Timer Interval Indicator K3HB-P CSM_K3HB-P_DS_E_15_2 ### **Digital Time Interval Meter for Measuring** Passing Speed, Time, or Cycle between Two Points. - Visual confirmation of judgement results through display colors that switch between red and green. *1 - Measures Wide Range of Pulse Interval Times Measures, calculates, and displays pulse intervals between two points. Wide range for pulse interval measurements, from 10 ms to 3,200 s, max. - Six Measurement Operations, Including Passing Speed, Time, and Cycle Measurement between Two Points One Digital Time Interval Meter has six measurement functions, to support a variety of pulse interval measurement applications. Select the best function for your application from the following: Passing speed, cycle, time difference, time band, measuring length, and interval. - DeviceNet models added to the series. *2 - *1 Visual confirmation of judgement results is not supported on models that do not have an output or models that do not support DeviceNet. You can change the display color by setting it, but you cannot switch it based on the judgement results. *2 DeviceNet models have a depth of 97 mm. Refer to Safety Precautions for All Digital Panel For the most recent information on models that have been certified for safety standards, refer to your OMRON website. ## Model Number Structure ## ■ Model Number Legend Base Units and Optional Boards can be ordered individually or as sets. #### **Base Units** ## K3HB-P □ #### 1. Input Sensor Code NB: NPN input/voltage pulse input PB: PNP input #### 5. Supply Voltage 100-240 VAC: 100 to 240 VAC 24 VAC/VDC: 24 VAC/VDC ## **Optional Board** #### **Sensor Power Supply/Output Boards** K33-□ #### **Relay/Transistor Output Boards** **K34-**□ #### **Event Input Boards** ## **Base Units with Optional Boards** ### **K3HB-P**□-□□□ 1 2 3 4 #### 2. Sensor Power Supply/Output Type Code None: I 1A: Relay output (PASS: SPDT) + Sensor power supply (12 VDC±10%, 80 mA) (See note 1.) Linear current output (0 to 20 or 4 to 20 mA DC) + Sensor power supply (12 VDC±10%, 80 mA) (See note 2.) Linear voltage output (0 to 5, 1 to 5, or 0 to 10 VDC) + Sensor power supply (12 VDC±10%, 80 mA) (See note 2.) L2A: A: Sensor power supply (12 VDC ±10%, 80 mA) FLK1A: Communications (RS-232C) + Sensor power supply (12 VDC±10%, 80 mA) (See note 2.) FLK3A: Communications (RS-485) + Sensor power supply (12 VDC±10%, 80 mA) (See note 2.) Note: 1. CPA can be combined with relay outputs only. 2. Only one of the following can be used by each Digital Indicator: RS-232C/RS-485 communications, a linear output, or DeviceNet communications. #### 3. Relay/Transistor Output Type Code None: None C1· C2: T1: Relay contact (H/L: SPDT each) Relay contact (HH/H/LL/L: SPST-NO each) Transistor (NPN open collector: HH/H/PASS/L/LL) Transistor (PNP open collector: HH/H/PASS/L/LL) T2. BCD*: BCD output + transistor output (NPN open collector: HH/H/PASS/L/LL) DRT: DeviceNet (See note 2.) * A Special BCD Output Cable (sold separately) is required. #### 4. Event Input Type Code None: None - 5 inputs (HOLD/RESET), NPN open collector - 8 inputs (HOLD/RESET/BANK1/BANK2/BANK4), NPN open collector 2: 3: 5 inputs (HOLD/RESET), PNP open collector 8 inputs (HOLD/RESET/BANK1/BANK2/BANK4), PNP open collector Note: The following combinations are not possible - Communications (FLK□A) + DeviceNet (DRT) - Communications (FLK□A) + BCD output (BCD) - Linear current/voltage (L□A) + DeviceNet (DRT) ## **Accessories (Sold Separately)** K32-DICN: Special Cable (for event inputs with 8-pin connector) K32-BCD: Special BCD Output Cable ### **Watertight Cover** | | Model | | |----------|-------|--| | Y92A-49N | | | ## **Rubber Packing** | | Model | | |--------|-------|--| | K32-P1 | | | Note: Rubber packing is provided with the Controller. ## **Specifications** ## **■** Ratings | Supply voltage | | 100 to 240 VAC, 24 VAC/VDC, DeviceNet power supply: 24 VDC | | | |--------------------------------------|-------------------|---|--|--| | Allowable power supply voltage range | | 85% to 110% of the rated power supply voltage, DeviceNet power supply: 11 to 25 VDC | | | | Power consum
