LIXYS

DHG 10 I 600PM

advanced

V _{RRM} =	600 V
I _{FAV} =	10 A
t _{rr} =	35 ns

Package:

- TO-220FPAB
- Industry standard outline
- Plastic overmolded tab for electrical isolation
- Epoxy meets UL 94V-0
- RoHS compliant

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number (Marking on product)

DHG 10 I 600PM

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviourAvalanche voltage rated for reliable
- operation
 Soft reverse recover
- Soft reverse recovery for low EMI/RFI
 Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{rrm}	max. repetitive reverse voltage		T _{vj} = 25 °C			600	V
I _R	reverse current	V _R = 600 V	T _{vJ} = 25 °C			15	μA
		V _R = 600 V	T _{vJ} = 125 °C			1.5	mA
V _F	forward voltage	I _F = 10 A	T _{vJ} = 25 °C			2.35	V
		I _F = 20 A					V
		I _F = 10 A	T _{vJ} = 125 °C			2.20	V
		I _F = 20 A					V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 30 °C			10	A
	threshold voltage slope resistance $T_{vJ} = 15$		T _{vJ} = 150 °C			1.20	V
r _F	slope resistance f Tor power loss					93	mΩ
R _{thJC}	thermal resistance junction to case					4.00	K/W
T _{vj}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		T _c = 25 °C			31	W
I _{FSM}	max. forward surge current	t_p = 10 ms (50 Hz), sine	T _{vJ} = 45 °C			100	А
I _{RM}	max. reverse recovery current	I _E = 10 A;	T _{vJ} = 25 °C		4		А
		•	T _{vJ} = 125 °C				А
t,,	reverse recovery time	$-di_{\rm F}/dt = A/\mu s$	T _{vJ} = 25 °C		35		ns
		V _R = 200 V	T _{vJ} = 125 °C				ns
C,	junction capacitance	V_{R} = 300 V; f = 1 MHz	T _{vJ} = 25 °C				pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = A; L = 100 μH	$T_{vJ} = 25 °C$			tbd	mJ
I _{ar}	repetitive avalanche current	$V_A = 1.5 \cdot V_R$ typ.; f = 10 kHz				tbd	А

LIXYS

DHG 10 I 600PM

advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
IRMS	RMS current	per pin*			35	Α	
R _{thCH}	thermal resistance case to heatsink			0.50		K/W	
M _D	mounting torque		0.4		0.6	Nm	
F _c	mounting force with clip		20		60	N	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAB

CV/M	INCHES		MILLIMETERS		
SYM	MIN	MAX	MIN	MAX	
Α	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
d1	0	.043	0	1.10	
E	.392	.408	9.96	10.36	
е	.100 BSC		2.54 BSC		
Н	.255	.271	6.48	6.88	
L	.499	.523	12.68	13,28	
L1	.119	.135	3.03	3,43	
ØР	.121	.129	3.08	3,28	
Q	.126	.134	3.20	3,40	

NOTE:

1. All metal surface are matte pure tin plated except trimmed area.