MLX90290

Melexis

High Speed Factory Trimmed Linear Hall IC - Datasheet

1. Features and Benefits

- Linear Hall Sensor
- Small Size
- High Sensitivity
- High Accuracy
- High Speed
- Fast Start-Up for power gating in Micropower applications
- Factory Programmed Customization
 - Sensitivity
 - Magnet Thermal Drift Compensation
 - Supply Voltage

The device is offered in a RoHS compliant Thin Small Outline Transistor (TSOT) for surface mount and UA (TO-92) for Pin Through Hole mount.

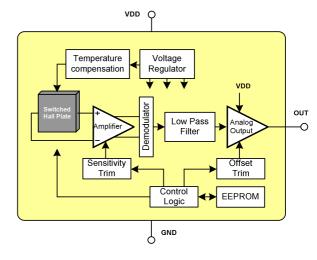


Figure 1 Functional Block Diagram MLX90290

2. Application Examples

- Linear Position Sensor
- Rotary Position Sensor
- Current Sensing
- Motor Commutation/Resolving

3. Description

The Melexis MLX90290 is a Second Generation linear Hall-effect sensor designed in mixed signal CMOS technology.

The device integrates a voltage regulator, Hall sensor with advanced offset cancellation system and an analog output driver, all in a single package.

The Output voltage is proportional to the applied magnetic field and to the chip supply voltage (ratiometric). Multiple sensitivity codes & magnet compensation options exists.

The Output Offset Level (Quiescent Level) at zero magnetic field equals to 50% of the chip supply voltage.

Contents

1. Features and Benefits	1
2. Application Examples	1
3. Description	1
4. Ordering Information	3
5. Glossary of Terms	6
6. Pin Definitions and Descriptions	6
7. Absolute Maximum Ratings	7
8. General Electrical Specifications	7
9. Sensor Specific Specifications	9
10. Detailed General Description	11
10.1. Characteristic Definitions	11
11. Application Information	12
11.1. Typical Application Diagram	12
11.2. Application Circuit for Harsh and Noisy Environment	13
12. Package Information –Example from MLX90290	14
12.1. UA (TO92-3L) Package Information	14
12.1.1. Trim and form with 2.54mm distance between leads; only available on tape	15
12.2. SE (TSOT-3L) Package Information	16
13. Standard Information	16
14. ESD Precautions	17
15. Contact	17
16. Disclaimer	17

4. Ordering Information

Product Code	Temperature Code	Package Code	Option Code	Packing Form Code
MLX90290	L	UA	AAA-XYZ	BU
MLX90290	L	SE	AAA-XYZ	RE

Legend:

Option Code:

Temperature Code: L(-40°C to 150°C)

Package Code: UA=TO-92-3L/ SE=TSOT-3L

AAA-XYZ:

AAA = die version

X = V_{DDNOM} and trim&form options for UA package

 $Y = S_{REL}$

0: 18.8 mV/mT @ 5V or 12.408 mV/mT @ 3.3V
 1: 25 mV/mT @ 5V or 16.5 mV/mT @ 3.3V
 2: 31.25mV/mT @ 5V or 20.625mV/mT@ 3.3V
 3: 50 mV/mT @ 5V or 33 mV/mT @ 3.3V
 4: 100 mV/mT @ 5V or 66 mV/mT @ 3.3V

Z = TCS

0: 0 ppm/°C1: 500 ppm/°C2 2000 ppm/°C

Important : S_{rel} is expressed as mV/mT for 5V. This sensitivity scales with supply voltage. E.g. Option 1 with 3.3V VDD supply voltage becomes 16.5 mV/mT = 3.3/5*25 mV/mT.