(See note 1.) | otion | 100 to 240 VAC: 18 VA max. (max. load)
24 VAC/DC: 11 VA/7 W max. (max. load) | | | | Current consur | nption | DeviceNet power supply: 50 mA max. (24 VDC) | | | | Input | | No-voltage contact, voltage pulse, open collector | | | | External power | supply | 12 VDC 10%, 80 mA (for models with external power supplies only) | | | | Event inputs | Hold input | NPN open collector or no-voltage contact signal | | | | (See note 2.) | Reset input | ON residual voltage: 2 V max. ON current at 0 Ω: 4 mA max. | | | | | Bank input | Max. applied voltage: 30 VDC max. OFF leakage current: 0.1 mA max. | | | | Output ratings (depends on | | 250 VAC, 30 VDC, 5 A (resistive load) Mechanical life expectancy: 5,000,000 operations, Electrical life expectancy: 100,000 operations | | | | the model) | Transistor output | Maximum load voltage: 24 VDC, Maximum load current: 50 mA, Leakage current: 100 μA max. | | | | Linear output | | Linear output 0 to 20 mA DC, 4 to 20 mA DC: Load: 500 Ω max, Resolution: Approx. 10,000, Output error: ±0.5% FS Linear output 0 to 5 VDC, 1 to 5 VDC, 0 to 10 VDC: Load: 5 kΩ max, Resolution: Approx. 10,000, Output error: ±0.5% FS (1 V or less: ±0.15 V; no output for 0 V or less) | | | | Display method | | Negative LCD (backlit LED) display 7-segment digital display (Character height: PV: 14.2 mm (green/red); SV: 4.9 mm (green)) | | | | Main functions | | Scaling function, measurement operation selection, output hysteresis, output OFF delay, output test, teaching, display value selection, display color selection, key protection, bank selection, display refresh period, maximum/minimum hold, reset | | | | Ambient operating temperature | | −10 to 55°C (with no icing or condensation) | | | | Ambient operating humidity | | 25% to 85% | | | | Storage temperature | | −25 to 65°C (with no icing or condensation) | | | | Altitude | | 2,000 m max. | | | | Accessories | | Watertight packing, 2 fixtures, terminal cover, unit stickers, instruction manual. DeviceNet models also include a DeviceNet connector (Hirose HR31-5.08P-5SC(01)) and crimp terminals (Hirose HR31-SC-121) (See note 3.) | | | - Note: 1. DC power supply models require a control power supply capacity of approximately 1 A per Unit when power is turned ON. Particular attention is required when using two or more DC power supply models. The OMRON S8VS-series DC Power Supply Unit is recommended. - 2. PNP input types are also available. - 3. For K3HB-series DeviceNet models, use only the DeviceNet Connector included with the product. The crimp terminals provided are for Thin Cables. ## **■** Characteristics | Display range | | -19,999 to 99,999 | | | | | | | |--|-------------|--|---|--|--|-------------------|---|------------------| | Measurement accur | асу | ±0.08% rgd ±1 digit (for voltage pulse/open collector sensors) | | | | | | | | (at 23±5°C) | | | | | | | | | | Measurement range | • | Functions F1, F3, and F4:(Interval between input pulses) 10 ms to 3,200 s Function F2: (Interval between input pulses) 20 ms to 3,200 s Functions F5, F6: (Number of input pulses) 0 to 4 gigacounts | | | | | | | | Input signals | | Contact input (dr | y contact | input) (30 Hz max | . with ON/OFF | pulse width of | 15 ms min.) | | | | | No contact
voltage pulse | Mode | Input frequency range | ON/OFF pulse width | ON voltage | OFF voltage | Input impedance | | | | | F1 to F4 | 0 to 50 kHz | 9 μs min. | 4.5 to 30 V | -30 to 2 V | 10 kΩ | | | | | F5, F6 | 0 to 30 kHz | 16 μs min. | 1 | | | | | | Open collector | Mode | Input frequency range | ON/OFF pulse width | will ı | Digital Time Int | pulse greater | | | | | F1 to F4 | 0 to 50 kHz | 9 μs min. | | than the input frequency ran input. SYSERR may appear | | | | | | F5, F6 | 0 to 30 kHz | 16 μs min. | | ii. 515ERR may
display. | appear on | | Connectable sensors ON residual voltage: 3 V max. OFF leakage current: 1.5 mA max. Load current: Must have a switching capacity of 20 mA or higher. Must be able to properly switch load currents of 5 mA or less. | | | | | | | | | | Comparative outputime (transistor out | | 2 ms max. (time ur
