
4266C–CAN–03/08

CAN

Microcontrollers

AT89C51CC03

UART

Bootloader
Features
• Protocol

– UART Used as Physical Layer

– Based on the Intel Hex-type Records

– Autobaud

• In-System Programming

– Read/Write Flash and EEPROM Memories

– Read Device ID

– Full-chip Erase

– Read/Write Configuration Bytes

– Security Setting From ISP Command

– Remote Application Start Command

• In-Application Programming/Self Programming

– Read/Write Flash and EEPROM Memories

– Read Device ID

– Block Erase

– Read/Write Configuration Bytes

– Bootloader Start

Description

This document describes the UART bootloader functionalities as well as the serial

protocol to efficiently perform operations on the on chip Flash (EEPROM) memories.

Addit ional information on the AT89C51CC03 product can be found in the

AT89C51CC03 datasheet and the AT89C51CC03 errata sheet available on the Atmel

web site.

The bootloader software package (source code and binary) currently used for produc-

tion is available from the Atmel web site.

Bootloader Revision Purpose of Modifications Date

Revision 1.0.1 First release 01/08/2003

Revision 1.2.0 Standardization of tasks in source

program.

20/03/2007

Functional
Description

The AT89C51CC03 Bootloader facilitates In-System Programming and In-Application

Programming.

In-System
Programming
Capability

In-System Programming allows the user to program or reprogram a microcontroller on-chip

Flash memory without removing it from the system and without the need of a pre-programmed

application.

The UART bootloader can manage a communication with a host through the serial network. It

can also access and perform requested operations on the on-chip Flash Memory.

In-Application
Programming or
Self- Programming
Capability

In-Application Programming (IAP) allows the reprogramming of a microcontroller on-chip Flash

memory without removing it from the system and while the embedded application is running.

The UART bootloader contains some Application Programming Interface routines named API

routines allowing IAP by using the user’s firmware.

Block Diagram This section describes the different parts of the bootloader. The figure below shows the on-chip

bootloader and IAP processes.

Figure 1. Bootloader Process Description

ISP Communication
Management

User

Application
UART Protocol
Communication

Management

Flash
Memory

External host via the

Flash Memory

IAP

Management

User Call

On chip
 2

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
ISP Communication

Management

The purpose of this process is to manage the communication and its protocol between the on-

chip bootloader and an external device (host). The on-chip bootloader implements a Serial pro-

tocol (see Section “Protocol”). This process translates serial communication frames (UART) into

Flash memory accesses (read, write, erase...).

User Call Management Several Application Program Interface (API) calls are available to the application program to

selectively erase and program Flash pages. All calls are made through a common interface (API

calls) included in the bootloader. The purpose of this process is to translate the application

request into internal Flash Memory operations.

Flash Memory

Management

This process manages low level accesses to the Flash memory (performs read and write

accesses).

Bootloader Configuration

Configuration and

Manufacturer

Information

The table below lists Configuration and Manufacturer byte information used by the bootloader.

This information can be accessed through a set of API or ISP commands.

Mapping and Default

Value of Hardware

Security Byte

The 4 MSB of the Hardware Byte can be read/written by software (this area is called Fuse bits).

The 4 LSB can only be read by software and written by hardware in parallel mode (with parallel

programmer devices).

Note: U: Unprogram = 1
P: Program = 0

Mnemonic Description Default value

BSB Boot Status Byte FFh

SBV Software Boot Vector FCh

SSB Software Security Byte FFh

EB Extra Byte FFh

Manufacturer 58h

Id1: Family code D7h

Id2: Product Name FFh

Id3: Product Revision FEh

Bit Position Mnemonic Default Value Description

7 X2B U To start in x1 mode

6 BLJB P
To map the boot area in code area between F800h-

FFFFh

5 reserved U

4 reserved U

3 reserved U

2 LB2 P

To lock the chip (see datasheet)1 LB1 U

0 LB0 U
 3

4266C–CAN–03/08

Security The bootloader has Software Security Byte (SSB) to protect itself from user access or ISP

access.

The Software Security Byte (SSB) protects from ISP accesses. The command "Program Soft-

ware Security Bit" can only write a higher priority level. There are three levels of security:

• level 0: NO_SECURITY (FFh)
This is the default level.
From level 0, one can write level 1 or level 2.