	Package Options	
Supply Voltage	SE UA with straight leads	UA with 2.54mm pitch, see section "UA package, trim and form"
3.3 V ± 5 %	X=3	X=4
5.0 V ± 10 %	X=5	X=6
Packing Form:	RE = Reel for SE or UA CR = Radial Tape for UA (Carton Tape CA = Radial Tape for UA (Carton Tape BU = Bulk for SE or UA	•
Ordering example:	(UA) component with leads separat Tape on Reel. The sensitivity corres	ordering code indicates a 5V supply pated to achieve a 2.54mm pitch delive sponds to 25mV/mT and a thermal content the magnet thermal drift (assumed to

Ordering Code	Package	Supply Voltage	Absolute Sensitivity	тс	Lead Forming	Packing Form ⁽¹⁾
MLX90290LSE-AAA-310-RE	TSOT-3L	3.3V	16.5mV/mT ⁽²⁾	0ppm/°C	N/A	Plastic Tape on Reel
MLX90290LSE-AAA-320-RE	TSOT-3L	3.3V	20.625mV/mT ⁽²⁾	0ppm/°C	N/A	Plastic Tape on Reel
MLX90290LSE-AAA-332-RE	TSOT-3L	3.3V	33mV/mT ⁽²⁾	2000ppm/°C	N/A	Plastic Tape on Reel
MLX90290LSE-AAA-510-RE	TSOT-3L	5V	25mV/mT	0ppm/°C	N/A	Plastic Tape on Reel
MLX90290LSE-AAA-511-RE	TSOT-3L	5V	25mV/mT	500ppm/°C	N/A	Plastic Tape on Reel
MLX90290LSE-AAA-530-RE	TSOT-3L	5V	50mV/mT	0ppm/°C	N/A	Plastic Tape on Reel
MLX90290LSE-AAA-540-RE	TSOT-3L	5V	100mV/mT	0ppm/°C	N/A	Plastic Tape on Reel
MLX90290LUA-AAA-500-BU	TO92-3L	5V	18.8mV/mT	0ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-500-RE	TO92-3L	5V	18.8mV/mT	0ppm/°C	Std 1.27mm	Plastic Tape on Reel
MLX90290LUA-AAA-510-BU	TO92-3L	5V	25mV/mT	0ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-510-RE	TO92-3L	5V	25mV/mT	0ppm/°C	Std 1.27mm	Plastic Tape on Reel
MLX90290LUA-AAA-511-BU	TO92-3L	5V	25mV/mT	500ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-520-BU	TO92-3L	5V	31.25mV/mT	0ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-521-BU	TO92-3L	5V	31.25mV/mT	500ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-522-BU	TO92-3L	5V	31.25mV/mT	2000ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-530-BU	TO92-3L	5V	50mV/mT	0ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-531-BU	TO92-3L	5V	50mV/mT	500ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-532-BU	TO92-3L	5V	50mV/mT	2000ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-540-BU	TO92-3L	5V	100mV/mT	0ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-542-BU	TO92-3L	5V	100mV/mT	2000ppm/°C	Std 1.27mm	Bulk
MLX90290LUA-AAA-620-CR	TO92-3L	5V	31.25mV/mT	0ppm/°C	2.54mm spread	Carton Tape on Reel

Ordering Code	Package	Supply Voltage	Absolute Sensitivity	тс	Lead Forming	Packing Form ⁽¹⁾
MLX90290LUA-AAA-621-CR	TO92-3L	5V	31.25mV/mT	500ppm/°C	2.54mm spread	Carton Tape on Reel
MLX90290LUA-AAA-622-CR	TO92-3L	5V	31.25mV/mT	2000ppm/°C	2.54mm spread	Carton Tape on Reel
MLX90290LUA-AAA-622-CA	TO92-3L	5V	31.25mV/mT	2000ppm/°C	2.54mm spread	Carton Tape in Ammopack
MLX90290LUA-AAA-631-CA	T092-3L	5V	50 mV/mT	500ppm/°C	2.54mm spread	Carton Tape in Ammopack

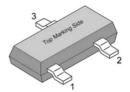
Table 1 Available option codes in production

The above option codes are all released in production. An option code refers to the sensitivity and magnet compensation. In order to obtain a not listed option code in Table 1, please contact your local Sales Representative to explore the options of customization during Melexis factory trimming.