from 15% to 95% | ntil the cor
or 95% to | nparative output is
15%) | made when the | re is a forced su | udden change in | the input signal | | Linear output respo | | 10 ms max. (time input signal from 1 | 5% to 95 | | value is reache | d when there is | a forced sudde | n change in the | | Insulation resistance | e | 20 M Ω min. (at 50 | | | | | | | | Dielectric strength | | 2,300 VAC for 1 m | | en external termina | als and case | | | | | Noise immunity | | 100 to 240 VAC models: ±1,500 V at power supply terminals in normal or common mode (waveform with 1-ns rising edge and pulse width of 1 μs/100 ns) 24 VAC/VDC models: ±1,500 V at power supply terminals in normal or common mode (waveform with 1-ns rising edge and pulse width of 1 μs/100 ns) | | | | | | | | Vibration resistance | • | Frequency: 10 to 55 Hz; Acceleration: 50 m/s², 10 sweeps of 5 min each in X, Y, and Z directions | | | | | | | | Shock resistance | | 150 m/s² (100 m/s² for relay outputs) 3 times each in 3 axes, 6 directions | | | | | | | | Weight | | Approx. 300 g (Base Unit only) | | | | | | | | Degree of | Front panel | Conforms to NEMA 4X for indoor use (equivalent to IP66) | | | | | | | | protection | Rear case | IP20 | | | | | | | | | Terminals | IP00 + finger protection (VDE0106/100) | | | | | | | | Memory protection | | EEPROM (non-volatile memory) | | | | | | | | Applicable standard | ds | Number of rewrites: 100,000 UL61010-1, CSA C22.2 No. 61010-1-04 EN61010-1 (IEC61010-1): Pollution degree 2/Overvoltage category II EN61326-1 | | | | | | | | EMC | | Electromagnetic ra
CISPR 11 Gro
Terminal interferei
CISPR 11 Gro
EMS: EN61326-1
Electrostatic Disch
EN61000-4-2:
Radiated Electrom
EN61000-4-3:
Electrical Fast Tra
EN61000-4-4:
Surge Immunity
EN61000-4-5:
Conducted Disturt
EN61000-4-6:
Power Frequency
EN61000-4-8:
Voltage Dips and | adiation ir
up 1, Clas
nce voltag
up 1, Clas
Industrial
narge Imn
4 kV (con
nagnetic F
10 V/m si
nsient/Bu
2 kV (pov
1 kV with
pance Imr
3 V (0.15
Magnetic
30 A/m (5
Interruptic | ss A ge ss A electromagnetic e nunity itact), 8 kV (in air) field Immunity ine wave amplitude irst Noise Immunity iver line), 1 kV (I/O line (power line), 2 munity to 80 MHz) s Immunity 50 Hz) continuous | nvironment e modulation (8 / signal line) 2 kV with groun time | | z, 1.4GHz to 2 (| GHz) | 3 ## **Operation** ## **■** Functions (Operating Modes) ### F1 to F6 These functions use the internal system clock to measure the time between pulses or the pulse ON time and then display time measurements or a variety of other calculations. | Function name | Function No. | |------------------|--------------| | Passing speed | F! | | Cycle | F2 | | Time difference | F3 | | Time band | FY | | Measuring length | FS | | Interval | FB | Example: F1 Passing Speed The time (T) between input A pulse and input B pulse is measured by the internal system clock. If, for example, the system clock measures 100,000 counts during time T, then T = 1 system clock count (0.5 μ s) \times 100,000 T = 0.05 s F1 (the passing speed) is calculated internally using the formula $\frac{1}{T}\times 60$ (m/min), and the display, in this example, would be $\frac{1}{0.05 \text{ s}} \times 60 = 1200 \text{ (m/min)}.$ ## ■ What Is Prescaling? To make calculations using the input pulse to display the passing speed between two points, the distance between the two points and the display unit must be set and the internally measured time multiplied by a certain coefficient. This coefficient is called the prescale value. (For information on settings details, refer to the User's Manual.) #### **Time Unit Settings** | Setting | Meaning | |---------|--| | ăff | Seconds display when prescaling = 1.0000 | | ŭŗu | Minutes display when prescaling = 1.0000 | | H.ññ.55 | h.mm.ss display | | ññ.55.d | mm.ss.d display (d = tenths of a second) | #### **Input Type Setting** | | NO: Voltage pulse high | NC: Voltage pulse low | |---|------------------------|-----------------------| | No-contact or
voltage pulse