• level 1: WRITE_SECURITY (FEh)
In this level it is impossible to write in the Flash memory, BSB and SBV.
The Bootloader returns an error message.
From level 1, one can write only level 2.

• level 2: RD_WR_SECURITY (FCh)
Level 2 forbids all read and write accesses to/from the Flash memory.
The Bootloader returns an error message.

Only a full chip erase command can reset the software security bits.

Software Boot
Vector

The Software Boot Vector (SBV) forces the execution of a user bootloader starting at address

[SBV]00h in the application area (FM0).

The way to start this user bootloader is described in the section “Boot Process”.

Level 0 Level 1 Level 2

Flash/EEPROM Any access allowed Read only access allowed All access not allowed

Fuse bit Any access allowed Read only access allowed All access not allowed

BSB & SBV & EB Any access allowed Read only access allowed All access not allowed

SSB Any access allowed Write level2 allowed Read only access allowed

Manufacturer info Read only access allowed Read only access allowed Read only access allowed

Bootloader info Read only access allowed Read only access allowed Read only access allowed

Erase block Allowed Not allowed Not allowed

Full chip erase Allowed Allowed Allowed

Blank Check Allowed Allowed Allowed

UART Bootloader

Application

User Bootloader
[SBV]00h

FM1

FM0
 4

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
FLIP Software
Program

FLIP is a PC software program running under Windows 9x / NT / 2K / XP and LINUX that sup-

ports all Atmel C51 Flash microcontrollers.

This free software program is available on the Atmel web site.

In-System

Programming

The ISP allows the user to program or reprogram a microcontroller’s on-chip Flash memory

through the serial line without removing it from the system and without the need of a pre-pro-

grammed application.

This section describes how to start the UART bootloader and the higher level protocol over the

serial line.

Boot Process The bootloader can be activated in two ways:

• Hardware conditions

• Regular boot process

Hardware Condition The Hardware conditions (EA = 1, PSEN = 0) during the RESET# falling edge force the on-chip

bootloader execution. In this way the bootloader can be carried out whatever the user Flash

memory content.

As PSEN is an output port in normal operating mode (running user application or bootloader

code) after reset, it is recommended to release PSEN after falling edge of reset signal. The hard-

ware conditions are sampled at reset signal falling edge, thus they can be released at any time

when reset input is low.
 5

4266C–CAN–03/08

Regular Boot Process

RESET

BLJB = 1

Hardware
Condition

Start Bootloader

FCO N = 00h

SBV < F8h

Start User BootloaderStart Application

Yes

No

Yes

Yes

No

No

H
a

rd
w

a
re

B
o

o
t

P
ro

c
e

s
s

S
o

ft
w

a
re

 B
o

o
t

P
ro

c
e

s
s

bit ENBOO T in AUXR1 Register is
initia lized with BLJB inverted

ENBOO T = 1
PC = F800h
FCO N = 0Fh

ENBO OT = 0
PC = 0000h

ENBOOT = 1
PC = F800h
FCON = 00hYes

No
 6

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
Physical Layer The UART used to transmit information has the following configuration:

• Character: 8-bit data

• Parity: none

• Stop: 2 bits

• Flow control: none

• Baud rate: autobaud is performed by the bootloader to compute the baud rate chosen by the

host.

Frame Description The Serial Protocol is based on the Intel Hex-type records.

Intel Hex records consist of ASCII characters used to represent hexadecimal values and are

summarized below.

Table 1. Intel Hex Type Frame

• Record Mark:

– Record Mark is the start of frame. This field must contain ’:’.

• Record length:

– Record length specifies the number of Bytes of information or data which follows the

Record Type field of the record.

• Load Offset:

– Load Offset specifies the 16-bit starting load offset of the data Bytes, therefore this

field is used only for

– Data Program Record.

• Record Type:

– Record Type specifies the command type. This field is used to interpret the

remaining information within the frame.

• Data/Info:

– Data/Info is a variable length field. It consists of zero or more Bytes encoded as pairs

of hexadecimal digits. The meaning of data depends on the Record Type.