- (1) Melexis can provide for a given option code a different packing forms, such as –RE for TSOT-3L surface mount package and –BU, –CR or –CA for TO92-3L through hole package. So, it is possible to obtain a different packing form for a product listed in Table 1.
- (2) Sensitivity already scaled for 3.3V

5. Glossary of Terms


Tesla [T]	Units of magnetic flux density: 1mT = 10 Gauss
ESD	Electro-Static Discharge
TSOT	Thin Small Outline Transistor package
PSRR	Power Supply Rejection Ratio
ECU	Electronic Control Unit
SMD	Surface Mount Devices
THD	Through Hole Device
RoHS	Restriction of Hazardous Substances


Table 2

6. Pin Definitions and Descriptions

SE Pin №	UA Pin Nº	Name	Туре	Function
1	1	VDD	Supply	Supply Voltage
2	3	OUT	I/O	Analog Output
3	2	GND	Ground	Ground

Table 3 Pin Definitions and Descriptions

UA package

SE package

7. Absolute Maximum Ratings

Operating Characteristics, V_{DD} = 3.15V to 5.5V, T_A = -40°C to 150°C, C1 \geq 0.1 μ F (unless otherwise specified)

1 0 , 55	, ,,	, , ,	' '
Parameter	Symbol	Value	Units
Supply Voltage	V_{DD}	-0.3 to 7	V
Supply Current ⁽¹⁾	I_{DD}	±20	mA
Output Voltage	V_{OUT}	-0.3 to V_{DD} +0.3	V
Output Current ⁽¹⁾	I_{OUT}	±20	mA
Operating Temperature Range	T_A	-40 to 150	°C
Maximum Junction Temperature	T _J	165	°C
Storage Temperature Range	T_S	-55 to 165	°C
ESD Sensitivity (Human Body Model) ⁽²⁾	ESD_HBM	8	kV
ESD Sensitivity (Charged Device Model) ⁽³⁾ (AEC Q100 002)	ESD _{CDM}	500	V
Maximum Flux Density	В	> 1000	mT

Table 4 Absolute Maximum Ratings

- Note1: Including the current flowing through the protection structure. Maximum power dissipation should be also considered
- Note 2: Human Body Model according AEC-Q100-002 standard
- Note 3: Charged Device Model according AEC-Q100-011 standard

Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

8. General Electrical Specifications

Operating Characteristics, V_{DD} = 3.15V to 5.5V, T_A = -40°C to 150°C, C1 \geq 0.1 μ F (unless otherwise specified)

Characteristics	Symbol	Test Conditions	Min	Typ ⁽¹⁾	Max	Units
Supply Voltage	V_{DD}	Operating	3.15	-	5.5	V
Supply Current	I _{DD}		3	5	8	mA
Reset Voltage	V _{POR}	OUT → High Impedance	-	2.7	2.95	V
Load Current Range	I _{OUT}		-1	-	1	mA
Load Resistance	RL	Connected	5	-	Infinite	kΩ

Characteristics	Symbol	Test Conditions	Min	Typ ⁽¹⁾	Max	Units
Range		between OUT and GND				
Load Capacitor Range (2)	C_L	Connected between OUT and GND	0	10	100 with R_S =50 Ω	nF
Output Saturation Voltage	Voshi	I _{OUT} = -1mA, B=1.1*(V _{DD} - V _{OQ})/S	V _{DD} - 0.25	-	V_{DD}	V
	V _{OSHI} (2)	I _{OUT} = -0.1mA, B=1.1*(V _{DD} - V _{OQ})/S	V _{DD} - 0.1	-	V_{DD}	V
	Voslo	I _{OUT} =1mA, B=1.1*(-V _{OQ})/S	0	-	0.25	V
	V _{OSLO} (2)	I _{OUT} =0.1mA, B=1.1*(-V _{OQ})/S	0	-	0.1	V
Output Resistance	Rout	I _{OUT} = ±1mA	-	1.5	5	Ω
Power-On Time (3,4)	ton	V_{DD} = V_{DDNOM} (5), B=0.4/ S_{REL} , dV_{DD}/dt >2 V/us	-	40	70	μs
Chopping Frequency	F _{CHOP}		-	900	-	kHz
Sample / Update Period	Tsample	Tsample=1/Fchop	-	1.1	-	us
Power Supply Rejection Ratio (2)	PSRR	From 80kHz to 200kHz	20	-	-	dB
Package Thermal Resistance Junction to Ambient	R _{ТНЈА}	TSOT-3L	-	230	-	°C/W
		3-SIP-UA / TO92- UA	-	180	-	°C/W

