£— AN2396
YI Application note

uPSD3400 series design guide for DK3400 using RIDE and CAPS

March 2007

Introduction

This application note provides guidelines for creating and developing applications for the
Turbo+ uPSD Family of devices and shows a number of key steps to follow for creating a
design based on the DK3400 Development Kit. The Kit includes code examples discussed
in this document.

Here, the basic flow is provided for creating a project using the Raisonance Integrated
Development Environment (RIDE) tools. A simple application included in the Kit is
demonstrated using RIDE and shows the key features of RIDE. The key steps in designing
an application are enumerated in this document. CAPS, a key tool in using Turbo+ uPSD, is
explained in detail by illustrating the design used for the demonstration section. CAPS
supports ST's FlashLINK and Raisonance's JTAG programmer (RLINK-ST).

As shown in Figure 1, the uPSD3400 family is a series of 8051-class microcontrollers
(MCUs) containing a new fast Turbo+ 8032 core with a large dual-bank flash memory, a
large SRAM, many peripherals, programmable logic, and JTAG In-System Programming
(ISP). Please see the uPSD on-line resources page for latest documentation and other
referenced User Guides and Application Notes at the following URL: http.//www.st.com/mcu.

Rev 1 1/146

www.st.com

http://www.st.com

AN2396

1 UPSD3400familycciiiiiii it it 3
1.1 uPSD3400 family overview 3
2 DK3400 development kit i e 5
2.1 OV BW .o 5
2.2 Contents of DK3400 Kit e 7
3 Project creation and sample design development process 8
3.1 Key design developmentsteps i 8
3.2 Requirements 9
3.3 Software installation and connections 9
4 Using RIDE and RLINK-ST for creating a new project 11
5 Uploading and debugging withRIDE 20
5.1 PUIPOSE .. e 20
5.2 Upload project and program Flashmemory 20
5.3 Single-step and source-level debugging 22
5.4 Device-specific formatted displays 22
5.5 Breakpoints 23
5.6 Symbolic debugging and variableswatch 23
5.7 Codeiteration 24
5.8 Instruction tracing, near real-time performance 24
6 CoNClIUSION it i e e 27
Appendix A DK3400 jumpers selectionanddefaults 28
Appendix B Interface display windows and codeview.................... 30
Appendix C Importing an external applicationintoRIDE.................. 33
C1 OVBIVIBW . . oot e 33
C.2 Importing a Keil project into RIDE for debugging 33
C.3 Running the application on the target hardware 34
C.4 Specifying the CAPS UPJ file information. 35
C.5 Executing simple commands such as Erase, Program and Blank Check. 36
1/46 1S7]

AN2396

C.6 Specifyingthe CSIOP address, 37
C.7 Debugging the application on the target hardware using RIDE 37
C.8 Mainfeatures. 37
C.O9 Tracemode e e 37
C.10 Reliability of the trace/code coverage information. 39
Appendix D CAPS Ireportsciiit ittt e et iana e 40
D.1 Project.rpt e 40
7 Revision history it i i 45
1S71 2/46

uPSD3400 family AN2396

1.1

3/45

uPSD3400 family

Figure 1. General block diagram of the uPSD3400

(3) 16-bit pra | INST[]
| Timer/ Turbo &
Counters 8032 BC 1st Flash Memory:
) MCU DATA] 128K or 256K Bytes
—| External Core @ Programmable
Interrupts <:> Decode and
Page Logic 2nd Flash Memory:
P3.0:7 Q::D_ 2c <:> 32K Bytes
SRAM:
4K or 8K Bytes
7 UARTO <:>
(8) GPIO, Port A .
(80-pin only) PAO7
| (8) GPIO, Port 3 <:> General
Purpose (8) GPIO, Port B PBO:7
P1.0:7 8) GPIO, Port 1 [} <:> Programmable
.0: , Pol i
@ AV:>) Logic, (2) GPIO, Port D PD1:2
o 16 Macrocells
=
(8) 10-bit ADC <:> ¢ (4) GPIO, Port C
[
> :[> PCO:7
Optional IrDA <:> <:>
Encoder/Decoder UART1 JTAG DEBUG and ISP
SPI <:> <:> 8032 Address/Data/Control Bus MCU
(80-pin device only) Bus
16-bit PCA <:> <:> Supervisor:
(6) PWM, CAPCOM, TIMER Watchdog and Low-Voltage Reset
P4.0:7 (8) GPIO, Port 4 K= K= Veo Voo GND, Reset, Crystal In _<::|' Dedicated
USB+, USB v2.0, 10 <:>
USB- Full Speed FIFOs

uPSD3400 family overview

The uPSD3400 family is a Turbo+ 4-clock per instruction 8032 MCU capable of being
clocked up to 40MHz at 3.3V or 5.0V at industrial operating temperature range. Currently
there are sixteen family members that contain different combinations of flash memory size,
operating voltage, and packaging (please see the full datasheet). In this Application Note,
uPSD3434E-40U6 is used as the example. The term "Turbo+ uPSD" is used throughout the
remainder of the document for brevity (see the Turbo+ uPSD3434 block diagram shown in
Figure 2).

The Turbo+ uPSD family has a unique memory structure that includes two independent
flash memory arrays (Main and Secondary) capable of read-while-write operations. This is
ideal for In-Application Programming (IAP) because the 8032 can fetch instructions from
one flash array while erasing/writing the other array. Individual sectors of each flash memory
array can be mapped to virtually any 8032 address by the Decode PLD (DPLD) for total
flexibility. The Turbo+ uPSD also contains a Page Register whose outputs feed the inputs of
the DPLD. This allows paging (or banking) of flash memory to break the 8032's inherent limit
of 64 Kbyte addresses. The 8032 may write to the Page Register at runtime.

573

AN2396

uPSD3400 family

For more complex designs, the Turbo+ uPSD is capable of placing each of the flash memory
arrays (Main or Secondary) into 8032 code address space, into 8032 data space, or into
both code and data space on the fly. Mapping flexibility like this supports IAP because either
flash array may be temporarily placed into data space while the firmware is updated, then
moved back into code space when finished, all under control of the 8032.

Many peripherals are available in this Turbo+ uPSD, including: two UART channels, one
IrDA channel, one SPI channel, one I12C channel, six PWM channels, eight 10-bit ADC
channels, nine Timer/Counters, a watchdog timer, low-VCC detection with reset-out, a
general purpose PLD, many GPIO and a USB-JTAG Debugger.

All of the peripherals on Ports 1, 3, and 4 are controlled using 8032 Special Function
Registers (SFRs).

I/0O Signals on ports A, B, C, and D are controlled one of two ways:

1. by a block of xdata memory mapped control registers, whose base address (csiop) can
be mapped anywhere using the DPLD; and

2. by the programmable logic

In addition, Turbo+ uPSD offers a Cross-Bar I/O, which means that Peripheral functions on
Port 1 are also available on Port 4 (cross-bar switch), providing more flexibility. There is no
need to sacrifice one peripheral function when two functions are available on a single pin,
just use the other port.

The JTAG channel on Port C is used for in-system programming (ISP) and debug of the

8032 MCU core. ISP is ideal for rapid code iterations during firmware development and for
Just-In-Time inventory management during manufacturing. JTAG ISP eliminates the need
for sockets and pre-programmed devices, and requires no participation of the 8032. JTAG
debug eliminates the need for expensive and intrusive hardware In-Circuit Emulator (ICE).

Figure 2. uPSD3434 block diagram

Port 3- UARTO,|__|) Port4-pcA, || Pota] | usB
Intr, Timers Port 1 - Timer, ADC, SPI PWM, UART1 IZC pins
T T MCU Module
Port3 | [_Porti 1
Turbo 8032 Core VCC Fli
CIXTAL . 10-bit PCA gc ||usBand 33V
lock Unit Dual 3 Timer / SPI PWM ’ Trans-
|_UARTs | |__Counters | ADC Counters Unit ceiver
Interrupt 256 Byte SRAM |
! A \
) < 8032 Internal_Bus \| Bt
Dedicated Memory \] 4 Bus
Interface Prefetch N
’ Reset Input
Branch Cache LVD P Reset
JTAG 1 | ~Réset Logic R
8-Bit/16-Bit DEBUG perma C gvm
Die-to-Die Bus
_____ - e e e e . e]
PSD
Enhanced MCU Interface| Reset
[7sBraeregser] Main Fiash | | Secondary SRAM PSD Module
Decode PLD
< PSD Internal Bus D
\ ’ ‘ v
Vpp Pins
JTAG ISP CPLD - 16 MACROCELLS 3.3V or 5V
uPSD3434 JTi‘é” e g PotABCPLD || PortD
GPI‘Z‘)” /0 and GPIO GPIO

4/45

DK3400 development kit AN2396

2

2.1

5/45

DK3400 development kit

Overview

A picture of the DK3400 board is shown in Figure 3. A list of jumpers JPO - JP12 and their
functions can be found on the DK3400 board's silk screen. For more detailed information on
these jumpers, please refer to Appendix A: DK3400 jumpers selection and defaults or the
DK3400 User's Manual (UM0131, Turbo Plus uPSD DK3400 Development Kit). Board layout
and schematics are also available in the User’s Manual. Connectors CON1, CON2, and
CONB3 provide easy access to all Turbo+ uPSD signals for expansion or testing. One UART
is accessible on the connector marked CN6. The FlashLINK/ RLINK-ST/ ULINK JTAG ISP
cable connects at the connector, JTAG. The DK3400 includes a graphical LCD, real-time
clock, serial EEPROM, IrDA transceiver, serial flash, NAND flash, and an embedded RLINK.

The sample design example code used for this application note is a RIDE based project
which blinks the daughter board LED. The purpose of using this simple design project is to
illustrate and demonstrate the use of Raisonance RIDE software and tools with the RLINK-
ST adapter on a uPSD development board. The RIDE tools provide many features for
editing, compiling, programming, and debugging a uPSD3400 MCU Series from
STMicroelectronics. In the following sections, some of the main features are described to
give you a feel for the simplicity and capabilities of the tools used for this sample design. A
brief overview to the methods involved in importing applications developed with the Keil
compiler and debugging on DK3400 using RIDE Debugger is also provided in the
appendices of this document.