• Checksum:

– The two’s complement of the 8-bit Bytes that result from converting each pair of

ASCII hexadecimal digits to one Byte of binary, and including the Record Length field

to and including the last Byte of the Data/Info field. Therefore, the sum of all the

ASCII pairs in a record after converting to binary, from the Record Length field to and

including the Checksum field, is zero.

Record Mark ‘:’ Record length Load Offset Record Type Data or Info Checksum

1 byte 1 byte 2 bytes 1 bytes n byte 1 byte
 7

4266C–CAN–03/08

Protocol

Overview An initialization step must be performed after each Reset. After microcontroller reset, the boot-

loader waits for an autobaud sequence (see Section “Autobaud Performances”).

When the communication is initialized the protocol depends on the record type issued by the

host.

Communication

Initialization

The host initiates the communication by sending a ’U’ character to help the bootloader to com-

pute the baud rate (autobaud).

Figure 2. Initialization

Autobaud

Performances

The bootloader supports a wide range of baud rates. It is also adaptable to a wide range of oscil-

lator frequencies. This is accomplished by measuring the bit-time of a single bit in a received

character. This information is then used to program the baud rate in terms of timer counts based

on the oscillator frequency. Table 2 shows the autobaud capabilities.

Host Bootloader

"U"
Performs Autobaud

Init Communication

If (not received "U")
"U"

 Communication Opened
Else

Sends Back ‘U’ Character

Table 2. Autobaud Performances

Frequency

(MHz)

Baudrate

(kHz) 1.8432 2 2.4576 3 3.6864 4 5 6 7.3728

2400 OK OK OK OK OK OK OK OK OK

4800 OK - OK OK OK OK OK OK OK

9600 OK - OK OK OK OK OK OK OK

19200 OK - OK OK OK - - OK OK

38400 - - OK OK - OK OK OK

57600 - - - - OK - - - OK

115200 - - - - - - - - OK

Frequency

(MHz)

Baudrate

(kHz) 8 10 11.0592 12 14.746 16 20 24 26.6

2400 OK OK OK OK OK OK OK OK OK

4800 OK OK OK OK OK OK OK OK OK

9600 OK OK OK OK OK OK OK OK OK

19200 OK OK OK OK OK OK OK OK OK
 8

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
Command Data Stream Protocol

All commands are sent using the same flow. Each frame sent by the host is echoed by the

bootloader.

Figure 3. Command Flow

38400 - - OK OK OK OK OK OK OK

57600 - - OK - OK OK OK OK OK

115200 - - OK - OK - - - -

Frequency

(MHz)

Baudrate

(kHz) 8 10 11.0592 12 14.746 16 20 24 26.6

Bootloader

":"Sends first character of the
Frame

If (not received ":")

Sends frame (made of 2 ASCII Gets frame, and sends back echo
for each received Byte

Host

Else":"

 Sends echo and start
 reception

characters per Byte)
Echo analysis
 9

4266C–CAN–03/08

Programming the

Flash or EEPROM data

The flow described below shows how to program data in the Flash memory or in the EEPROM

data memory.

The bootloader programs on a page of 128 bytes basis when it is possible.

The host must take care that:

• The data to program transmitted within a frame are in the same page.

Requests from Host

Answers from

Bootloader

The bootloader answers with:

• ‘.’ & ‘CR’ & ’LF’ when the data are programmed

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

Flow Description

Example

Command Name

 Record

Type

 Load

Offset

Record

Length Data[0] ... Data[127]

Program Flash 00h
start

address
nb of Data x ... x

Program EEPROM

Data
07h

start

address
nb of Data x ... x

Host Bootloader

Write Command

’X’ & CR & LF

NO_SECURITY

Wait Write Command

Checksum error

Wait Programming

Send Security error

Send COMMAND_OK

Send Write Command

Wait Checksum Error

Wait COMMAND_OK

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum error

COMMAND ABORTED

’P’ & CR & LF
OR

’.’ & CR & LF

HOST : 01 0010 00 55 9A

BOOTLOADER : 01 0010 00 55 9A . CR LF

Programming Data (write 55h at address 0010h in the Flash)
 10

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
Read the Flash or

EEPROM Data

The flow described below allows the user to read data in the Flash memory or in the EEPROM

data memory. A blank check command is possible with this flow.