Table 5 : General Electrical Specification

Note 1: Typical values are defined at $T_A = 25^{\circ}C$ and $V_{DD} = V_{DDNOM}$

Note 2: Guaranteed by design and characterization

Note 3: The Power-On Time represents the time from reaching $V_{DD} = 3.15V$ to VOUT settled within $\pm 5\%$ from its final value

Note 4: Power-On Slew Rate is not critical for the proper device start-up

Note 5: $V_{DDNOM} = 5V$ or 3.3V - the value used at trimming

9. Sensor Specific Specifications

Operating Characteristics, V_{DD} = 3.15V to 5.5V, T_A = -40°C to 150°C, C1 \geq 0.1 μ F (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Relative Sensitivity Accuracy	εS	T _A =25°C, V _{DD} =V _{DDNOM} (2)	-5	-	5	%
Sensitivity Ratiometry	$\epsilon^R S$		-2.5	-	2.5	% / V
Linearity	Lin	V _{DD} =V _{DDNOM} (2)	-1.5	-	1.5	%
Symmetry	Sym	V _{DD} =V _{DDNOM} (2)	-1.5	-	1.5	%
Relative Output Offset Level	Voqrel	B=0mT, T _A =25°C, V _{DD} =V _{DDNOM} (2)	0.49	0.5	0.51	-
Thermal Offset Drift	$\epsilon^{T}V_{OQ}$ (3)	B=0mT, V _{DD} =V _{DDNOM} (2) S in [mV/mT]	-(25mV+0.9mT*S)	0	+(25mV+0.9mT*S)	-
Output Offset Ratiometry	$\epsilon^R V_{OQREL}$	B=0mT	-2.5	-	2.5	% / V
Signal Bandwidth	BW	At -3dB, B<0.4/S _{REL} , UA package SOT package	15 ⁽⁴⁾	30 ⁽⁴⁾	-	kHz
Signal Phase Shift	РНІ	Sine wave magnetic field at F = 1 kHz UA package SOT package		3.6 ⁽⁴⁾ 2.4 ⁽⁴⁾	5 ⁽⁴⁾	Degree

Table 6 Magnetic specification

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Relative Sensitivity Range	Srel	V _{DD} =V _{DDNOM} (2)	9.9 15	-	66 100	mV/mT@3.3V mV/mT @5V
Sensitivity Temperature Coefficient	TCS	V _{DD} =V _{DDNOM} (2)	0		2000	ppm/°C