J

AN2396 DK3400 development kit

Figure 3. DK3400 motherboard

-
-
- o
- .
e
.
B
. A
am
A
= 4
B
e
.
-

Figure 4. DK3400 daughter-board

J

6/45

DK3400 development kit AN2396

2.2

7/45

Contents of DK3400 kit

STMicroelectronics provides a DK3400 Development Kit which is shipped with the following

contents:

® uPSD DK3400 daughter board- with a uPSD3434E-40U6 MCU

® Motherboard with Enhanced Graphic LCD

® RLINK-ST embedded on the DK3400 daughter board, a USB-based JTAG adapter
from Raisonance for debugging with Raisonance Integrated Development Environment
(RIDE)

® ULINK, a USB-based JTAG adapter from Keil for debugging with Keil's uVision Tools

® USB Cables and RS232 Cables

® 110/220V Universal Power Supply Adapter

® DK3400 CD from STMicroelectronics contains:
— STMicroelectronics Datasheets, Tools, Software, uPSD3400 sample projects
— User Manual and Application Notes
— Keil uVision3 Software and support Tools (Demo Version) for uPSD - (Limited to 2

Kbytes code size)

® RKit Development Suite from Raisonance contains:
— Trial version of RIDE C-Compiler and Assembler (limited to 4 Kbytes code size)
— RIDE Debugger Utility (no code size limit)

® ST's Configuration and Programming Software (CAPS) for configuring the

Programmable Logic inside the uPSD3400

J

AN2396

Project creation and sample design development process

3

3.1

Project creation and sample design development
process

The sections below introduced the process of using RIDE for creating application Code
using the Development board and the associated tools supplied with the Kit. The key steps
for creating a new project with RIDE are described. This is followed by section that uses the
RIDE environment and DK3400 board to demonstrate the sample design. The main features
of RIDE and its usage are then shown by loading and debugging the sample application.

The Configuration and Programming Software (CAPS) is a unique tool required in project
development for the uPSD3400. It is used to design and configure the programmable logic
in the uPSD3400 as well as specifying the content that is programmed into the various Flash
sectors. It's covered in detail in a separate application note, but the sections that follow
explain how to use it along with RIDE for project setup.

Key design development steps

Design and development of applications using Turbo+ uPSD Family of products require use
of both Development Boards from STMicroelectronics or hardware developed by the user in
conjunction with Software and Tools that support uPSD Devices. It is important to follow
some simple steps and guidelines for successful implementation of the project.
STMicroelectronics provides full support with Hardware Development Kits and Software
Tools, utilities and support through the Support Website. The key design development steps
for using RIDE tools are as follows:

® Identify and select the right development Kits and Tools

Design a Block Diagram of your Application in relation to the Turbo+ uPSD
Design the Logic and connections to be used for the PLD available in uPSD
Create Memory Maps and inputs for programming devices using CAPS tools

Develop your application Code for the chosen Compiler (the Raisonance 8051 C
Compiler is used here)

Verify the project needs and match with the device used
Compile and create the firmware and applications Code
Enter data from the Block diagram and memory maps using CAPS Design flow

Merge hex files(s) generated by RIDE's linker and the PLD programming info (hex
format) to create a combined file with the name .OBJ.

Upload code and data to the development board using one of the supported tool paths
(e.g., RLINK-ST / Flashlink).)

® Debug, make changes, reprogram and finalize the project
® Test and qualify the design

This application note provides guidelines for design by showing the key steps as mentioned
above. The document has been divided into sections that cover various areas. It is expected
that the reader has previous experience of programming and applications development
including the use of compilers.

In previous sections, you were introduced to the Turbo+ uPSD. The family basic block
diagram and features were introduced, followed by an overview of the DK3400 Development
Kit (Board). The sections that follow cover the installation of the kit and project creation. A

8/45

Project creation and sample design development process AN2396

3.2

Note:

3.3

3.3.1

3.3.2

9/45

simple example is used for demonstration and explained in detail to provide an
understanding of the RIDE tools and the DK3400 Development Kit. It is hoped that with this
information and other supporting documents available from STMicroelectronics, you can
design and develop your application/project using Turbo+ uPSD.

Requirements

In order to follow the examples and processes described here you will need:
® A Windows host system with USB support (Win98SE, Win2000, ME, XP);
® A DK3400 Development Kit.

The DK3400 Development Kit, as described in Section 2.2, includes all hardware and
software needed for the examples covered here.

The examples here assume that CAPS has been installed and is used to create the
hardware configuration files. A current version of CAPS is included in the development kit,
along with a "quickstart" sheet for its installation and use. For more information on how to
use all the features of RIDE, see Ride.pdf (available in the RIDE installation directory
Ride\Doc or by selecting Help | PDF | Ride General | Ride in the RIDE program menu).

Software installation and connections

Software installation

® Insert the DK3400 CD in the drive.

® The auto-run brings up the home page or the main menu page. Select Install ST and
3rd Party Tools.

First install CAPS, taking all the default choices.

Next install RIDE, taking all the default choices.

Go back to the home page.

Select Copy Device Drivers and Demo Code.

Unzip the files to the folder of choice on the hard drive.

Physical connections

There are several ways to establish a communications path between the host PC and the
uPSD device for uploading and debugging applications. All of them ultimately make use of
the JTAG port interface on the uPSD3400 package, but they use different means to access
that port.

One method supported by the Raisonance tools employs a small bridge device, referred to
elsewhere as the "RLINK dongle". On one side of the bridge device is a USB device socket,
for connecting to the host PC by a standard USB cable. On the other side is a short ribbon
cable that plugs in to a JTAG socket on the development board. This method is appropriate
when using the RIDE tools to upload application code and data to production boards with
minimal provision for external interfacing.

For the DK3400 development board, use of the RLINK dongle is possible but not required.
The board includes a USB device socket and support circuits that emulate the function of
the RLINK dongle. That enables the DK3400 board to be linked directly to the host PC via a

573

AN2396

Project creation and sample design development process

standard USB cable. That is the easiest method of connection, and is assumed in the

remainder of this application note. The next steps for brining up the development

environment are then as follows:

® Connect DK3400 to your PC/Laptop using the supplied USB cable and let the USB
driver install on Windows.

® Make sure that the board is powered up using the Universal Adapter supplied with the
kit. The LCD displays various text messages to indicate the board is functioning.

® Make sure that the Jumpers are set correctly. (Refer to Appendix A: DK3400 jumpers
selection and defaults at the end of the document for Jumper settings).

10/45

Using RIDE and RLINK-ST for creating a new project AN2396

4 Using RIDE and RLINK-ST for creating a new project

In this section the key steps for using RIDE to create a new project are shown.

1. As shown in the section Section 3.1, there are a number of recommended steps
involved in creating a new uPSD project using the RIDE 8051 software development
tool from Raisonance. Please also refer to the general Users Guide for RIDE (included
on the RIDE CD).

2. With RIDE already running, select New from the Project pulldown menu and enter the
project name, path, and family as shown below (Figure 5) In this example, the name
"New_uPSD_project" is used. The directory path is C:\WORK\new_upsd_project. The
directory need not be an existing one; when necessary, RIDE creates the required
directories if they don't already exist.

Figure 5. Entering new project name and directory

Project [g|

Enter the name and the location of the new project.
Application Mame:

|New_uF'S D_project

Diirectony:

| . \WORKAnew _upsd projects
Target family:

| 80Cs1

Type of application:

d Wl

|Application

LCancel J il | Mext » i Help

J

11/45

AN2396

Using RIDE and RLINK-ST for creating a new project

3.

Click Next and the uPSD device selection dialog appears (Figure 6). Select the correct
uPSD device from within the ST folder. (Here, uPSD3434E-40 is selected as these are

used in the ST Development board’s DK3400)

Figure 6. Turbo+ uPSD device selection

Target

Select your project’s target options:

DEViCE_] Properties 1

% UPSD33640-40 o Fast B032 MCL with Programmable
5 — |Logic; Full Speed USE; 256KE primary
BESD DA Hash; 32kB secondary flash; BkSRAM _
uPSD3422E-40 rnich zet of peripherals (5]
uPSD3422EY-40

&
&
&
uPSD3433E-40 ‘Nat simulated peripherals:
Mot simulated peripheral:
& UPSDI433EV40 Drly standard peripherals are simulated
& I AE-40
& UPSD3434EY-40 | Datashests

Lancel ‘ < Previous | [dext | Finizh ‘ Help ‘

Click Finish and RIDE creates the new project copying the needed uPSD files into your
project directory. RIDE also automatically adds the "startup.a51" and "uPSD_Init.c"
files to your RIDE project folder. These files comprise the firmware that is executed by

the uPSD3400 MCU upon a power-up or a reset event. It also creates a CAPS

directory and copy a default project file into that directory.

This is reflected in the RIDE environment as shown in Figure 7. The created files and

start up files are shown in the Project Window.

Figure 7. RIDE environment

2@ RIDE - c:\WORK\new._upsd_project\Mew uPSD_project.prj
Elle Edit Search Project Tool Yiew Debug Options RideScript Window Help

e mEe | v g |

Froject IDebuggerI Documentatian |
)

B E CHWORK\NEW _UPSD_PROJECT\MEMWY_URPSD_PE
B startup.aS1 [MAS1] code=0 const=0 xdata
B upsd_init.c [RCS1] code=0 const=0 xdata=

; Copyright (c) Raisonance 3.4, 1939 - 2003
: This is the 'C' language "STARTUP” rourine far RCS1

File name: STARTUFR.ASL

Purposze:

Hoope:

To provide the initial starting code £
power-up to the initial execution of tl

This file contains all the code and ing
to accomplish "Purpose™. It i3 applicio

*

3

|~

I e J‘ upsd_init.c ; startup.adl

Make | Debug | Grep Soript |

B Loading script File c:\RIDEY|scripts)project, wsc
-l Loading script file c:\RIDEYscriptstS 1S Tiupsd3400, wsc

12/45

Using RIDE and RLINK-ST for creating a new project AN2396

13/45

RIDE generates a default CAPS project by creating a folder and the CAPS project file.
The project file is named project.upj and resides in the folder named "CAPS". This new
folder is placed in your RIDE project folder. In this example, the path to the generated
CAPS project is C:\Work\new_upsd_project\CAPS. Certain settings in RIDE depend on
this structure so do not change the name of the generated CAPS project or its path.
This project is examined later in this document.