The device splits into blocks of 16 bytes the data to transfer to the Host if the number of data to

display is greater than 16 data bytes.

Requests from Host

Note: The field “Load offset” is not used.

Answers from

Bootloader

The bootloader answers to a read Flash or EEPROM Data memory command:

• ‘Address = data ‘ & ‘CR’ & ’LF’
up to 16 data by line.

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘L’ & ‘CR’ & ‘LF’ if the Security is set

The bootloader answers to blank check command:

• ‘.’ & ‘CR’ & ’LF’ when the blank check is ok

• ‘First Address wrong’ ‘CR’ & ‘LF’ when the blank check is fail

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

Flow Description: Blank

Check Command

Command Name

 Record

Type

 Load

Offset

Record

Length Data[0] Data[1] Data[2] Data[3] Data[4]

Read Flash

04h x 05h start address end Address

00h

Blank check on

Flash
01h

Read EEPROM

Data
02h

Host Bootloader

Blank Check Command

’X’ & CR & LF

 Flash blank

Wait Blank Check Command

Send first Address

Send COMMAND_OK

Send Blank Check Command

Wait Checksum Error

Wait Address not

erased

Wait COMMAND_OK

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum error

COMMAND FINISHED

’.’ & CR & LFOR

address & CR & LF
 not erased

Checksum error
 11

4266C–CAN–03/08

Example

Flow Description: Read

Command

HOST : 05 0000 04 0000 7FFF 01 78

BOOTLOADER : 05 0000 04 0000 7FFF 01 78 . CR LF

Blank Check ok

BOOTLOADER : 05 0000 04 0000 7FFF 01 70 X CR LF CR LF

Blank Check with checksum error

HOST : 05 0000 04 0000 7FFF 01 70

BOOTLOADER : 05 0000 04 0000 7FFF 01 78 xxxx CR LF

Blank Check ko at address xxxx

HOST : 05 0000 04 0000 7FFF 01 78

Host Bootloader

Display Command

’X’ & CR & LF

RD_WR_SECURITY

Wait Display Command

Read Data

Send Security Error

Send Display Data

Send Display Command

Wait Checksum Error

Wait Display Data

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum Error

COMMAND ABORTED

’L’ & CR & LF
OR

"Address = "

All data read

Complete Frame

"Reading value"

CR & LF

All data readAll data read

COMMAND FINISHED

Checksum error
 12

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
Example

Program

Configuration

Information

The flow described below allows the user to program Configuration Information regarding the

bootloader functionality.

The Boot Process Configuration:

BSB
SBV
Fuse bits (BLJB and X2 bits) (see Section “Mapping and Default Value of Hardware Security

Byte”)
SSB
EB

Requests from Host

Note: 1. The field “Load Offset” is not used

2. To program the BLJB and X2 bit the “bit value” is 00h or 01h.

Answers from

Bootloader

The bootloader answers with:

• ‘.’ & ‘CR’ & ’LF’ when the value is programmed

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

HOST : 05 0000 04 0000 0020 00 D7

BOOTLOADER : 05 0000 04 0000 0020 00 D7

BOOTLOADER 0000=-----data------ CR LF (16 data)

BOOTLOADER 0010=-----data------ CR LF (16 data)

BOOTLOADER 0020=data CR LF (1 data)

Display data from address 0000h to 0020h

Command Name

 Record

Type

 Load

Offset

Record

Length Data[0] Data[1] Data[2]

Erase SBV & BSB

03h x

02h 04h 00h -

Program SSB level1
02h 05h

00h -

Program SSB level2 01h -

Program BSB

03h 06h

00h

valueProgram SBV 01h

Program EB 06h

Program bit BLJB
03h 0Ah

04h
bit value

Program bit X2 08h
 13

4266C–CAN–03/08

Flow Description

Example

Host Bootloader

Write Command

’X’ & CR & LF

NO_SECURITY

Wait Write Command

Checksum error

Wait Programming

Send Security error

Send COMMAND_OK

Send Write Command

Wait Checksum Error

Wait COMMAND_OK

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum error

COMMAND ABORTED

’P’ & CR & LF
OR

’.’ & CR & LF

HOST : 02 0000 03 05 01 F5

BOOTLOADER : 02 0000 03 05 01 F5. CR LF

Programming Atmel function (write SSB to level 2)

HOST : 03 0000 03 06 00 55 9F

BOOTLOADER : 03 0000 03 06 00 55 9F . CR LF

Writing Frame (write BSB to 55h)
 14

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
Read Configuration

Information or

Manufacturer

Information

The flow described below allows the user to read the configuration or manufacturer information.