input | 00 | 0 1 | | Contact | 10 | 11 | Note: Set to 10 or 11 when there is a large variation in the display. The largest measurement range is 30 Hz. ## **Common Specifications** ## **■** Event Input Ratings | K3HB-P/-C | HOLD, RESET, BANK1, BANK2, BANK4 | | | | |-----------|---|--|--|--| | Contact | ON: 1 k Ω max., OFF: 100 k Ω min. | | | | | | ON residual voltage: 2 V max. | | | | | | OFF leakage current: 0.1 mA max. | | | | | | Load current: 4 mA max. | | | | | | Maximum applied voltage: 30 VDC max. | | | | ## **■** Output Ratings ## **Contact Output** | Item | Resistive loads
(250 VAC, cosφ=1;
30 VDC, L/R=0 ms) | Inductive loads
(250 VAC, closed
circuit, cos\phi=0.4;
30 VDC, L/R=7 ms) | |----------------------------|---|---| | Rated load | 5 A at 250 VAC
5 A at 30 VDC | 1 A at 250 VAC
1 A at 30 VDC | | Mechanical life expectancy | 5,000,000 operations | | | Electrical life expectancy | 100,000 operations | | ## **Transistor Outputs** | Maximum load voltage | 24 VDC | |----------------------|-------------| | Maximum load current | 50 mA | | Leakage current | 100 μA max. | ## **Linear Output** | Item | Outputs | 0 to 20 mA | 4 to 20 mA | 0 to 5 V | 1 to 5 V | 0 to 10 V | |--------------------------|---------|-------------------|------------|---|----------|-----------| | Allowable load impedance | | 500 Ω max. | | 5 k $Ω$ min. | | | | Resolution | | Approx. 10,000 |) | | | | | Output error | | ±0.5% FS | | ±0.5% FS
(±0.15 V for 1 V or less and no output for 0 V) | | | ## **Serial Communications Output** | Item Ty | RS-232C, RS-485 | | | |-----------------------|---|--|--| | Communications method | d Half duplex | | | | Synchronization metho | d Start-stop synchronization (asynchronous) | | | | Baud rate | 9600/19200/38400 bps | | | | Transmission code | ASCII | | | | Data length | 7 bits or 8 bits | | | | Stop bit length | 2 bits or 1 bit | | | | Error detection | Vertical parity and FCS | | | | Parity check | Odd, even | | | # BCD Output I/O Ratings (Input Signal Logic: Negative) | I/O signal name | | Item | | Rating | | |-----------------|---|------------------------------------|-------------|--------------------------|--| | Inputs | REQUEST
HOLD
MAX | Input signal | | No-voltage contact input | | | | | Input current for no-voltage input | | 10 mA | | | | MIN
RESET | Signal level | ON voltage | 1.5 V max. | | | | | | OFF voltage | 3 V min. | | | Outputs | DATA
POLARITY
OVER
DATA VALID
RUN | Maximum load voltage | | 24 VDC | | | | | Maximum load current | | 10 mA | | | | | Leakage current | | 100 μA max. | | | | HH
H | Maximum load voltage | | 24 VDC | | | | PASS
L | Maximum load current | | 50 mA | | | | LL | Leakage current | | 100 μA max. | | Refer to the *K3HB Communications User's Manual* (Cat. No. N129) for details on serial and DeviceNet communications. ## **DeviceNet Communications** | Communications protocol | | Conforms to DeviceNet | | | | | | | | |-------------------------------------|-----------------------------|--|--|-------------------------|-------------------------------|--|--|--|--| | Supported | Remote I/O | Master-Slave connect | ion (polling, bit-strobe, | COS, cyclic) | | | | | | | | communications | Conforms to DeviceNet communications standards. | | | | | | | | | | I/O allocations | Allocate any I/O data using the Configurator. | | | | | | | | | | | Allocate any data, such as DeviceNet-specific parameters and variable area for Digital Indicators. | | | | | | | | | | | Input area: 2 blocks, 60 words max. | | | | | | | | | | | Output area: 1 block, 29 words max. (The first word in the area is always allocated for the Output Execution Enabled Flags.) | | | | | | | | | | Message communications | Explicit message communications | | | | | | | | | | | CompoWay/F communications commands can be executed (using explicit message communications) | | | | | | | | | Connection methods Baud rate | | Combination of multi-drop and T-branch connections (for trunk and drop lines) | | | | | | | | | | | DeviceNet: 500, 250, or 125 Kbps (automatic follow-up) | | | | | | | | | Communications media | | Special 5-wire cable (2 signal lines, 2 power supply lines, 1 shield line) | | | | | | | | | Communications | distance | Baud rate | Network length (max.) | Drop line length (max.) | Total drop line length (max.) | | | | | | | | Special 5-wire cable (2 signal lines, 2 power supply lines, 1 shield line) ance Baud rate Network length Drop line length Total drop line | 39 m max. | | | | | | | | | | 250 Kbps | gre communications) grop and T-branch connections (for trunk and drop lines) or 125 Kbps (automatic follow-up) 2 signal lines, 2 power supply lines, 1 shield line) Network length (max.) 100 m max. (100 m max.) 100 m max. (250 m max.) 100 m max. (500 | | | | | | | | | | 125 Kbps | | 6 m max. | 156 m max. | | | | | | | | | The values in parentheses are for Thick Cable. | | | | | | | | Communications | Communications power supply | | 24-VDC DeviceNet power supply | | | | | | | | Allowable voltage fluctuation range | | 11 to 25-VDC DeviceNet power supply | | | | | | | | | Current consump | tion | 50 mA max. (24 VDC) | | | | | | | | | Maximum numbe | r of nodes | 64 (DeviceNet Configurator is counted as one node when connected.) | | | | | | | | | Maximum numbe | r of slaves | 63 | | | | | | | | | Error control checks | | CRC errors | | | | | | | | | DeviceNet power supply | | Supplied from DeviceNet communications connector | | | | | | | | ## **Connections** ## ■ External Connection Diagrams ### **Terminal Arrangements** Note: Refer to Internal Block Diagram on page 10 for information on isolation. #### **B Sensor Power Supply/Output** #### Sensor power supply + linear output Sensor power supply N/C 12 VDC Sensor power supply + communications <A> #### C Relays, Transistors, BCD and DeviceNet #### Safety Standards Conformance - Always use a EN/IEC-compliant power supply with reinforced insulation or double insulation for the DeviceNet power supply. - The product must be used indoors for the above applicable standards to apply. ## **BCD Output Cable** Note: The BCD Output Cable has a D-sub plug. Cover: 17JE-37H-1A (manufactured by DDK); Connector: equivalent to 17JE-23370-02 (D1) (manufactured by DDK) ## **Special Cable (for Event Inputs with 8-pin Connector)** | Model | Appearance | | Wiring | | | |----------|-----------------------------------|---|----------------------------|--|--| | K32-DICN | 9 10 3,000 mm Cable marking (3 m) | • | Pin No. 1 2 3 4 5 6 7 8 9 | Signal name N/C S-TMR HOLD RESET N/C COM BANK4 BANK2 BANK1 COM | | ## ■ Derating Curve for Sensor Power Supply (Reference Values) #### For 12V - **Note: 1.** The above values were obtained under test conditions with the standard mounting. The derating curve will vary with the mounting conditions, so be sure to adjust accordingly. - 2. Internal components may be deteriorated or damaged. Do not use the Digital Indicator outside of the derating range (i.e., do not use it in the area labeled ①, above). ## ■ Internal Block Diagram ## **■** BCD Output Timing Chart A REQUEST signal from a Programmable Controller or other external device is required to read BCD data. ## **Single Sampling Data Output** The data is set in approximately 30 ms from the rising edge of the REQUEST signal and the DATA VALID signal is output. When reading the data from a Programmable Controller, start reading the data when the DATA VALID signal turns ON. The DATA VALID signal will turn OFF 40 ms later, and the data will turn OFF 16 ms after that. ## **Continuous Data Output** Measurement data is output every 64 ms while the REQUEST signal remains ON. Note: If HOLD is executed when switching between data 1 and data 2, either data 1 or data 2 is output depending on the timing of the hold signal. The data will not go LOW. • The K3HB BCD output model has an open collector output, so wired OR connection is possible Note: Leave 20 ms min. between DATA VALID turning OFF and the REQUEST signal. ## **Programmable Controller Connection Example** #### **Display Unit Connection Example** the pin number for the Digital Indicator narrow pitch connector (manufactured by Refer to the following User's Manual for application precautions and other information required when using the Digital Indicator: K3HB-R/P/C Digital Indicator User's Manual (Cat. No. N136) Honda Tsushin Kogyo Co., Ltd.). The manual can be downloaded from the following site in PDF format: OMRON Industrial Web http://www.fa.omron.co.jp ## **■** Component Names and Functions ## **■** Dimensions ## **Wiring Precautions** - For terminal blocks, use the crimp terminals suitable for M3 screws. - \bullet Tighten the terminal screws to the recommended tightening torque of approx. 