At this point, we are ready to start building the source code for the application. If we
were building a new application from scratch, we could use RIDE's File | New
command to open a new edit window, and enter our code there. Or, we could use our
favorite code editing program to create the files outside of RIDE, and move them into
the RIDE project directory. It doesn't really matter how the files are created. In this
case, however, we are just going to copy three existing files from the RIDE installation
directory to our new project directory. The source path for the copies is:
C:\RIDE\EXAMPLES\8051\DERIVATIVES\ST_UPSD\DK3400\UPSD3400\LED_BLINK

The three files are led_blink.c, upsd3400_timer.c, and upsd3400_timer.h. The first C
file contains our main program, and the second contains a support function that the
main program uses. Copy the three files into the folder C:\work\new_upsd_project.

Next we need to inform RIDE that our project depends on the files that we just copied
into our project folder. Right click on the root target in the project window (i.e., on
C:\WORK\WNEW_UPSD_PROJECT\NEW_UPSD_PROJECT.AOF) and select the
Add node Source/Application command (Figure 8). This brings up a standard file
browser sub-window in the project directory (Figure 9). Select upsd3400_timer.c and
click Open. Repeat for led_blink.c. The result is as shown in Figure 10.

Figure 8. Adding source files

s RIDE - c:\WORK\new_upsd_project\New_uPSD_project.prj |Z| |E| rz|

|rea e ||

File Edit Search Project Tool Wiew Debug Options RideScript Window Help
IO%OI IO%OI &’ |
@, c:¥

Fraject] Debugger] Documentation]

\workinew_upsd_projectistartup.a5i

Debug StarkfStop

B upsd_inic.cl Mode properties 3 =
Target options ne for RCS1

Tool Options »
Debug Options

starting code for the 5051 from

Link.
execution of the main() routine.

Make

Build the code and information recquired

Wiew Listing . It is appi:l.EE]_Jie _t,o ail mfa_mory
|

Add Group

Add node SourcefApplication Alt+Ins
Delete File Ale+Del

| L
f startup.abl |

Move node 3

|

Make] Debug] Gr

B Loading scripk file c:\RIDEY scripts\project. wsc
#-W Loading script file c\RIDE\scripts\S 15T upsd3400. wsc

J

AN2396 Using RIDE and RLINK-ST for creating a new project

Figure 9. Add File browser sub-window

Add File

Lok ir: |@ new_upsd_project j |‘=_°F v
CcaPs @ upsd3400_hardware

[C3)PsDsoft [Z] upsdz400_timer

E’] led_blink: E’] upsd3400_timer

startup.asi E’I upsd_inik

[Z] upsd3400

[Z] upsda4o0

File name: [upsd3400_timed
Files of twpe: |SDurce[“.c;".h;“.aS1;".351;".inc;“.$rc] ﬂ Cancel

Figure 10. RIDE environment after adding source files

s RIDE - c:\WORK\new_upsd_project\New_uPSD_project. prj

File Edit Search Project Tool Wiew Debug Options RideScript Window Help
B By 53 ABE
|eeaEm® | v e |
x e
Pfoiect]Debugger] Documentation] (WO 2 psd proie DS d o
i
= CYWORKINEW _PSD_PROJECTINEW IPSD_FT work\new_upsd_proje artup.a L
B led_blink.c [RC51] code=0 const=0 xdata=!
B upsd3400_timer.c [RC51] code=0 const=0: bworkinew psd_proje psd3400_time]
B startup.aS1 [MAS1] code=0 const=0 xdata: =
B upsd_init.c [RCS51] code=0 const=0 xdata= 0 e psd_proje ed_b =
l/w
led_blink.c
Version:
February 22, 2005 - Wersion 1.0 - Initial release.
<
< Dependencies:
< upsd3400_timer.c - timer driwver. B
A
<) &
< | > — : ’
- =" | upsd_init.c JIr startup. abl JI[u|:ust:|3400_t|mer.c:J Ied_bllnk.c:,l'
i
Make] Diebug] Grep Seript]
i
B Loading script file c:\RIDEY|scripksiproject.wsc
#-[l Loading script file c:\RIDEYscriptsiS11STiupsd3400, wse
x
1:0

Note that it is not necessary to add the .hfile upsd3400.h. The tree displayed in RIDE's
Project window is actually a tree of make targets and dependencies. When it does a

program build after any new source files have been added, RIDE first runs the compiler
in a mode that identifies any file dependencies from #include statements. The included
files are then added automatically to the project dependency tree. If an included file is

subsequently changed, RIDE then knows that any dependent source file must be
recompiled.

It is also worth noting that RIDE is not actually fussy about where the source files
reside. The default location is in the project directory, and it was convenient to use that
for this example. However, the browser sub-window opened by Add New Source/

14/45

Using RIDE and RLINK-ST for creating a new project AN2396

15/45

Application command supports navigation to other locations. The full path name is
added to RIDE's project database.

With all source files added, we are now ready to do the initial project build. In the
Project pull-down menu, select Build All. RIDE runs its make utility, reporting status in
the make sub-window at the bottom of its main window (Figure 11). Note that the .c
files in the Project window are now prefixed with '+' boxes. Clicking on one of these
expands the dependency tree to show the .h and .inc files that were found during the
build.

Figure 11. Result after Build All

|

i RIDE - c:\WORK\new_upsd| project\New_uPSD_project.prj
File Edit Search Project Tool Wiew Debug Options RideScript Window Help

EakYact-Al 302 g |

Fraject] Debugger] Documentation]

#--B upsd3400_timer.c [RCS1] code=177 const=

B startup.s51 [MASL] code=126 const=0 xda @_c:\workinew_upsd_projecilled. blink.c
#--B upsd_init.c [RCS1] code=7 const=0 xdata=

led_blink.c

Version:
Fehruary 22, 2005 - Wersion 1.0 - Initial release.

Dependencies:
upsd3400_timer.c - timer driwver.

TET hildwmbdne avamnla

< |

2 J| upzd_init.c JIr startup. ab1 JI[u|:ust:|3400_timer.c:J Iet:l_blink.c:,lr

Make]Debug] Grep] Script]

#-l Running RCS1 on ciworkinew_upsd_projectiupsd3400_timer ., c

A~
B Running MAST on c:iworkinew_upsd_project!startup,asl »
B Running RCS1 on c:workinew_upsd_projectiupsd_init.c
#-l Running L¥S1 on c:yworkinew_upsd_projectinew_upsd_project. aof
#- Running the tool c:\RIDE\BiIN\ohS1v32. dll [HEX] on c:\workinew_upsd_projectinew_upsd_project, A0F B
x >
1:0

Although the application source files have now all been compiled, and initial versions of
the object and Intel Hex files have been built, the project is not yet ready to upload and
test on the DK3400 board. The hardware configuration files are incomplete. These are
the low-level files that program the PLD chip selects for the Flash memory sectors,
SRAM, and CSIOP registers, the programmable logic, and also specify what hex files
are programmed into each of the Flash sectors. The CAPS tool is used to create these
files and merge them into the object file for uploading. So the next step is to run CAPS.

J

AN2396

Using RIDE and RLINK-ST for creating a new project

8.

Bring up CAPS, click the Open icon on the menu bar, and browse to the CAPS project
file that RIDE created in step 4. Select that file in the browser sub-window and click

open. The result is shown in Figure 12 below.

Figure 12. CAPS project opened

Open Project

Project Mame : |pr0iect

Description :

Project Folder : |EI:\work\new_upsd_proiect\mPS Browse ... |

Target Devices | Datashest | UPSDE434EB40UE
-+ j ~ D evice Overview

Fast §-bit Turbo 8032 MCU operating up to 40 MHz

Dual Flazh Memories w) Mem Management

2586 KB Main Flash Memory and 32 KB Secondary Flash Memary
G KB SRAM

GPLD - 16 macrocels

JTAG Debug and In-System Programming (15P)
Communication Interfaces

- USE 2.0 Full Speed {12#bps)

- 12C Master fSlave bus controller

+
+
+

|
YooDo

* 4 4 4 &

| e[|

] ‘:“| v Convert to Advanced ... | Open Wizard... |

Cancel |

Click on the Open Wizard button in the lower right portion of the above window to bring
up the CAPS project wizard. The resulting window is shown below. It is for the memory
mapping step of the configuration process. CAPS is preprogrammed with seven

standard memory maps. Map 7, the default shown here, is suitable for the example

used in this note. Click Next to accept it.

Figure 13. CAPS Wizard memory mapping window

fal caPS - [project: Memory Map] Q@@

Project Tools Wiew Help

0= H ?

Wizard Step 1 of 5 - Memory Mapping

Browese the popular System Memory Maps below snd select one to meet your system reguirements (if not found, use Advanced mode)
Map 7 - Typical 3rd Party IDE Tool "New Project” Map

J 8032 Dats Space

8032 Code Space

FFFF | Pagel | Pagel | Page2 | Page3 | Paged | PagesS | PageB

Codet | Cods2 | Code@ | Coded | Codes | Cades | Coder (el
EAED CEI0P

Cods0 External CS
SRAM

0000

Main Flash Secondary Flash CEIOP SRAM

— — —/ —/

Map description :

Thiz example supparts the memary maps typically used by the example code provided by ST and various 3rd party tool vendaors

Mext = Cancel

FFFF

2000
FFO0

0000

For Help, press F1

Project: |project Device: UPSD3434E |04/19/2006 |16:54:03

16/45

Using RIDE and RLINK-ST for creating a new project

AN2396

17/45

10. The next window for the CAPS configuration wizard is the Firmware Placement window
shown in Figure 14. Its purpose is to assign names for the files that are to be used to
program the code and data pages identified in the memory map. For the Code0 page,
the only one that is used in this example, click the Browse button and go one directory
up to find the Intel Hex file that was created in step 7. CAPS requires a valid .HEX file

for merging its

firmware files.