Requests from Host

Note: The field “Load Offset” is not used

Answers from

Bootloader

The bootloader answers with:

• ‘value’ & ‘.’ & ‘CR’ & ’LF’ when the value is programmed

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

Command Name

 Record

Type

 Load

Offset

Record

Length Data[0] Data[1]

Read Manufacturer Code

05h x 02h

00h

00h

Read Family Code 01h

Read Product Name 02h

Read Product Revision 03h

Read SSB

07h

00h

Read BSB 01h

Read SBV 02h

Read EB 06h

Read HSB (Fuse bit) 0Bh 00h

Read Device ID1
0Eh

00h

Read Device ID2 01h

Read Bootloader version 0Fh 00h
 15

4266C–CAN–03/08

Flow Description

Example

Erase the Flash The flow described below allows the user to erase the Flash memory.

Two modes of Flash erasing are possible:

• Full Chip erase

• Block erase

The Full Chip erase command erases the whole Flash (64 Kbytes) and sets some Configuration

Bytes at their default values:

• BSB = FFh

• SBV = FCh

• SSB = FFh (NO_SECURITY)

The full chip erase is always executed whatever the Software Security Byte value is.

The Block erase command erases only a part of the Flash.

Three Blocks are defined in the AT89C51CC03:

• block0 (From 0000h to 1FFFh)

• block1 (From 2000h to 3FFFh)

Host Bootloader

Read Command

’X’ & CR & LF

RD_WR_SECURITY

Wait Read Command

Read Value

Send Security error

Send Data Read

Send Read Command

Wait Checksum Error

Wait Value of Data

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum error

COMMAND ABORTED

’L’ & CR & LF
OR

’value’ & ’.’ & CR & LF

Checksum error

HOST : 02 0000 05 07 02 F0

BOOTLOADER : 02 0000 05 07 02 F0 Value . CR LF

HOST : 02 0000 01 02 00 FB

BOOTLOADER : 02 0000 01 02 00 FB Value . CR LF

Read function (read SBV)

Atmel Read function (read Bootloader version)
 16

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
• block2 (From 4000h to 7FFFh)

• block3 (From 8000h to BFFFh)

• block4 (From C000h to FFFFh)

Requests from Host

Answers from

Bootloader

As the Program Configuration Information flows, the erase block command has three possible

answers:

• ‘.’ & ‘CR’ & ’LF’ when the data are programmed

• ‘X’ & ‘CR’ & ‘LF’ if the checksum is wrong

• ‘P’ & ‘CR’ & ‘LF’ if the Security is set

Flow Description

Command Name

 Record

Type

 Load

Offset

Record

Length Data[0] Data[1]

Erase block0 (0k to 8k)

03h x
02h 01h

00h

Erase block1 (8k to 16k) 20h

Erase block2 (16k to 32k) 40h

Erase block3 (32k to 48k) 80h

Erase block4 (48k to 64k) C0h

Full chip erase 01h 07h -

Host Bootloader

Erase Command

’X’ & CR & LF

NO_SECURITY

Wait Erase Command

Checksum error

Wait Erasing

Send Security error

Send COMMAND_OK

Send Erase Command

Wait Checksum Error

Wait COMMAND_OK

Wait Security Error

OR

COMMAND ABORTED

COMMAND FINISHED

Send Checksum error

COMMAND ABORTED

’P’ & CR & LF
OR

’.’ & CR & LF
 17

4266C–CAN–03/08

Example

HOST : 01 0000 03 07 F5

BOOTLOADER : 01 0000 03 07 F5 . CR LF

Full Chip Erase

HOST : 02 0000 03 01 20 DA

BOOTLOADER : 02 0000 03 01 20 DA . CR LF

Erase Block1(8k to 16k)
 18

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
Start the Application The flow described below allows to start the application directly from the bootloader upon a spe-

cific command reception.