Table 7 Magnetic specification

Paramete r	Code	Symbol	Test Conditions	Min	Тур	Max	Units
Sensitivity Temperature	Z =0	TCS ₋₄₀ (3)	T _A = -40°C, V _{DD} =V _{DDNOM} (2)		0		ppm/°C
		TCS ₁₅₀ (5)	T _A =150°C, V _{DD} =V _{DDNOM} (2)		0		ppm/°C
	Z = 1	TCS ₋₄₀ (3)	T _A = -40°C, V _{DD} =V _{DDNOM} (2)	0	650	1300	ppm/°C
Coefficient		TCS ₁₅₀ (5)	T _A =150°C, V _{DD} =V _{DDNOM} (2)	0	500	1000	ppm/°C
	Z = 2	TCS ₋₄₀ (3)	T _A = -40°C, V _{DD} =V _{DDNOM} (2)	1100	2000	2900	ppm/°C
		TCS ₁₅₀ (5)	T _A =150°C, V _{DD} =V _{DDNOM} (2)	1100	2000	2900	ppm/°C
Relative Sensitivity Range (factory trimmed)	Y = 0	S _{REL}	V _{DD} =V _{DDNOM} (2)		12.4 18.8		mV/mT@3.3V mV/mT@5V
	Y = 1	SREL	V _{DD} =V _{DDNOM} (2)		16.5 25		mV/mT@3.3V mV/mT@5V
	Y = 2	SREL	V _{DD} =V _{DDNOM} (2)		20.625 31.25		mV/mT@3.3V mV/mT@5V
	Y = 3	S _{REL}	V _{DD} =V _{DDNOM} (2)		33 50		mV/mT@3.3V mV/mT@5V
	Y = 4	Srel	V _{DD} =V _{DDNOM} (2)		66 100		mV/mT@3.3V mV/mT@5V

Table 8 Available Settings

Note1: Typical values are defined at TA = 25°C and VDD = VDDNOM

Note2: VDDNOM = 5V or 3.3V - the value used at trimming. This sensitivity scales with supply voltage. E.g. Y=1 with 3.3V VDD supply voltage becomes 16.5mV/mT = 3.3/5*25mV/mT.

Note3: Guaranteed by design and characterization

Note4 Signal Bandwidth & Signal Phase Shift mentioned here are defined for Z=1 & 2, resp. 500ppm/°C. & 2000ppm/°C. The option code Z=0 has internal filtering disabled. Products for 0ppm/°C are targeted for current measurement applications. Therefore, Bandwidth & Phase Shift are not specified. No internal filter enables a step response time in the order of us. To get an idea of the phase & amplitude behavior over frequency, use a bode diagram for a 1st order RC filter with the Frequencies specified under "Band width". Also note that Melexis can support you to get an application specific filter setting. Contact your sales contact in such case.

 $\textbf{Note5:} \ \ \textit{Guaranteed by correlation with wafer test and characterization}$

10. Detailed General Description

10.1. Characteristic Definitions

The Sensor DC Output Voltage is defined by:

$$V_{OUT} = V_{DD} \cdot (V_{OQREL} + S_{REL} \cdot B)$$
 , $[V]$, where:

$$V_{\text{OQREL}} = \frac{V_{\text{OQ}}}{V_{\text{DD}}}, \left[\frac{V}{V}\right]$$
 is the measured relative quiescent output voltage, its nominal value is 0.5;

$$V_{\mathrm{OQ}} = V_{\mathrm{OUT}}$$
 , $\left[V\right]$ is the measured quiescent output voltage at $B=0$;

$$S_{REL} = \frac{S}{V_{DD}} = \frac{\Delta V_{OUT}}{\Delta B} \cdot \frac{1}{V_{DD}}$$
, $\left[\frac{1}{T}\right]$ is the relative magnetic sensitivity;

$$S = \frac{\Delta V_{\rm OUT}}{\Delta B} = S_{\rm REL} \ . \ V_{\rm DD} \ , \ \left\lceil \frac{V}{T} \right\rceil \ \text{is the magnetic sensitivity at given supply voltage V}_{\rm DD}.$$

Magnetic Sensitivity Temperature Coefficient TCS is defined by:

$$TCS = \frac{S_{REL}(T_A) - S_{REL}(25^{\circ}C)}{S_{REL}(25^{\circ}C) \cdot (T_A - 25^{\circ}C)} \cdot 10^6, \left[\frac{ppm}{^{\circ}C}\right].$$

Magnetic Sensitivity Ratiometry is defined by:

$$\varepsilon^{R}S = \frac{S_{REL}(V_{DD}) - S_{REL}(V_{DDNOM})}{S_{REL}(V_{DDNOM}) \cdot (V_{DD} - V_{DDNOM})} \cdot 100\%, \left[\frac{\%}{V}\right].$$

Linearity for both positive and negative magnetic fields is defined by:

$$Lin = \frac{S_{REL}(B_2) - S_{REL}(B_1)}{S_{REL}(B_1)} \ . \ 100\% \ , \left[\%\right] \text{, where } B_1 = \pm \frac{0.2}{S_{REL}} \ , \ B_2 = \pm \frac{0.4}{S_{REL}} \ \text{and}$$

$$S_{REL}(B_X) = \frac{V_{OUT}(B_X) - V_{OQ}}{B_X \cdot V_{DD}}$$
.