Figure 14. Firmware Placement step

DS

BE g

Codel

Codet

Code2

Code3

Coded

Codes

Codet

CodeT

Second :

Diatal

For Help, press F1

Wizard Step 2 of 5 - Firmware Placement

First : Specify 8032 MCU filename for CODE bazed on your selected Memory Map:

] Cowork\new_upsd_projectMEW_UPSD_PROJECT HEX Browse |
Open E] Browese...
]— Loak in:]'C_) new_upsd_project _'_j J cf E- 5l Browse... I
caPs =
)PsDsoft Browse...
E B Browse...
Browse
[Browese...
[. | Browse.
Fiename: [NEw_UPSD_PROJECT SR
Files of type: [Hen Files [hex] | Cancel
Specify 8032 MCU filename for DATA based on your selected Mamaory Map:
Browize...
= Back I Mext = I Cancel I

Praject: project Device: UPSDIE434E U4,|’19I2EIE|6”1?:ZU:29 A

11.

Click Next. This brings up the window shown in Figure 15, for setup of any external
chip select outputs required. For this example, the default presented is all that's
needed, so just click Next to continue.

J

AN2396

Using RIDE and RLINK-ST for creating a new project

Figure 15. External chip select setup

Fal CAPS - [project: External Chip Select]

Project Tools iew Help

D= dE i3

List of pin signals

=[] Pora
-

palGPIO
® palGRI0
& pa2GPI0
® pa3GRI0
& padGRI0
& paEGRID
& paBGPI0
& pa?.GRI0

<
Far Help, press F1

Wizard Step 3 of 5 - External Chip-Select Entry

If an external device chip-select output is desired, choose a pin and define the chip-select's active address range, it's active
palsrity, nd it's resdiwrite qualifier. Cptionally, rename the signal name. Do this for esch chip-select output.

A
First : Select pin from the list at left, madify signal name if desired, then choose signal
polarity
Active
Lawe
ECS e P20 o
Second : Enter the active address range and control signal qualifiers
The aliovesble external 11O device address range is : 2000 - 7EFF
HEX HEX Read
Start End '3
Address Address Mone Read Write Whirite:
o [[i
= Back hlgxt = Cancel
v
>
Project: project Device: uPSD3434E 04)15/2006 16:40:11

12. The next step is for configuring the security bit, and the sector protection bits. Selecting
any of the sectors for protection prevents the selected sector from being altered, until
the configuration is changed to remove that protection. During development, there is
usually no reason to select any segment for protection. However, protection for
individual segments can be removed by rerunning CAPS to reconfigure the chip. The
Enable security bit, once programmed, prevents reading/writing of the Flash sectors via
JTAG. The security feature is disabled when a full erase of the device is performed.

Click Next to continue.

Figure 16. Security and Protection settings

Il caPS - [project: Configuration]

Project Tools Wew Help

Oz HE %

Optional configuration choices:
Security
[” Enable sscurity bit

Sectar Pratection

Main Flash :
|~ Sector0 [Sector 4
[~ Sector1 [Sector 5
[~ Sector2 [Sectorf
[~ Sector 3 [~ Sector 7
Description

Wizard Step 4 of 5 - Configuration Settings

Secondary Flash
[Sector0
[~ Sector1
I™ Sector 2
[~ Sector 3

reading of this information.

Defaul; FFFFFFFF

For Help, press F1

Uze this field to facilitate your programming contents and revision level identification. The getting of the gecurity options will not affect the

= Back e s Cancel

Project: |project Device: WPSD3434E 04)18/2006 16:46:48

18/45

Using RIDE and RLINK-ST for creating a new project AN2396

13. The final step of the CAPS setup Wizard creates the MCU firmware image according to
the configuration options selected and merges it into the object file. The result is
reported in the window shown in Figure 17. (The warning message about no data file
for the FS0:7 and the CSBOOT1:3 sectors can be ignored as this example does use
one.) The window gives options to program the device through the JTAG port at this
point, or to Save and Exit Wizard. Since we intend to debug the project in RIDE,
which has its own upload capability, we pick the latter and close CAPS.

Figure 17. JTAG ISP operations step

B! CAPS - [project: JTAG]

Project Tools Wew Help
=y =] 7
Wizard Step 5 of 5 - JTAG ISP Operations
Select the JTAG-ISP Operation and click 'Execute’
Programming file: | C-vwarkinew_upsd_projectyCAPS Sproject. obj
Device: Select operation:
UPSD3434E-40U6 Program Only -
Iv Merge MCU firmware Click here to perform specified JTAG-ISP operation ==
= Back File Checksum Hw' Setup Fieset Target Cancel Save and Exit Wizard
ﬁ Warning ADRO0Z: Mo data file has been specified for CSEOOT3. e’
Successful translation and merging. ..
v
For Help, press F1 Project: |project Device: WPSD3434E 04/19/2006 |17:31:17

This completes the project creation and setup phase. The next chapter describes how the
RIDE debugger is used to upload applications to the DK3400 board and to run tests.

19/45

J

AN2396

Uploading and debugging with RIDE

5

5.1

5.2

Uploading and debugging with RIDE

Purpose

The preceding chapter took you through the steps of using RIDE and CAPS to create a new
project, New_uPSD_project, and to build a simple application with the main program
led_blink. This chapter shows how RIDE, in conjunction with RLINK-ST, can be used to
upload, test, and modify application code running on the DK3400 board.

This simple demonstration project illustrates the powerful software development tools based
upon Raisonance RIDE software, and the RLINK-ST capabilities, which provides many
features for editing, compiling, programming, and debugging a yPSD33/3400 MCU Series
from STMicroelectronics. This demo quickly illustrates the specific features below to give
you a feel for their simplicity and capability:

Compile Project and Program Flash Memory

Single-Step Execution and Source-Level Debugging

Device-Specific Formatted Displays

Breakpoints

Symbolic Debugging and Variables Watch

Code lteration

Instruction Tracing approaching Real-Time performance

The DK3400 Development Board with its embedded RLINK tool (or your own designed
circuit board with a yPSD34xx MCU) is all that is needed to develop code. RIDE’s debugger
utility can be used to symbolically debug 8051 code generated by almost any 8051 compiler.
You may choose to use your existing 8051 compiler with the RIDE debugger (no code size
limit) or upgrade the evaluation version of the RIDE compiler to also compile with no code
size limit. See http://www.raisonance.com for more information on RIDE and upgrades.

Upload project and program Flash memory

If it is not already running, launch RIDE from the Windows programs menu (Raisonance Kit
6.1) or by clicking the RIDE icon on the desktop. On opening, a blank work area appears
with the RIDE title menu bar as shown in Figure 18.

Figure 18. RIDE Title Bar

Ble Edic Search Project Tool Yew Debug Options RideScgpt Sindow Help

® Open the demo project created in Section 4. In title menu bar click Project, then Open.
Next double-click the project named New_uPSD_project.prj, from the folder
C:\work\new_upsd_project. If you skipped Section 4, the same project can be found in
the RIDE installation directory. The project name there is led_blink, rather than
new_upsd_project. It is found in the folder:
\RIDE\EXAMPLES\8051\DERIVATIVES\ST_UPSD\UPSD3400\DK3400\LED_BLINK

® The RIDE environment displays new content in the project windows. The left window
shows the project files. Click on the "+" to expand the project component files and then
double-click on led_blink.c to open the file (Refer to Figure 19).

20/45

Uploading and debugging with RIDE AN2396

Figure 19. Project window

=@/ RIDE - C:\Work\New_upsd|_project.prj

File Edit Search Project Tool Yew Debug Opltions RideScript Window Help

EkE-d BT

»

Froject] Debugger] Documentation l

= @ CHWORKIMEW _UPSD_PROJECT . ACF {80051} [LXS1] code=364 external data=256 internal data=23.0
#- B led_blink.c [RC51] code=50 const=0 xdata=0 pdata=0 data=1 idata=0 hit=0
#-- B upsd3400_timer.c [RC51] code=177 const=0 xdata=0 pdata=0 data=4 idata=4 hit=0
#--B startup.aSi [MAS1] code=126 const=0 xdata=0 pdata=0 data=0 idata=0 bit=0
#--B upsd_init,c [RCS1] code=7 const=0 xdata=0 pdata=0 data=0 idata=0 bit=0

o Click Make All. If you are starting from the 'led_blink' project under the EXAMPLES
folder of the RIDE installation directory, this compiles and builds the project. If you are
continuing with the 'New_uPSD_project' from Section 4, the project has already been
compiled and built. In this case, clicking Make All effectively does nothing and is
harmless.

® Click Options | Debug and the "Debug Options" window will appear (Figure 32). In this
example, use RLINK-ST to debug your code under JTAG control. Select Real
Machine (Emulator or ROM-Monitor) as the "Tool" and RLINK-ST -uPSD in the drop
down box under "Tools." Click on the Advanced Options button and the "uPSD
debugger options" window appears as shown in Figure 33. Make sure the settings are
as shown in the figure. Of particular importance is the setting for "Merge Options." This
setting specifies the location and name of the CAPS project file associated with the
RIDE project. The path and filename must be correct for proper programming of the
device. In this example a relative path is used to point to the CAPS file. From this
window, various JTAG operations may be performed using the buttons near the bottom
of the window in the "Instant Checks" area. Once the settings have been confirmed,
click OK to close this window, then OK again to close the "Debug Options" window.

@ Start the Debugger by clicking Start. This programs the Flash and refreshes the RIDE
environment showing actions in the "Debug / Action/Status Window" (Figure 25).

The highlighted line indicates where MCU execution has stopped at the first line of
executable code in the main program. The Debugger now waits for your command.

J

21/45

AN2396

Uploading and debugging with RIDE

5.3

54

Single-step and source-level debugging

Click Go to see the program run full speed with the D6 red LED blinking at a couple Hz
frequency.

Click Reset and the program returns to the first line of the main program. The blue line
should be on blink_delay = SHORT.

Click Step-In twice. The debugger is now in the called function, timer0_init ().

Double click Disassembly Code in the left debugger window. This opens a tabbed
window, “code (led_blink)” showing both C and Assembly code source instructions.

Click Step-Over a few times to see that code execution can be stepped one assembly
instruction at a time.

Click Reset to return to the main program, led_blink.c.
Click on LED_BLINK.C tab to return to the C code window.

Device-specific formatted displays

Double-click Main Registers in the left debugger window to show the contents of the
MCU core registers (Refer to Figure 20).

Double-click Port 1 in the left debugger window to show current value of pins on 1/0
port 1.

Go back to file led_blink.c by clicking on the tab at the bottom of the main display
window (Refer to Figure 25), and expand the window view back to full screen.