Two options are possible:

• Start the application with a reset pulse generation (using watchdog).
When the device receives this command the watchdog is enabled and the bootloader enters

a waiting loop until the watchdog resets the device.
Take care that if an external reset chip is used the reset pulse in output may be wrong and in

this case the reset sequence is not correctly executed.

• Start the application without reset
A jump at the address 0000h is used to start the application without reset.

Requests from Host

Answer from Bootloader No answer is returned by the device.

Example

Command Name

 Record

type

 Load

Offset

Record

Length Data[0] Data[1] Data[2] Data[3]

Start application with a reset

pulse generation
03h x

02h

03h

00h - -

Start application with a jump

at “address”
04h 01h Address

HOST : 02 0000 03 03 00 F8

BOOTLOADER : 02 0000 03 03 00 F8

Start Application with reset pulse

HOST : 04 0000 03 03 01 00 00 F5

BOOTLOADER : 04 0000 03 03 01 00 00 F5

Start Application without reset at address 0000h
 19

4266C–CAN–03/08

In-Application

Programming/S

elf-

Programming

The IAP allows to reprogram a microcontroller on-chip Flash memory without removing it from

the system and while the embedded application is running.

The user application can call some Application Programming Interface (API) routines allowing

IAP. These API are executed by the bootloader.

To call the corresponding API, the user must use a set of Flash_api routines which can be linked

with the application.

Example of Flash_api routines are available on the Atmel web site on the software package:

C Flash Drivers for the AT89C51CC03UA

The Flash_api routines on the package work only with the UART bootloader.

The Flash_api routines are listed in Appendix-2.

API Call

Process The application selects an API by setting R1, ACC, DPTR0 and DPTR1 registers.

All calls are made through a common interface “USER_CALL” at the address FFF0h.

The jump at the USER_CALL must be done by LCALL instruction to be able to comeback in the

application.

Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.

Constraints The interrupts are not disabled by the bootloader.

Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled when

returning.

Interrupts must also be disabled before accessing EEPROM Data then re-enabled after.

The user must take care of hardware watchdog before launching a Flash operation.

For more information regarding the Flash writing time see the AT89C51CC03 datasheet.
 20

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
API Commands Several types of APIs are available:

• Read/Program Flash and EEPROM Data memory

• Read Configuration and Manufacturer Information

• Program Configuration Information

• Erase Flash

• Start bootloader

Read/Program Flash

and EEPROM Data

Memory

All routines to access EEPROM Data are managed directly from the application without using

bootloader resources.

To read the Flash memory the bootloader is not involved.

For more details on these routines see the AT89C51CC03 datasheet sections “Program/Code

Memory” and “EEPROM Data Memory”

Two routines are available to program the Flash:

– __api_wr_code_byte

– __api_wr_code_page

• The application program load the column latches of the Flash then call the

__api_wr_code_byte or __api_wr_code_page see datasheet in section “Program/Code

Memory”.

• Parameter settings

• instruction: LCALL FFF0h.

Note: No special resources are used by the bootloader during this operation

Read Configuration

and Manufacturer

Information

• Parameter settings

API_name R1 DPTR0 DPTR1 Acc

__api_wr_code_byte 02h

Address in

Flash

memory to

write

- Value to write

__api_wr_code_page 09h

Address of

the first Byte

to program in

the Flash

memory

Address in

XRAM of the

first data to

program

Number of Byte

to program

API_name R1 DPTR0 DPTR1 Acc

__api_rd_HSB 0Bh 0000h x return HSB

__api_rd_BSB 07h 0001h x return BSB

__api_rd_SBV 07h 0002h x return SBV

__api_rd_SSB 07h 0000h x return SSB

__api_rd_EB 07h 0006h x return EB

__api_rd_manufacturer 00h 0000h x
return

manufacturer id

__api_rd_device_id1 00h 0001h x return id1
 21

4266C–CAN–03/08

• Instruction: LCALL FFF0h.

• At the complete API execution by the bootloader, the value to read is in the api_value

variable.

Note: No special resources are used by the bootloader during this operation

Program

Configuration

Information

• Parameter settings

• instruction: LCALL FFF0h.