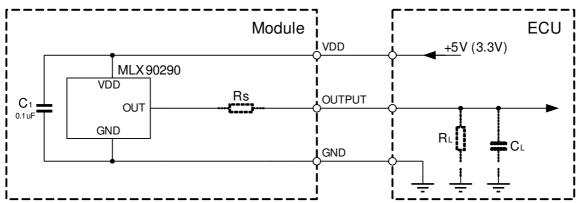
Symmetry for positive and negative magnetic fields is defined by:

$$Sym = \frac{S_{REL}(B_2) - S_{REL}(B_1)}{\frac{1}{2}(S_{REL}(B_1) + S_{REL}(B_2))} \ . \ 100\% \ , \left[\%\right] \text{, where } \ B_1 = \frac{0.4}{S_{REL}} \ , \ B_2 = -\frac{0.4}{S_{REL}} \ \text{and} \ . \ B_2 = -\frac{0.4}{S_{REL}} \ \text{and} \ . \ B_3 = -\frac{0.4}{S_{REL}} \ . \ B_4 = -\frac{0.4}{S_{REL}} \ . \ B_5 = -\frac{0.4}{S_{REL}} \ . \ B_7 = -\frac{0.4}{S_{REL}} \ . \ B_8 = -\frac{0.4}{S_{REL}} \ . \ B_9 = -\frac{0.4}{S_{REL}} \ . \ B_9$$

$$S_{REL}(B_X) = \frac{V_{OUT}(B_X) - V_{OQ}}{B_X \cdot V_{DD}}.$$

Datasheet

Output Offset Temperature Drift is defined by:


$$\varepsilon^{\mathrm{T}} V_{\mathrm{OQ}} = V_{\mathrm{OQ}}(T_{\mathrm{A}}) - V_{\mathrm{OQ}}(25^{\circ}\mathrm{C})$$
, [mV].

Output Offset Ratiometry is calculated by:

$$\varepsilon^{R} V_{OQREL} = \frac{V_{OQREL}(V_{DD}) - V_{OQREL}(V_{DDNOM})}{V_{OQREL}(V_{DDNOM}) \cdot (V_{DD} - V_{DDNOM})} \cdot 100\%, \left[\frac{\%}{V}\right].$$

11. Application Information

11.1. Typical Application Diagram

Notes:

For proper operation a100nF or bigger bypass capacitor C1 should be placed as close as possible to the VDD and GND pins of MLX90290.

For embedded applications the components R_S, R_L and C_L are not required.

11.2. Application Circuit for Harsh and Noisy Environment


Notes:

For proper operation a100nF or bigger bypass capacitor C1 should be placed as close as possible to the VDD and GND pins of MLX90290. For harsh and noisy environment, a bypass capacitor C2 of 1nF to 10nF can be placed on the output. For improved EMC performance an additional resistance, Rs and capacitors, C3 and C4 placed close to the connector of the module are recommended Recommended values for: Rs \geq 50E, 1nF \geq C3 \leq 4.7nF, 1nF \geq C4 \leq 10nF. For embedded applications the components R_L and C_L are not required

12. Package Information – Example from MLX90290

12.1. UA (TO92-3L) Package Information

Notes:

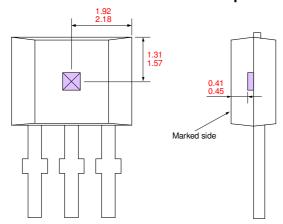
- 1. All dimensions are in millimeters
- 2. Package dimension do not include mold protrusion.
- 3. The end flash shall not exceed 0.127 mm on each side.
- 4. To preserve reliability, it is recommended to have total lead length equal to 2.5mm minimum, measured from the package line.