Figure 20. MCU registers

~#:Main Registers [pwm_ade} =101
CPU Bank Diata Hardware

PC [med |FEJ0 |@RO foo [P0 [F7
ACC [|RO[E |@R1 [37 |P1 [FF
PS5 |E1_ Rl [Rs |@®DPTRFF |F2 W
SP [f4 |R2[x@ROJFF_|P3 [FF
DPTH'%m: A3 [m ®@FR1 [FF|TCON [Fo

B EFM M 5P% [o< | THLO[OFo3

T [0 |RS [BaNK fed | THL1[EsFS
E& [|RB[@ Task [oX |THL2[azss
IE [c2 |R7[57 TaskP ¢ |PCOM [io

22/45

Uploading and debugging with RIDE AN2396

5.5

5.6

23/45

Breakpoints

Four hardware breakpoints are available on uPSD3400.

Set two breakpoints by clicking on each of the green dots on the left of the two lines of
code timer0_delay (blink_delay), inthe while (1) loop. The green dot and the
selected line both highlight in red.

Click Go, the program runs until reaching a breakpoint. Notice the status of the red
LED.

Click Go repeatedly. Notice that the red LED toggles from ON to OFF by repeatedly
clicking the Go icon.

Now, remove the two breakpoints, by clicking in the margin on the two red icons. Click
Go again to resume program execution. The blinking routine is now running without
interruption.

Symbolic debugging and variables watch

Click Stop to halt program execution. With the mouse, highlight (double-click) the entire
variable name “blink_delay” at the beginning of the main () function. Then, right-click
on the variable and select “Add Watch” to add this variable to the Watch Window, which
appears at the bottom left of the screen. You may also press the F6 key (refer to
Figure 25 and Figure 21).

Figure 21. Watch Window

’: Name
i blink_delay
e type F2 to edits

[Watches

A [mT, Lo 3 watch #1 i wiztch 22

Remove any existing breakpoints.
Click Reset.

Click Go followed by Stop to see that the blink_delay value is updated in the watch
window and that it reports a value of Ox0A.

While the code is running (Click Go again), place the mouse above the Value field
(which should read 0x0A), right-click, and select Evaluate. Then, enter 0x64 in New
Value field, followed by clicking on Modify. The LED should then blink at a rate 10 times
slower. (0x64 causes a 10x longer delay versus 0x0A). Notice that the debugger is
active while the code is running.

Click Reset followed by clicking Go. The LED blinks again at the faster rate.

J

AN2396 Uploading and debugging with RIDE

5.7 Code iteration

® Halt the debugging session to make the blink delay interval code change permanent in
Flash memory.

® Close the Debugger by clicking on the same icon that "starts" the Debugger.

® Now you are in the editor. Go to file led_blink.c by clicking on its file tab and change the
C code statement from,

blink delay = SHORT;
to
blink delay = LONG;
o Click Make All to recompile and rebuild the program.
Start the Debugger by clicking Start to re-program this new code into Flash memory.

® Click Go and see that the LED is now permanently blinking at the slower rate. This
code modification now resides in Flash memory.

® Click Reset.

5.8 Instruction tracing, near real-time performance

The uPSD rapidly streams a record of all the MCU instruction steps out to the RLINK-ST
adaptor. From this data, RIDE creates a formatted file to help you find even the most
stubborn bugs, showing an MCU execution history depth of 500,000+ instruction steps.

Note: When trace mode is enabled, CPU performance can be expected to decrease about 20 to
30 percent.

® To enable Trace, select from the title bar Debug then Trace, and select trace Options
as shown in Figure 22. Then click OK.

Figure 22. Trace Options

1I
” Set Trace OFF i Set Trace ON

— Trace Wiew
 View Non-Sequential Instiuctions anly
*' Febuild sequential list

7 ASM
& ASM andC
" OnlwC

— Code Coverage

[~ Use trace for Code Coverage

ak. I Cancel |

® Open the Trace Display. Select from the title bar Debug, then Trace, then View. A blank
Trace window displays.

‘ﬁ 24/45

Uploading and debugging with RIDE AN2396

25/45

A Trace Display file can display program source code in both C and Assembly formats.
Tracing runs in the background with little impact to real-time performance in this project.

Return to the file led_blink.c by clicking on its file tab.

Set one breakpoint at the line of code immediately before while (1), at
PSD_reg.DATAOUT_D |= LED_OFF, by clicking on the green dot to the left of the line
of code. The breakpoint line highlights in red.

Click Go, and the MCU runs until hitting the breakpoint, then a window opens showing
the Assembly source code.

Note that the red line indicates where the breakpoint is set, the blue line indicates the next
instruction to execute, and a pink line indicates where a breakpoint occurred.

Now, open the Trace Display window by clicking on the file tab “Trace (led_blink)”
(Figure 23). At the bottom of the Trace display is the last instruction that was executed:
MCU Program Counter at 01B. Above this line is the history of all instructions executed
before hitting the breakpoint. There should be 13 records.

Figure 23. Trace window

num |0 PC |0 asM HLL-Source
1 nsa CLR &
2 08E MOV ER1, &
3 nec INC Rl
4 nsn MoV HR1,4
5 ek CLR TRO TRO = 0: F* 3top timer 0 */F
G o7o ANL THOD, #F0 TMOD &= 0OxFO; /% clear timer 0 mode bits -
7 73 ORL THOD, #01 THOD |= 0Ox01; A% put timer 0 into l&-bit :
8 076 MOV R1,#15 timer0 walue = 0x10000 - | ({(FREQ _O3C * 5L}
a 078 MOV ER1, #7D
10 o7a INC Rl
11 07E MoV [HR1, #DC
12 oo MoV TLO,ER1 TLO = (timer0_walue & OxO00FF)
13 ovFE Mov Rl,#16 THO = (timer0_walue >> 8);
14 nsl DEC Rl
15 nsz Mov THO, BR1
1& 034 3ETE PTO PTO = 1: #% set high priority interrupt i
17 036 SETE ETO ETO = 1: #* enable timer 0 interrupt */
15 nss SETE TRO TEO = 1; A% start timer 0 %/
19 0sa SETE Ei Ea = 1; /% enahle interrupts */4
0 nsc RET I3
Z1 nla Moy DFTR,#7Fl5 P&ED_reyg.DIRECTION_D|=0x0Z; P
22 o1y MOV A4,BDPTR
23 n1s ORL A #02
24 ola MOV BEDPTR, &
P MoV DPTR, #7F13 | P3D req.DATAOUT D |= LED OFF:

If you right-click on the trace windows and select Options, it is possible to list both C
and ASM code by selecting ASM and C sequential list.

Return to file led_blink.c and click Go. Notice that the LED blinks normally and in real-
time.

After about 10 seconds, click Stop. Notice the messages in the window that records the
actions (Figure 24). This window shows the number of non-sequential instructions
traced. Thousands of instructions are now showing in the Trace window.

J

AN2396

Uploading and debugging with RIDE

Figure 24. Message window

Mk Do |Gwn | 2o |

* [1F:02:50544]: Pesst
& [FC0000, | T025835E]:
* [LF0250040] Pun
* [PC000E , L7:02:55:80):
* [FO00E L7025 1E0]:
& [LT:02:52970]: Aun
* (170300873 Sep
* [FoO0IE ,L7:03:11:24]:

wl®
. 00k, 000

‘Fopeed on breakpoint of CODE:CED
2 nan-sequantial instrucdions traced,
‘Fopped on beeakpoint & CODE!DIER

443 ron-sequential instractions e,

530 IMS

26/45

Conclusion

AN2396

6

27/45

Conclusion

Congratulations! You have seen the majority of steps to implement a Turbo+ uPSD design
on the DK3400 board. This design guide showed the basic steps to pre-configure the
memories with CAPS, compile, program in Flash and debug with RIDE Tools. The process
flow diagram steps were described so that the method for creating a new project from
scratch was shown and a detailed design and process, based upon the blink LED demo, has
also been described in detail with all the tools required.

There is additional documentation about the uPSD Turbo+ architecture on the DK3400 CD
ROM. There is also further documentation available through the website links provided
earlier. The trial version of the RIDE C compiler and tools supplied with the DK3400 limit the
Code size to 4KB. Any application larger than 4KB would require purchase of the full tools
from Raisonance.

The example code and the steps clearly demonstrate the powerful firmware development
and debugging capabilities of the RIDE environment with RLINK-ST for uPSD DK3400-
Development Board.

For more information, please refer to:

® Datasheet of the uPSD34xx MCU

® Getting Started with RIDE and uPSD (Application Note AN48-uPSD)

® Schematic for the DK3400 circuit board in the User Manual UM0131

Please see the ST web site for these documents and for the latest information on uPSD
products, tools, application notes, and other documentation: http.//www.st.com/mcu

J

AN2396

DK3400 jumpers selection and defaults

Appendix A DK3400 jumpers selection and defaults

The following Table describes the DK3400 Jumpers. See the Schematic and DK3400 User
manual for more information regarding the jumpers.

Table 1. DK3400 jumpers
Ju;l'noper Description Default Setting Comments
Enable SPI interface . .
JP1 Flash M25P80. Closed M25P80 is enabled when JP1 is closed.
JP2 Reserved Open Please keep this jumper on open.
Enable USB auto- USB auto-disconnect function is enabled when
JP3 . : Closed .
disconnect function. JP3 is closed.
Keep JP4 on following status when ED3K4
lect JP4 .1 works on Mode1, 2, 4 and 5: JP4.1 connected to
JP4 fS:r 3(.:'_Azpoc\:\:?r SOUICe | connected to JP4.2.
port JP4.2 Keep JP4 on open when ED3K4 works on Mode
3.
Select which power
source to be used as Keep JP5 on following status when ED3K4
USB power input of powered from RLINK USB cable: JP5.2
JP5.1
power management connected to JP5.3.
JP5 o connected to ,
circuit, power from E- JP5.2 Keep JP5 on following status when ED3K4
RLINK USB cable or ’ powered from uPSD USB cable: JP5.1
power from uPSD connected to JP5.2.
USB cable.
ED3K4 boot from internal main flash when JP6
i i is closed.
JP6 Provide a boot option Open .
for ED3K4 board. ED3K4 boot from internal boot flash when JP6
is open.
Select clock JP71 ED3K4 works with internal clock when JP7 is
generation source) set as following: JP7.1 connected to JP7.2.
JP7 ’ connected to
external clock or P72 ED3K4 works on external clock mode when JP4
internal clock. ' is set as following: JP7.2 connected to JP7.3.
JP8 Enable NAND Flash. | Closed 128Mbit NAND flash is enabled when JP8 is
closed.
gg:;;iii-rlw—ArSoziéczligng Keeps JP9 on closed when ED3K4 works on
de 1, 2 d>5.
JP9 | with JP10 depending |Closed ::O N oo 8and5 o EDSKA work
on operation mode of etzps4 on open when works on
ED3K4. mode 4.
gsgarzttii-rl;ArSogicraC:Ii(t)ng Keeps JP10 on closed when ED3K4 works on
mode 1, 2, 4 and 5.
JP10 with JP9 depending on | Closed

operation mode of
ED3K4.

