

Please be informed that the data shown in this PDF Document is generated from our Online Catalog. Please find the complete data in the user's documentation. Our General Terms of Use for Downloads are valid (http://phoenixcontact.com/download)

Modular terminal block with surge voltage fine protection between clamping connector and DIN rail, nominal voltage: 48 V AC, for mounting on NS 32 or NS 35/7.5, terminal width: 6.2 mm, terminal height: 47 mm

The illustration shows version TT-UK5- 24 DC

Key commercial data

Packing unit	1 pc
Weight per Piece (excluding packing)	12.4 GRM
Custom tariff number	85363030
Country of origin	Greece

Technical data

Dimensions

Height	47 mm
Width	6.2 mm
Length	42.5 mm

Ambient conditions

Ambient temperature (operation)	-40 °C 85 °C
Degree of protection	IP20

General

Housing material	РА
Inflammability class according to UL 94	V2
Color	black
Mounting type	DIN rail/G-profile rail
Туре	Single-level terminal block
Number of positions	1
Direction of action	Line-Earth Ground

09/10/2014 Page 1 / 6

Technical data

Protective circuit

IEC test classification	C3
VDE requirement class	C3
Nominal voltage U _N	48 V AC
Maximum continuous operating voltage U _c	77 V DC
	55 V AC
Maximum continuous voltage U_c (wire-ground)	55 V AC
	77 V DC
Nominal current I _N	32 A (50 °C)
Residual current I _{PE}	≤ 5 μA
Nominal discharge current I_n (8/20) µs (Core-Earth)	62 A
Total surge current (8/20) μs	62 A
Max. discharge current I _{max} (8/20) µs maximum (Core-Earth)	62 A
Nominal pulse current lan (10/1000) µs (Core-Earth)	12 A
Output voltage limitation at 1 kV/µs (Core-Earth) static	≤ 120 V
Residual voltage at In, (conductor-ground)	≤ 162 V
Response time tA (Core-Earth)	≤ 1 ns
Cut-off frequency fg (3 dB), asym. (PE) in 150 Ohm system	typ. 2.9 MHz
Capacity (Core-Earth)	≤ 0.63 nF
Surge carrying capacity in acc. with IEC 61643-21 (Core-Earth)	C3 - 10 A

Connection data

Connection method	Screw connection
Connection type IN	Screw terminal blocks
Connection type OUT	Screw terminal blocks
Screw thread	M3
Tightening torque	0.5 Nm
Stripping length	8 mm
Conductor cross section stranded min.	0.2 mm ²
Conductor cross section stranded max.	4 mm ²
Conductor cross section solid min.	0.2 mm ²
Conductor cross section solid max.	4 mm ²
Conductor cross section AWG/kcmil min.	24
Conductor cross section AWG/kcmil max	12

Standards and Regulations

Standards/regulations	IEC 61643-21

Classifications

eCl@ss

eCl@ss 4.0	27140201
eCl@ss 4.1	27130801
eCl@ss 5.0	27130801
eCl@ss 5.1	27130801
eCl@ss 6.0	27130807
eCl@ss 7.0	27130807
eCl@ss 8.0	27130807

ETIM

ETIM 2.0	EC000943
ETIM 3.0	EC000943
ETIM 4.0	EC000943
ETIM 5.0	EC000943

UNSPSC

UNSPSC 6.01	30212010
UNSPSC 7.0901	39121610
UNSPSC 11	39121610
UNSPSC 12.01	39121610
UNSPSC 13.2	39121620

Approvals

Approvals

Approvals

CSA / UL Recognized / cUL Recognized / GOST / GOST / cULus Recognized

Ex Approvals

Approvals submitted

Approval details

٦

Surge protection device - TT-UK5/ 48AC - 2794767

Approvals

Γ

CSA 🚯	
mm²/AWG/kcmil	28-10
Nominal current IN	34 A
Nominal voltage UN	48 V

mm²/AWG/kcmil	26-10
Nominal current IN	30 A
Nominal voltage UN	48 V

cUL Recognized		
mm²/AWG/kcmil	26-10	
Nominal current IN	30 A	
Nominal voltage UN	48 V	

	~	5
GOST	C	J

GOST 📀

cULus Recognized

Drawings

Circuit diagram

09/10/2014 Page 5 / 6

Phoenix Contact 2014 $\ensuremath{\mathbb{C}}$ - all rights reserved http://www.phoenixcontact.com