Note: 1. See in the AT89C51CC03 datasheet the time that a write operation takes.

2. No special resources are used by the bootloader during these operations

__api_rd_device_id2 00h 0002h x return id2

__api_rd_device_id3 00h 0003h x return id3

__api_rd_bootloader_version 0Fh 0000h x return value

API_name R1 DPTR0 DPTR1 Acc

API Name R1 DPTR0 DPTR1 Acc

__api_set_X2 0Ah 0008h x 00h

__api_clr_X2 0Ah 0008h x 01h

__api_set_BLJB 0Ah 0004h x 00h

__api_clr_BLJB 0Ah 0004h x 01h

__api_wr_BSB 06h 0000h x value to write

__api_wr_SBV 06h 0001h x value to write

__api_wr_EB 06h 0006h x value to write

__api_wr_SSB_LEVEL0 05h FFh x x

__api_wr_SSB_LEVEL1 05h FEh x x

__api_wr_SSB_LEVEL2 05h FCh x x
 22

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
Erase Flash The AT89C51CC03 flash memory is divided in several blocks:

Block 0: from address 0000h to 1FFFh

Block 1: from address 2000h to 3FFFh

Block 2: from address 4000h to 7FFFh

These three blocks contain 128 pages.

• Parameter settings

• instruction: LCALL FFF0h.

Note: 1. See the AT89C51CC03 datasheet for the time that a write operation takes and this time must

multiply by the number of pages.

2. No special resources are used by the bootloader during these operations

Start Bootloader This routine allows to start at the beginning of the bootloader as after a reset. After calling this

routine the regular boot process is performed and the communication must be opened before

any action.

• No special parameter setting

• Set bit ENBOOT in AUXR1 register

• instruction: LJUMP or LCALL at address F800h

API name R1 DPTR0 DPTR1 Acc

__api_erase_block0

01h

0000h x x

__api_erase_block1 2000h x x

__api_erase_block2 4000h x x

__api_erase_block3 8000h x x

__api_erase_block4 C000h x x
 23

4266C–CAN–03/08

APPENDIX-A
Table 3. Summary of Frames from Host

Command

 Record

Type

Record

Length Offset Data[0] Data[1] Data[2] Data[3] Data[4]

Program Nb Data Byte in Flash. 00h
nb of data

(up to 80h)

start

address
x x x x x

Erase block0 (0000h-1FFFh)

03h

02h x 01h

00h - - -

Erase block1 (2000h-3FFFh) 20h - - -

Erase block2 (4000h-7FFFh) 40h - - -

Erase block3 (8000h-BFFFh) 80h - - -

Erase block4 (C000h-FFFFh) C0h - - -

Start application with a reset pulse

generation
02h x

03h

00h - - -

Start application with a jump at

“address”
04h x 01h address -

Erase SBV & BSB

02h

x 04h 00h - - -

Program SSB level 1 x
05h

00h - - -

Program SSB level 2 x 01h - - -

Program BSB

03h

x

06h

00h value - -

Program SBV x 01h value - -

Program EB x 06h value - -

Full Chip Erase 01h x 07h - - - -

Program bit BLJB
03h

x
0Ah

04h bit value - -

Program bit X2 x 08h bit value - -

Read Flash

04h 05h x Start Address End Address

00h

Blank Check 01h

Read EEPROM Data 02h

Read Manufacturer Code

05h 02h x

00h

00h - - -

Read Family Code 01h - - -

Read Product Name 02h - - -

Read Product Revision 03h - - -

Read SSB

07h

00h - - -

Read BSB 01h - - -

Read SBV 02h - - -

Read EB 06h - - -

Read Hardware Byte 0Bh 00h - - -

Read Device Boot ID1
0Eh

00h - - -

Read Device Boot ID2 01h - - -

Read Bootloader Version 0Fh 00h - - -

Program Nb Data byte in EEPROM 00h
nb of data

(up to 80h)