Keeps JP10 on open when ED3K4 works on
mode 3.

28/45

DK3400 jumpers selection and defaults

AN2396

29/45

Ju;lnoper Description Default Setting Comments

JP11 Enable DEBUG signal. | Open DEBUG signal is enabled when JP11 is closed.
Select which JP12.2 UART1 is connected to RS232 transceiver when
transceiver to be connected to JP12 is set as following: JP12.1 connected to

JP12 connected to UART1 |JP12.4 and JP12.3 and JP12.1 connected to JP12.4.
port, R§232 JP12.1 UART1 is connected to IrDA transceiver when
transceiver or IrDA connected to JP12 is set as following: JP12.3 connected to
transceiver. JP12.3. JP12.5 and JP12.4 connected to JP12.6.

J

AN2396

Interface display windows and code view

Appendix B

Figure 25. RIDE interface display windows

Interface display windows and code view

~» RIDE - C:\RIDE\EXAMPLES\B051\DERIVATIVES\ST UPSD\UPSD3400\LED. BLINK\led blinikprj -

@_Fﬂe Code Search Project Tool View Debug Options RideScript Window Help

ly © o [l B
Set Bript =19 %]

Resst

“ £R s

o rin® v s

7 B9 o |

- I

B b 6t o [led blink

X|—— Debug

------ Interrupt Controller
------ Port 1

------ L} Timer 1
------ L Timer 2
...... = UARTOD
------ L UART 1

Address Make Al J| Symbaol

J| Mnemonic Single Step

Il code
Project Debugger | Documentationl) no0G6- _ICE_DIMMY_ 020088 LovT 2C_ START ﬂ‘
[5- &8 c:\yide\examples|B051iderivatives \st_up LRy 3C_INITSEGSTOO Hor
(- T5151 Data dump ##7132 delay lsec();
N 0o04: delay 2sec 1200C% LCALL delay laec
------ Tim Disassembly code =
T Code View ## 153 dela_f_lsec{h
"""_umm C;J e 2 bly/ ooaT: 1200C3 LCALL delay lsec
Xdata View SSEmDIY, =
= i #5154 :
5 Data View \GOUE View /| [} 2 : Codg/Edit/Trace
""" B Sfr View 000E: DIS19|HY Wimdew
------ T Bit View nonc: db 00h
------ 3] Main registers MCU Reqisters {l looon: 10 db 40h : B!
E---*‘-'-.,D Peripherals 32 &0 blink delay = SHORT:

1 #% 683 timer0 Init{):
...... T port 3 0011: 120066 LCALL timer0 init
...... 2 port 4 ##_65 P50 req.DIRECTION D|=0x02; // BET poTrt 1
4L Timer 0 001ld: 907F1S MOV DFIR, #7F15
T 0017 E0 MOV 4, BDPTIR
00182 4402 CRL R, #02
O01R: FO MOV BDETR, L
66 ESD reg.DATAOUT B |= LED OFF; Jf Initiali:
An1R- i " ontF13 Mow NETR 27713 LI
------ L I2C Controller Fael A I | :

Jf Define the delay t'.l!'llE 1

Jf Initialize timer C

< | 5] [Port 4jed_bink) | Sfr Jed_blink) | Main Registers{ed_blink) ; Disassembly code Jed_blink} {
ted_blink. | Make Debug | mrep | Scipt | :
Watches -4 Opening c: \ride\examples 3051 \derivatives\st_upsd\upsd3400Yed_blink\ed_blink.zof
h 4 Opens file ¢'rideexamples'8051\derivatives'st_upsd'upsd3400Yed_blink\ed_blink.aof
Watc -4 Emulation Memory deared in 0 miliseconds 5
W- d -4 Erasing done in 4 seconds. Deb UQ.:"ACtl on
Inaow . : .
-4 Downloading done in 3 seconds, Sta tus Wi nd ow
-4 Program loaded in 7208 miliseconds
o [PC:0000 ,10:46:16:00]: Stopped on breakpoint at CODE:0ER
x| Ax]

| 'UPSD3434E-40

[0= D00ms 000

30/45

Interface display windows and code view

AN2396

Figure 26. Code view (disassembly)

|Address J| Symbol j| Code j| Mnemonic]| Code Coverage

oooo: _ICE_DUMMY (0200F8 LJME 2C_START 0x0 i’

0003: ?C_INITSEGST.00 NOP 0x0

#4152 delay 1sec(];

0004: delay 2sec 1200C9 LCALL delay lsec 0x0

##_153 delay lsec():

0007 1200C%5 LCALL delay lsec ox0

8 154 1

O00A: 22 RET 0x0

000B 02 db 02h 0x0

000c: [ufu} db 00h 0x0

0000: 40 db 40h ; "@° 0x0

#4 &0 blink delay = SHORI: !/ Define the delay time between changing the scate of the LEDs
blink delay, #02

4 63 timer0 init{);: // Initialize timer 0

0011 120066 LCALL timer0_init ox0

##_65 PSD reg.DIRECTION D|=0x02; /f set port pin PD1 to ocutput

0014 907F15 MOV DETR, #7F15 0x0

0017 EO MOV L, @DETR 0x0

0018 4402 CRL L, 02 0x0

O01A: FO MOV BDPIR, 2 0x0

#2466 PSD_reg.DATAQUT D |= LED OFF; /¢ Initialize LED to OFF

O01E: 907F13 MOV DFIE, #7F13 ox0

O01E: EO MOVE 2, EDPTIR 0x0

O01F: 4402 ORL &, g02 0x0

0021: Fo MOV EDETR, & 0x0

#2_T0 B5SD_reg.DATAOUT D &= LED ON;

0022: oRTE13 MOV DPFIR, #7F13 0x0

0025 EO MOV A, GDPTR 0x0

0026z S54FD ANL A, #FD 0x0

0025 : Fo MOVE EDPTR, L ox0

#8_ T2 timer0_delay(blink delay); £/ Delay the defined amount of time

0029: AF12 MOV R7,blink delay 0x0

00ZE: TE0Q MOV R&, #00 0x0

0020: 12003B LCALL _timer0_delay 0x0

#E_ T4 PSD_reg.DATAQUT_D |= LED OFF;

0030 907F13 MOV DFIR, #7F13 0x0

0033 EQ MOVE 2, BDPIR 0x0

0034: 4402 ORL A, &02 0x0

0036: FO MOVE EDETR, & 0x0

#4_ T4 timer0_delay(blink delay); £/ Delay the defined amount of time

0037: AF12 MOV E7,blink delay 0x0

0039: 7E00 MOV B&, 400 0x0

O03E: 120098 LCALL _timer0_delay 0x0

#4_78 LI

Search :I |

| Port 4fed_blink) § Sfr jed_blink) { Main Registersfed_blink) ; Disassembly code {ed_biink)

31/45

J

AN2396 Interface display windows and code view

Figure 27. Trace display

R | asM | HiLSouce |
052F RET !]
51556 0146 MOV RI1,#58
51557 0148 MOY BR1,07
l51555 0144 MO¥ R7,1E msg huff[13] = htoa hi(ADC result);
51550 014C ACALL htoa hi
1860 0535 Moy A R7 byte = byte & OxF0; // keep upper nibble only
51561 0536 ANL &, #F0
ls1562 0538 STAP & byte = byte =+ 4; =
1263 0513 AL &, $0F TRACE Display
51564 053 MOV R7,4
51865 n53c CINE 4,#09,05if (byte <= 0x09)
l51866 0540 JHC 0547
51567 0547 MoV &4,R7 return (byte + 0x37):
ls1568 0548 LDD A4, #37
51569 0544 MOV R7,4
I5 1570 0548 RET 4
51871 01LE MOV R1,#59
51572 0130 MOV BR1,07
151573 013z MOV R7,1E mag buff[14] = htoa lof(ADC_result]:
I51574 0134 ACALL _htoa lo
I 1275 aL5z0 MOV A D7 bytc = bytc & O0x0F; /) keoop lowcre nibble only
51576 0521 ANL &,#0F
I51577 0523 MO¥ R7,4
51578 0524 MO¥ R1,4
I51879 0525 CINE 4,#09,05if (byte <= 0x03)
ls1880 0528 SETE C
l51581 0529 THC 0530
151652 05:ZE MOV 4,R7 returnibyte + 0x30):
51583 052c ADD A, #30
51584 052 MOV R7,4
- Last Execution at Breakpoint PC=01BA
= Mo
} v ade.c | Code adch@m‘ﬂ:llck here on the File tab to see Trace Display |—

‘ﬁ 32/45

Importing an external application into RIDE

AN2396

Appendix C Importing an external application into RIDE

CA

C.2

33/45

Overview

The RIDE IDE allows you to combine the building of the project and the debugging of the
built application. However, you could wish to simply debug an application that has been
written and compiled out of RIDE. In such a situation, choose Debug | Load. The following
window appears:

Figure 28. Debug application window

Debug Application

Select the path and the format of wour application te be debugged. “You can
eventualy set additional source paths to help the debugger finding your
application source files:

Application path: ||

Source path: |
Tipe |a0cs1

[=|
| omFs1 |

Format:

QK | Cancel | Help |

You can then select your application. You also need to specify the format of this application.
Take care that some of the listed formats does not contain any debug information (such as
HEX or Binary):

Figure 29. Format drop-down list

| OMF51 |

HE Intel
Binary
OkF51 Banked
Feil A0RMFDT

4R LUBROF
Tasking TKCOFF
Signum FST

Debugging an external application and a built-in-RIDE application will be then exactly the
same.