Top Marking:

290 yww

Pin 1

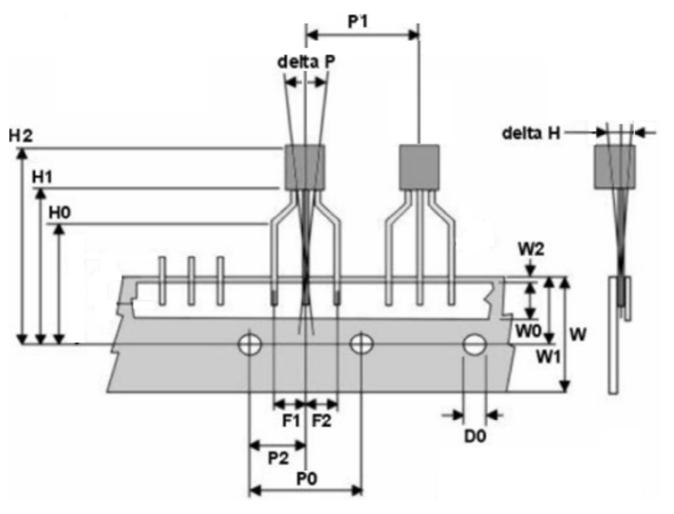
1st Line: 290


2nd Line: Date code

y = last digit of calendar year

ww = calender week #

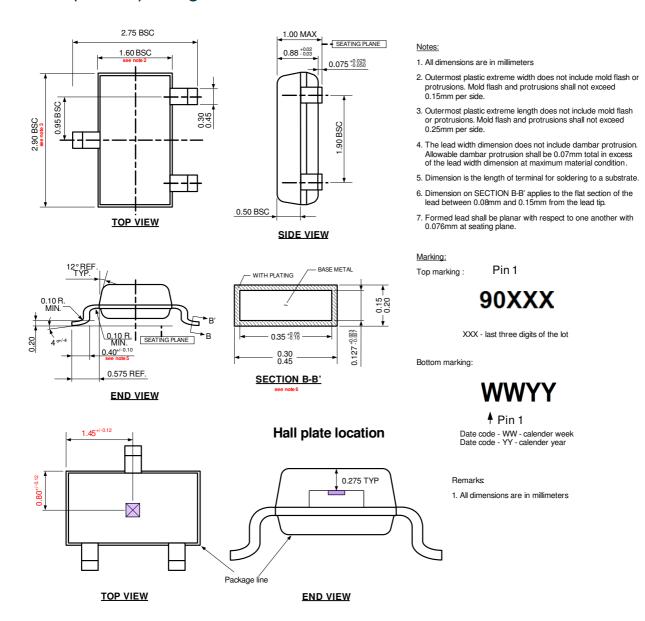
Hall plate location



Remarks:

1. All dimensions are in millimeters

12.1.1. Trim and form with 2.54mm distance between leads; only available on tape



Parameter	Component Height	Component Position	Hole Diameter	Hole Position	Hole Pitch	Component Pitch	Right-Left Bending
Parameter	H1	P2	Do	W1	Ро	P1	ΔΡ
Nominal	19mm	6.35mm	4mm	9mm	12.7mm	12.7mm	±0.4mm
(& Tolerance)	(±0.5)	(±0.4)	(±0.2)	(-0.5;+0.75)	(±0.3)	(±0.3)	±0.4mm

Parameter	Lead Spacing	Front-Rear Bending	Tape Width	Adhesive Tape Width	Adhesive to Carrier Tape Gap	Vertical Lead Length	Component Height Top
	F1 & F2	ΔΗ	W	Wo	W2	Но	H2
Nominal	2.54mm	±.0.3deg	18mm	6mm	0.5mm	15.5mm (±0.5)	22.0mm (±0.8mm)
(&Tolerance)	(±0.25mm)	±.0.5deg	(±0.5)	(±0.2)	(-0.5; +0.3)	13.5111111 (±0.5)	

12.2. SE (TSOT-3L) Package Information

13. Standard Information

Our products are classified and qualified regarding soldering technology, solderability and moisture sensitivity level according to standards in place in Semiconductor industry.

