgr1 & pgr0 & a15;

 fs3 = !pdn & !pgr2 & pgr1 & !pgr0 & a15;

 fs4 = !pdn & !pgr2 & pgr1 & pgr0 & a15;

 fs5 = !pdn & pgr2 & !pgr1 & !pgr0 & a15;

 fs6 = !pdn & pgr2 & !pgr1 & pgr0 & a15;

 fs7 = !pdn & pgr2 & pgr1 & !pgr0 & a15;

 csboot0 = !pdn & a15 & !a14 & !a13;

 csboot1 = !pdn & a15 & !a14 & a13;

 csboot2 = !pdn & a15 & a14 & !a13;

 csboot3 = !pdn & a15 & a14 & a13;

 csiop = !pdn & !a15 & a14 & a13 & a12 & a11 & a10 & a9 & a8;

 rs0 = !pdn & !a15 & !a14 & !a13;

 jtagsel = !_reset;

PORTA EQUATIONS :
=======================
PORTB EQUATIONS :
=======================
PORTC EQUATIONS :
=======================
PORTD EQUATIONS :
=======================
 --- End ---

Revision history AN2396

45/45

7 Revision history

Table 3. Document revision history

Date Revision Changes

29-Mar-2007 1 Initial release.

AN2396

 46/46

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 uPSD3400 family
	1.1 uPSD3400 family overview

	2 DK3400 development kit
	2.1 Overview
	2.2 Contents of DK3400 kit

	3 Project creation and sample design development process
	3.1 Key design development steps
	3.2 Requirements
	3.3 Software installation and connections
	3.3.1 Software installation
	3.3.2 Physical connections

	4 Using RIDE and RLINK-ST for creating a new project
	5 Uploading and debugging with RIDE
	5.1 Purpose
	5.2 Upload project and program Flash memory
	5.3 Single-step and source-level debugging
	5.4 Device-specific formatted displays
	5.5 Breakpoints
	5.6 Symbolic debugging and variables watch
	5.7 Code iteration
	5.8 Instruction tracing, near real-time performance

	6 Conclusion
	Appendix A DK3400 jumpers selection and defaults
	Appendix B Interface display windows and code view
	Appendix C Importing an external application into RIDE
	C.1 Overview
	C.2 Importing a Keil project into RIDE for debugging
	C.3 Running the application on the target hardware
	C.4 Specifying the CAPS UPJ file information
	C.5 Executing simple commands such as Erase, Program and Blank Check
	C.6 Specifying the CSIOP address
	C.7 Debugging the application on the target hardware using RIDE
	C.8 Main features
	C.9 Trace mode
	C.10 Reliability of the trace/code coverage information

	Appendix D CAPS reports
	D.1 Project.rpt

	7 Revision history