If none of these formats matches with the format of your application, it is recommend that
you check if the tools you are using allow conversion from the original format into one from
this selection.

Importing a Keil project into RIDE for debugging

Here, the process is shown for importing the same application example as developed using
Keil Compiler. This is available in the Keil folder of your installed Keil software tools. Browse
through the application path and then select the correct file. (See note below). The Keil
AOMS5F51 format required by RIDE has no extension and in this case it is the following path
and file name: right-click on the Format drop-down box and ensure that you select Keil
AOMF51.

573

AN2396

Importing an external application into RIDE

Note:

C3

For Keil projects, the file name has no extension and is the same as the project name used

for developing the application. uPSD projects for Keil have the extension *.uv2.

Below, the RIDE screens are shown for importing the same blink LED project from Keil and
then loading in DK3400 and using RIDE tools to Debug. You may use this process to import
large codes into the Eval and demonstration version of RIDE for Debugging only.

Figure 30. Keil application path and format

Debug Application

Select the path and the farmat of your application to be debugged. You can
eventually set additional source paths to help the debugger finding your
application source files:

Application path: IC:\keil\c:51 “exampleshst upzdiupsd34004e I_I
Source path: I

Time! [a0cst =
| Kl A0MF51 |

Farmat:

ok | Cancel I Help |

RIDE generates the next screen shown below. Select the correct device.

Figure 31.

Core selection

BOCE1MX

Device I Froperties I

uPSD335400-40 |

WUPSD3422EY-40
LPSD3433E-40

WPSD3434E-40
UPSD3434EV-40 ¥| Datashests

..... &

uPSD33840-40 :I [Fazt 8032 MCU with Programmable
Logic: Full Speed USE: 256kE primary
flazh; 32kB secondary flash; BkSRAM
uP3D3422E-40 rich zet of peripherals [5v]

Mot simulated perpherals:
WPSD3433E-40 _I |Dn|_l,l standard peripherals are simulated

0k I Cancel | Help

Running the application on the target hardware
To load and to debug your application using the RLINK-ST dongle, you have first to

configure the "Options | Debug" window as follows:

Figure 32. Debug options

«& Debug Options

Taol l Environment]

Tool i

" Yirtual Machine [Simulator)
f* Beal Machine [Emulator or ROM-Monitor] Cancel

" Other Tool
Tools
RLINK-ST-uPSD |

34/45

Importing an external application into RIDE

AN2396

Select the Real Machine option, Select in the "Tools" list, RLINK-ST-uPSD. If you then click
on Advanced Options, the following window is presented:

Figure 33. Debugger options screen

uPSD debugger options

Actions

JTAG Device Chain Description
{* Single pPSD3xss

" Customn Device Chain

3

Thiz dialog bo= configures the debugger.
The options below will take effect when you start the debug session [Chl-D).

I¥ Erase and Download | Merge PLD with Program code v Diebug

PSOs ID: |_

IO file: |

Merge Optionz

L

project file frorm CAPS [UPJ file] ar PSDSaft Express [IN] file):

|E.&F'S Sproject. upj

Eraze and Download O ptionz
* Erage Full Chip

" Do not Eraze

* Download Full Chip
™ Erase Flazh Sectorz ¢ Download Flash Sectors || [for bank switching) :
" Do not Download

N

[Debug Options
CSI0OP address

0x |7FO0

v Werify first. Then, do naot Eraze and Download if
the code iz already conect.

HWOTE

nat have a working ML, just uncheck the "Debug’” checkbox.

program downloaded everytirme pou make it

If you want to uze the debuager az a zimple downloader or if your board does

Y'ou can alzo declare the debugger az post-linker tool, 20 as to have the

Instant Checks [use these to test the options above with pour hardware]

Connect Connect Rezat Blank Eraze
to RLink b target Target Check ol
(1] | Cancel | Help

This window allows you:
® To specify the CAPS project file (UPJ).

® To specify the JTAG chain description file (if any) when the uPSD part is included into a

multiple-device JTAG chain.

® To execute simple commands such as Erase, Program and Blank-Check.

® To specify the CSIOP address.

C4 Specifying the CAPS UPJ file information
In the above window, the file "project.upj" is a project you set up using CAPS, wherein all
associated information pertaining to this project resides.

35/45

J

AN2396

Importing an external application into RIDE

C.5

Merging is the action of creating an OSF file, using an UPJ file generated by CAPS. An OSF
file is a file containing the code to be loaded in all the sectors of the part. This is the only
format supported by the loader.

It is strongly recommended to always keep the "Merge" option checked, unless you plan to
use the debugger as a simple downloader for programming a large number of boards, with a
program that you have already tested and validated.

Note that for merging, you MUST have CAPS properly installed on your computer. Indeed,
RIDE calls some ST utilities (present in the CAPS directory) to merge the PLD and the flash.
These utilities are the following:

UMERGE.EXE
UOBJOSF.EXE
If you have issues, please check that these files exist into your CAPS folder. Make sure that

you give the correct Keil folder path and get the CAPS files from the folder to ensure correct
code loading.

Executing simple commands such as Erase, Program and
Blank Check

It is recommended first to check that both the RLINK-ST dongle and the target board are
properly connected and powered. The communication can be checked by clicking onto:

1. Connect to Rlink" to check that the USB dongle answers,
2. Connect to target" to check that the uPSD answers to the dongle.

Then, the first command available is Erase.

1. Erase Full Chip allows to erase both the PLD and the FLASH.

2. Erase Flash Sectors allows to erase only the FLASH, keeping intact the contents of
the PLD.

3. Do not Erase makes sense only when the debug session is started and that the only
selected options are executed at the loading time.

Once Erased (which is done by clicking on Erase Now!), a blank check can be performed by
clicking on the Blank-Check button. Then, programming can be done with the exact same
options as Erasing.

Warning: Note that the settings of "Erase" and "Program" are used
when launching a debug session. You need, before clicking
on "OK" to keep the settings required for debugging. In most
cases, it is recommend to set either "Erase Flash Sectors"
and "Program Flash Sectors" if you don't need to update the
PLD (but keep the "Merge" option checked), or "Erase Full
Chip" and "Program Full Chip" when you are still working on
the design of the PLD.

36/45

Importing an external application into RIDE AN2396

C.6

C.7

C.8

Note:

C.9

37/45

Specifying the CSIOP address

This information is mandatory when the application is larger than 64KB and uses the bank-
switching technique. In this case, the RIDE debugger needs to read the PAGE register to
calculate the current PC. This PAGE register is found within the CSIOP segment (that can
be relocated anywhere in the XDATA segment).

Debugging the application on the target hardware using
RIDE

Refer to Section 3 of this document and also to RIDE documentation.

Main features

® Hardware breakpoints: the embedded debug module provides four hardware
breakpoints that can be used either as standard breakpoints in the program, or as data
breakpoints (See RIDE documentation for how to set breakpoints). Note that the RIDE
debugger needs also to set temporary breakpoints to perform most of the HLL
commands (step over/into/ out...). Therefore, it is highly recommended to disable the
breakpoints when they are not used.

When the four breakpoints are already set, the debugger displays a message to report this
situation.

® Execution control (Step into/over/...),

® Data/SFR visualization,

® Trace mode (see next paragraph).

Trace mode

The on-chip debug system of the Turbo+ uPSD core features a powerful trace mode. To
either enable or disable this mode, choose Debug | Trace | Options and the dialog shown
in Figure 34 appears.

J

AN2396

Importing an external application into RIDE

Figure 34. Trace options window

Tface Options

" Set Trace OFF & Set Trace ON

Trace View
™ Wiew Mon-Sequential Instructions only
= Rebuild sequential izt

" ASM
&+ A45M andC
™ Only C

- Code Coverage

W Use trace for Code Coverage

ak, | Canecel |

When enabled, the CPU transfers the destination address at every non-sequential
instruction (e.g. JMP, CALL, RET...) into a JTAG buffer that is read by the RLINK-ST dongle.
In the case where two non-sequential instructions are executed almost consecutively, the
bit-rate on the JTAG communication is not sufficient to read the previous destination
address, and the execution is paused automatically (and released as soon as the JTAG
buffer is empty). Therefore, setting the TRACE mode could slow down the overall execution.

Moreover, the standard breakpoint mechanism is no longer available when the trace mode
is enabled. The breakpoints can be set, but they only trigger an interrupt instead of freezing
the execution.

Table 2 summarizes the restrictions that are present when the trace is enabled.

Table 2. Execution performance with trace ON/OFF
Trace OFF Trace ON
HW breakpoints stop the HW breakpoints trigger an interrupt
Transparency | execution (the CPU clock is EA must be kept set to allow breakpoints
disabled) Breakpoint interrupt vector () must be reserved

Wait states are added (depending on the
Real-time Full-speed program) when non-sequential instructions are
too frequent.

® When the trace mode is set, the breakpoints behave differently. Executing an
instruction with a breakpoint sets the breakpoint interrupt flag. Therefore, the execution
is stopped only one or two instructions later.

® The execution is stopped ONLY if the interrupt is currently enabled. When the execution
is launched, RIDE enables the breakpoint interrupt. However, your program must avoid
disabling the global interrupts or the debug breakpoint interrupt.

38/45

Importing an external application into RIDE AN2396

C.10 Reliability of the trace/code coverage information

Due to the dynamic mechanism used for tracing, Trace and Code Coverage has some
limitations which needs to be noted. Some known issues are listed below:

1. When several conditional jumps branch to the same address, it's not possible to detect
the effective branch.

2. When an interrupt occurs, the current instruction (when non-sequential) is unknown.
The following instructions are listed in the trace buffer until encountering the next-
nonsequential instruction. But a correction is done in the code coverage to avoid
counting twice these instructions.

J

39/45

AN2396

CAPS reports

Appendix D CAPS reports

D.1 Project.rpt

This report is generated by CAPS after the Fit design to silicon step. The report for the LED
BLINK example is listed here.