For further details about test method references and for compliance verification of selected soldering method for product integration, Melexis recommends reviewing on our web site the General Guidelines <u>soldering recommendation</u>. For all soldering technologies deviating from the one mentioned in above document (regarding peak temperature, temperature gradient, temperature profile etc), additional classification and qualification tests have to be agreed upon with Melexis.

For package technology embedding trim and form post-delivery capability, Melexis recommends to consult the dedicated trim&form recommendation application note: <u>lead trimming and forming recommendations</u>

Datasheet

Melexis is contributing to global environmental conservation by promoting **lead free** solutions. For more information on qualifications of **RoHS** compliant products (RoHS = European directive on the Restriction Of the use of certain Hazardous Substances) please visit the quality page on our website: http://www.melexis.com/en/quality-environment

14. ESD Precautions

Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

15. Contact

For the latest version of this document, go to our website at www.melexis.com.

For additional information, please contact our Direct Sales team and get help for your specific needs:

Europe, Africa	Telephone: +32 13 67 04 95
	Email: sales_europe@melexis.com
Americas	Telephone: +1 603 223 2362
	Email: sales_usa@melexis.com
Asia	Email: sales asia@melexis.com

16. Disclaimer

The information furnished by Melexis herein ("Information") is believed to be correct and accurate. Melexis disclaims (i) any and all liability in connection with or arising out of the furnishing, performance or use of the technical data or use of the product(s) as described herein ("Product") (ii) any and all liability, including without limitation, special, consequential or incidental damages, and (iii) any and all warranties, express, statutory, implied, or by description, including warranties of fitness for particular purpose, non-infringement and merchantability. No obligation or liability shall arise or flow out of Melexis' rendering of technical or other services.

The Information is provided "as is" and Melexis reserves the right to change the Information at any time and without notice. Therefore, before placing orders and/or prior to designing the Product into a system, users or any third party should obtain the latest version of the relevant information to verify that the information being relied upon is current. Users or any third party must further determine the suitability of the Product for its application, including the level of reliability required and determine whether it is fit for a particular purpose.

The Information is proprietary and/or confidential information of Melexis and the use thereof or anything described by the Information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights.

This document as well as the Product(s) may be subject to export control regulations. Please be aware that export might require a prior authorization from competent authorities. The Product(s) are intended for use in normal commercial applications. Unless otherwise agreed upon in writing, the Product(s) are not designed, authorized or warranted to be suitable in applications requiring extended temperature range and/or unusual environmental requirements. High reliability applications, such as medical life-support or life-sustaining equipment are specifically not recommended by Melexis.

The Product(s) may not be used for the following applications subject to export control regulations: the development, production, processing, operation, maintenance, storage, recognition or proliferation of 1) chemical, biological or nuclear weapons, or for the development, production, maintenance or storage of missiles for such weapons: 2) civil firearms, including spare parts or ammunition for such arms; 3) defense related products, or other material for military use or for law enforcement; 4) any applications that, alone or in combination with other goods, substances or organisms could cause serious harm to persons or goods and that can be used as a means of violence in an armed conflict or any similar violent situation.

The Products sold by Melexis are subject to the terms and conditions as specified in the Terms of Sale, which can be found at https://www.melexis.com/en/legal/terms-and-conditions.

This document supersedes and replaces all prior information regarding the Product(s) and/or previous versions of this document.

 $\textit{Melexis NV} \ @ \text{-} \ \textit{No part of this document may be reproduced without the prior written consent of Melexis.} \ \ (2016)$

ISO/TS 16949 and ISO14001 Certified