start

address
x x x x x
 24

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

 AT89C51CC03 UART Bootloader
APPENDIX-B
Table 4. API Summary

Function Name

Bootloader

Execution R1 DPTR0 DPTR1 Acc

__api_rd_code_byte no

__api_wr_code_byte yes 02h

Address in

Flash memory

to write

- Value to write

__api_wr_code_page yes 09h

Address of the

first Byte to

program in the

Flash memory

Address in

XRAM of the

first data to

program

Number of Byte to

program

__api_erase_block0 yes 01h 0000h x x

__api_erase_block1 yes 01h 2000h x x

__api_erase_block2 yes 01h 4000h x x

__api_erase_block3 yes 01h 8000h x x

__api_erase_block4 yes 01h C000h x x

__api_rd_HSB yes 0Bh 0000h x return value

__api_set_X2 yes 0Ah 0008h x 00h

__api_clr_X2 yes 0Ah 0008h x 01h

__api_set_BLJB yes 0Ah 0004h x 00h

__api_clr_BLJB yes 0Ah 0004h x 01h

__api_rd_BSB yes 07h 0001h x return value

__api_wr_BSB yes 06h 0000h x value

__api_rd_SBV yes 07h 0002h x return value

__api_wr_SBV yes 06h 0001h x value

__api_erase_SBV yes 06h 0001h x FCh

__api_rd_SSB yes 07h 0000h x return value

__api_wr_SSB_level0 yes 05h 00FFh x x

__api_wr_SSB_level1 yes 05h 00FEh x x

__api_wr_SSB_level2 yes 05h 00FCh x x

__api_rd_EB yes 07h 0006h x return value

__api_wr_EB yes 06h 0006h x value

__api_rd_manufacturer yes 00h 0000h x return value

__api_rd_device_id1 yes 00h 0001h x return value

__api_rd_device_id2 yes 00h 0002h x return value

__api_rd_device_id3 yes 00h 0003h x return value

__api_rd_bootloader_version yes 0Fh 0000h x return value

__api_eeprom_busy no
 25

4266C–CAN–03/08

Datasheet Revision History

4266C - 03/08 1. Updated Bootloader version.

__api_rd_eeprom_byte no

__api_wr_eeprom_byte no

__api_start_bootloader no

Table 4. API Summary (Continued)

Function Name

Bootloader

Execution R1 DPTR0 DPTR1 Acc
 26

4266C–CAN–03/08

AT89C51CC03 UART Bootloader

Headquarters International

Atmel Corporation

2325 Orchard Parkway

San Jose, CA 95131

USA

Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Atmel Asia

Room 1219

Chinachem Golden Plaza

77 Mody Road Tsimshatsui

East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud

BP 309

78054 Saint-Quentin-en-

Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.

1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

Enter Product Line E-mail

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of

Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
4266C–CAN–03/08

	Features
	Description
	Functional Description
	In-System Programming Capability
	In-Application Programming or Self- Programming Capability
	Block Diagram
	ISP Communication Management
	User Call Management
	Flash Memory Management

	Bootloader Configuration
	Configuration and Manufacturer Information
	Mapping and Default Value of Hardware Security Byte

	Security
	Software Boot Vector
	FLIP Software Program

	In-System Programming
	Boot Process
	Hardware Condition
	Regular Boot Process

	Physical Layer
	Frame Description

	Protocol
	Overview
	Communication Initialization
	Autobaud Performances
	Command Data Stream Protocol
	Programming the Flash or EEPROM data
	Requests from Host
	Answers from Bootloader
	Flow Description
	Example

	Read the Flash or EEPROM Data
	Requests from Host
	Answers from Bootloader
	Flow Description: Blank Check Command
	Example
	Flow Description: Read Command
	Example

	Program Configuration Information
	Requests from Host
	Answers from Bootloader
	Flow Description
	Example

	Read Configuration Information or Manufacturer Information
	Requests from Host
	Answers from Bootloader
	Flow Description
	Example

	Erase the Flash
	Requests from Host
	Answers from Bootloader
	Flow Description
	Example

	Start the Application
	Requests from Host
	Answer from Bootloader
	Example

	In-Application Programming/S elf- Programming
	API Call
	Process
	Constraints

	API Commands
	Read/Program Flash and EEPROM Data Memory
	Read Configuration and Manufacturer Information
	Program Configuration Information
	Erase Flash
	Start Bootloader

	APPENDIX-A
	APPENDIX-B
	Datasheet Revision History
	4266C - 03/08