R R Rk R R R R R S S S R Rk kR Sk R R R Sk R R R kS kR gk Rk kS kR gk kg ko

Project file generated by CAPS Version 1.00 - 4/25/2006 16:52:01

*

Project Name : project

Project Folder : C:\Work\new_upsd_project\CAPS
Project Description

Target Device : uPSD3434E-40U6

Design Entry Mode : Wizard mode

E R R R R R R

Main Flash memory will reside in this space at power-up
Secondary Flash memory will reside in this space at power-up

fs0 = (address >= "h0000) & (address <= "h7FFF);

fsl = (page == 0) & (address >= ~h8000) & (address <= "hFFFF) ;
fs2 = (page == 1) & (address >= "h8000) & (address <= "hFFFF) ;
fs3 = (page == 2) & (address >= ~h8000) & (address <= "hFFFF) ;
fs4d = (page == 3) & (address >= "h8000) & (address <= "hFFFF) ;
fs5 = (page == 4) & (address >= ~h8000) & (address <= "hFFFF) ;
fs6 = (page == 5) & (address >= "h8000) & (address <= "hFFFF) ;
fs7 = (page == 6) & (address >= ~h8000) & (address <= "hFFFF) ;
csboot0 = (address >= "h8000) & (address <= "“h9FFF);

csbootl = (address >= ~hA000) & (address <= "hBFFF) ;

csboot2 = (address >= ~hC000) & (address <= "hDFFF) ;

csboot3 = (address >= "hE000) & (address <= "“hFFFF) ;

rs0 = (address >= ~h0000) & (address <= "hlFFF);

csiop = (address >= "h7F00) & (address <= "h7FFF);

Assigned Firmware Files

Mapping mode : Direct

File File
Memory BlockStart AddressEnd AddressFirmware File

fs0 0000 TFFF
:\Work\new_upsd_project \NEW_UPSD_PROJECT .HEX
fsl 8000 FFFF
fs2 8000 FFFF
fs3 8000 FFFF
fs4 8000 FFFF
fs5 8000 FFFF
fs6 8000 FFFF
fs7 8000 FFFF
csboot08000 9FFF
csboot1A000 BFFF
csboot2C000 DFFF
csboot3E000 FFFF

Program Space Only
Data Space Only

40/45

CAPS reports

AN2396

Device Security Protection

Sector Protection
Main Flash

Sector
Sector
Sector
Sector
Sector
Sector
Sector
Sector

2nd Flash

Sector
Sector
Sector
Sector

0
1
2
3

Off

Protection Status
unprotected
unprotected
unprotected
unprotected
unprotected
unprotected
unprotected
unprotected

Protection Status
unprotected
unprotected
unprotected
unprotected

ALE output

Dedicated JTAG -
Dedicated JTAG -
JTAG debug pin

USB+ bus
USB- bus

Dedicated JTAG -
Dedicated JTAG -

Data/Address
Data/Address
Data/Address
Data/Address
Data/Address
Data/Address
Data/Address
Data/Address
Xtall

Xtal2

line
line
line
line
line
line
line
line

TDO
TDI

TCK
TMS

Bus control output
Bus control output
Bus control output

Reset In
VREF input

ale

tdo

tdi
JTAG_debug_pin
USB_plus
USB_minus
tck

tms

a0

al

a2

a3

ad

ab

a6

a7

Xtall
Xtal2

_wr
_psen
_rd
_Reset_In
VREF

41/45

AN2396

CAPS reports

|1] pa2 adiod4 [41]| Address
Bus a4/Data Port d4, ad4
[2 1 p3_3 p3_5 [42]
|3 1 pdl adio5 [43| Address
Bus a5/Data Port d5, ad5
ale |4] pd0 p3_6 [44]
|5 1 pc7 adio6 [45| Address
Bus a6/Data Port dé6, adé6
tdo, TDO |6] pc6/TDO p3_7 [46]
tdi, TDI |7] pc5/TDI adio7 [47]| Address
Bus a7/Data Port d7, ad7
JTAG_debug_pin |8] debug Xtall [48]| Xtall
|9 1 pc4d/TERR Xtal2 [49]| Xtal2
|10] 3.3V vcc 5.0V vCC [50]
USB_plus |11] USBp N/C [51]
[12] 5.0V vcC pl_0 [52]
|13] GND N/C [53]
USB_minus |[14] USBm pl_1 [54]
|15] pc3/TSTAT N/C [55]
|16] pc2 pl_2 [56]
tck, TCK |17] pcl/TCK N/C [57]
[181 p4_7 pl_3 [58]
|191 p4_6 pl_4 [59]
tms, TMS |20] pc0/TMS pl_5 [60]
[21] pa7 pl_6 [61]
|22]1 paé6 cntl0 [62] _wr
|23]1 p4_5 cntl2 [63| _psen
|24]1 pa5 pl_7 [64]
|25] p4_4 cntll [65]| _rd
|26] pa4 pb7 [66]
271 p4_3 pb6 [67]
|281 pa3 Reset_In [68| _Reset_In
|29]1 GND GND [69 |
|30]1 p4_2 Vref [70| VREF
[31] p4_1 pb5 [71]
|32] pa2 Avce [72]
|33] p4_0 pbd [73]
[34] pal pb3 [74|
351 pal p3_0 [75]
ad0, Address Bus alO/Data Port 40 |36] adioO pb2 [76]|
adl, Address Bus al/Data Port dl [37] adiol p3_1 [77]
ad2, Address Bus a2/Data Port d2 |38] adio2 pbl [78]
ad3, Address Bus a3/Data Port d3 [39] adio3 p3_2 [79]
|40] p3_4 pb0 [80]
| |
===== Resource Usage Summary =====
Total Product Terms Used: 15
Device Resources used / total
Port A: (pins 35 34 32 28 26 24 22 21)
I/0 Pins 0 / 8
GP I/O or Address Out 0
Peripheral I/O 0
Logic Inputs 0
Address Latch Inputs 0
PT Dependent Latch Inputs 0
PT Dependent Register Inputs 0
42/45

CAPS reports

AN2396

Combinatorial Outputs
Registered Outputs
Other Information
Microcells
Micro-Cells AB

Buried Microcells
Output Microcells

Product Terms

Control Product Terms

Port B: (pins 80 78 76 74 73 71
I1/0 Pins
GP I/O or Address Out
Logic Inputs
Address Latch Inputs
PT Dependent Latch Inputs
PT Dependent Register Inputs
Combinatorial Outputs
Registered Outputs
Other Information
Microcells
Micro-Cells AB
Buried Microcells
Output Microcells
Micro-Cells BC
Buried Microcells
Output Microcells
Product Terms
Control Product Terms

Port C: (pins 20 17 16 15 9 7 6
I1/0 Pins
GP I/O or Address Out
Logic Inputs
Address Latch Inputs
PT Dependent Latch Inputs
PT Dependent Register Inputs
JTAG signals
Standby Voltage Input
Rdy/Bsy signal
Standby On Indicator
Combinatorial Outputs
Registered Outputs
Other Information
Microcells
Micro-Cells BC
Buried Microcells
Output Microcells
Product Terms
Control Product Terms

Port D: (pins 4 3 1)

I/0 Pins
GP I/O or Address Out
Logic Inputs
Chip-Select Input
Clock Input
Control Signal Input
Fast Decoding Outputs

Other Information

43/45

o O O O

67 66)

5)

O O O O O O © O

o

o O O O

O O O O O b OO O O O B

o

o O O O

o OO O oK

24
34

24
34

32
34

J

AN2396 CAPS reports

Product Terms : 0 /3

Control Product Terms : 0 /3

==== OMC Resource Assignment ====

Resources PT User
Used Allocation Name

Micro-Cell AB

Micro-Cell BC

External Chip Select

fs0 = !pdn & !al5;

fsl = !pdn & !pgr2 & !pgrl & !pgr0 & al5;

fs2 = !pdn & !pgr2 & !pgrl & pgr0 & al5;

fs3 = !pdn & !pgr2 & pgrl & !pgr0 & al5;

fsd = !'pdn & !pgr2 & pgrl & pgr0 & al5;

fs5 = !pdn & pgr2 & !pgrl & !pgr0 & al5;

fs6 = !pdn & pgr2 & !pgrl & pgr0 & al5;

fs7 = !pdn & pgr2 & pgrl & !pgr0 & al5;

csboot0 = !pdn & al5 & 'ald & 'al3;

csbootl = !pdn & al5 & !ald & al3;

csboot2 = !pdn & al5 & ald & 'al3;

csboot3 = !pdn & al5 & ald & al3;

csiop = !pdn & !al5 & ald & al3 & al2 & all & al0 & a9 & a8;

rsO = !pdn & !al5 & !'ald & !'al3;

jtagsel = !_reset;
PORTA EQUATIONS
PoRTE EOUATIONS
PoRTC mouarions
PoRTD EOUATIONS

‘ﬁ 44/45

Revision history

AN2396

7

45/45

Revision history

Table 3. Document revision history
Date Revision Changes
29-Mar-2007 1 Initial release.

J

AN2396

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - ltaly - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

‘ﬁ 46/46

	1 uPSD3400 family
	1.1 uPSD3400 family overview

	2 DK3400 development kit
	2.1 Overview
	2.2 Contents of DK3400 kit

	3 Project creation and sample design development process
	3.1 Key design development steps
	3.2 Requirements
	3.3 Software installation and connections
	3.3.1 Software installation
	3.3.2 Physical connections

	4 Using RIDE and RLINK-ST for creating a new project
	5 Uploading and debugging with RIDE
	5.1 Purpose
	5.2 Upload project and program Flash memory
	5.3 Single-step and source-level debugging
	5.4 Device-specific formatted displays
	5.5 Breakpoints
	5.6 Symbolic debugging and variables watch
	5.7 Code iteration
	5.8 Instruction tracing, near real-time performance

	6 Conclusion
	Appendix A DK3400 jumpers selection and defaults
	Appendix B Interface display windows and code view
	Appendix C Importing an external application into RIDE
	C.1 Overview
	C.2 Importing a Keil project into RIDE for debugging
	C.3 Running the application on the target hardware
	C.4 Specifying the CAPS UPJ file information
	C.5 Executing simple commands such as Erase, Program and Blank Check
	C.6 Specifying the CSIOP address
	C.7 Debugging the application on the target hardware using RIDE
	C.8 Main features
	C.9 Trace mode
	C.10 Reliability of the trace/code coverage information

	Appendix D CAPS reports
	D.1 Project.rpt

	7 Revision history

