Power Transistor (-40V, -2A)

2SB1183 / 2SB1239 / 2SB786F

Features

- 1) Darlington connection for high DC current gain.
- 2) Built-in 4 k Ω resistor between base and emitter.
- 3) Complements the 2SD1759/2SD1861/2SD947F.

Circuit schematic

Parameter Collector-base voltage		Symbol	Limits	Unit		
		Vсво	-40	V		
Collector-emitter	voltage	VCER	Vcer -40 V			
Emitter-base volta	age	VEBO	-5	V		
Collector current		lc	-2	A (DC)		
		RC .	-3	A (Pulse) #1		
Collector power dissipation	0001400		1	W		
	2SB1183		10	A (DC) A (Pulse) * W W (Tc=25°C)		
	2SB1239	Pc [1	W *2		
	2SB786F		1.2	W		
	230700		5	W(Tc=25°C)		
Junction temperature		Tj	150	J		
Storage temperat	ure	Tstg	-55~150	۲		

ΑΤ٧

T146

1k-

TO-126FP

1k~

Packaging specifications and hre collector plating 1cm² or larger. Туре 2SB1183 2SB1239 2SB786F CPT3

1k~200k

π

Package

hre

Code

●Electrical characteristics (Ta=25℃)

The sector characteristics (18-25C)						Basic ordening unit (pieces) 2500	2500	1000	
Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions	-	
Collector-base	breakdown voltage	BVсво	-40	—	—	V	lc=-50 μ A	-	
Collector-emitte	er breakdown voltage	BVCER	-40	—		V	lc=-1mA, RBE=10kΩ	_	
Emitter-base b	reakdown voltage	BVEBO	-5		—	v	lε=−50 μ A	_	
Collector cutoff	f current	Ісво	- 1	—	-1	μA	V _{CB} =-24V	-	
Emitter cutoff c	urrent	(EBO		<u> </u>	1	μA	V _{EB} =-4V		
Collector-emitte	er saturation voltage	VCE(eal)	-	_	-1.5	v	Ic/Is=-0.6A/-1.2mA	_	
DC current	2SB1183	hre	1000	1 —	20000	_	$V_{CE/IC} = -2V/-0.5A$		
transfer ratio	2SB1239,2SB786F	TIFE	1000	—	—		VGDIC		
Output capacita	ance	Cob	Τ	11		pF	$V_{CB} = -10V$, $t = 0A$, $t = 1MHz$	_	

Power Transistor (40V, 2A) 2SD1759 / 2SD1861 / 2SD947F

Features

- 1) Darlington connection for high DC current gain.
- 2) Built-in 4kΩ resistor between base and emitter.
- 3 Complements the 2SB1183/2SB1239/2SB786F.

Circuit schematic

●Absolute maximum ratings (Ta=25℃)

Parameter		Symbol	Limits	Unit		
Collector-base voltage		Vceo	40	V		
Collector-emitter voltage		VCER	40	V(R _{BE} =10kΩ)		
Emitter-base voltage		VEBO	5	v		
Collector current			2	A (DC)		
		lc	3	A (Puise) *1		
Collector power dissipation	2SD1861		1	*2		
	0004750	7	1	w		
	2SD1759	Pc	10	W(Tc=25℃)		
	0000475	7	1.2	W		
	2SD947F	1	5	W(Tc=25°C)		
Junction temperature		Tj	150	ۍ ۲		
Storage temperat	ure	Tstg		τ		
I Sigle pulse Pw Packaging sp			Printed circuit boa collector plating 1			

Туре	2SD1759	2SD1861	2SD947F	
Package	CPT3	ATV	TO-126FP	
hee	1k~200k	1 k~-	1k~	
Code	ΤL	TV2	_	
Basic ordering unit (pieces)	2500	2500	1000	

●Electrical characteristics (Ta=25℃)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions	
Collector-base	breakdown voltage	ВУсво	40	—		v	Ic=50 μA	
Collector-emitte	er breakdown voltage	BVCEO	40	—	-	v	Ic=1mA, Re=10kΩ	
Emitter-base b	reakdown voltage	BVEBO	5	—	-	v	IE=50 μ A	
Collector cutoff	current	ICBO		—	1	μA	Vcs=24V	
Emitter cutoff c	urrent	IEBO	_	_	1	μA	VEB=4V	
Collector-emitte	er saturation voltage	VCE(set)		—	1.5	v	Ic/Is=0.6mA/1.2mA	
DC current	2SD1759		1000	—	20000	-		
transfer ratio	2SD1861,2SD947F	hfe	1000				VcE/Ic=3V/0.5A	
Output capacita	ance	Cob		11	-	pF	Vcs=10V, i=0A, i=1MHz	

(96-126-B23)

Packages

ROHM has been manufacturing transistors since 1975. In the development of products, we constantly strive to anticipate the needs of our customers. Regarding packages, the demands of the market for compactness, low power consumption, low power dissipation and automatic mounting support are becoming ever greater, and we are strengthening our product development system to meet these needs.

Types and features of surface-mount packages

EXPLANATION

Transistors

Transistors

Transistors

Packages

Transistors

Туре	External dimensions (Units : mm)	Features
TO-220FN	$\begin{array}{c} 10.0 \stackrel{+0.3}{-0.1} \\ 4.5 \stackrel{+0.3}{-0.1} \\ 2.8 \stackrel{+0.2}{-0.1} \\ \hline 2.8 \stackrel{+0.2}{-0.1} $	The TO-220FN features the same performance as the TO- 220FP with approximately 2 mm less height, allowing the design of slimmer devices. Furthermore, the elimination of support pins in the fin (collector electrode) solves short- circuiting problems with neighboring components and the chassis. To make the heigth to the installation hole the same as the TO-220FP, it can be replaced as is from the TO-220FP.