0.5 N·m. - To prevent inductive noise, separate the wiring for signal lines from that for power lines. ## **Wiring** • Use the crimp terminals suitable for M3 screws shown below. ## **Unit Stickers (included)** - No unit stickers are attached to the Digital Indicator. - Select the appropriate units from the unit sticker sheets provided. **Note:** For measurements for commercial purposes, be sure to use the unit required by any applicable laws or regulations. ## Mounting Method - 1. Insert the K3HB into the mounting cutout in the panel. - Insert watertight packing around the Unit to make the mounting watertight. 3. Insert the adapter into the grooves on the left and right sides of the rear case and push until it reaches the panel and is fixed in place. ### **LCD Field of Vision** The K3HB is designed to have the best visibility at the angles shown in the following diagram. ## Watertight Cover Y92A-49N ## **Rubber Packing** If the rubber packing is lost or damaged, it can be ordered using the following model number: K32-P1. (Depending on the operating environment, deterioration, contraction, or hardening of the rubber packing may occur and so, in order to ensure the level of waterproofing specified in NEMA4, periodic replacement is recommended.) Note: Rubber packing is provided with the Controller. ## **Main Functions** ## ■ Main Functions and Features ### **Measurement** ### Function Func The K3HB-R has the following six functions for receiving and displaying input pulses. F1: Rotation (rpm)/circumferential speed F2: Absolute ratio F3: Error ratio F4: Rotational difference F5: Flow rate ratio F6: Passing time The K3HB-P has the following six functions for receiving and displaying input pulses. F1: Passing speed F2: Cycle F3: Time difference F4: Time band F5: Measuring length F6: Interval The K3HB-C has the following three functions for receiving and displaying input pulses. F1: Individual inputs F2: Phase differential inputs F3: Pulse counting input ## **Filters** ## Input Types in-tA, in-tb Specify the types of sensor connected to input A and input B. ## **Key Operations** ### **Key Protection** Key protection restricts level or parameter changes using the keys to prevent unintentional key operations and malfunctions. ### **Outputs** #### Comparative Output Pattern Standard, zone, and level comparative output patterns can be selected for comparative outputs. ## Output Refresh Stop 6-5E Holds the output status when a comparative result output other than PASS turns ON. ### PASS Output Change PRSS Comparative results other than PASS can be output from the PASS output terminal. #### Output OFF Delay of FF-d Delays turning OFF comparatives for a set period. This can be used to provide sufficient time to read the comparative output ON status when the comparative result changes at short intervals. #### Shot Output 5Hot Turns ON the comparative output for a specific time. #### Output Logic Reverses the output logic of comparative results. #### Output Test LESE Output operation can be checked without using actual input signals by using the keys to set a test measurement value. ### Linear Outputs LSELE, LSELE, LSELE, LSELE A current or voltage proportional to the change in the measurement value can be output. #### Standby Sequence 54dby The comparison outputs can be kept OFF until the measurement value enters the PASS range. ### **Display** #### Display Value Selection The display value can be set to the present value, the maximum value, or the minimum value. #### Display Color Selection The present value display color can be set to green or red. The color of the present value can also be switched according to the comparative output. ## Display Refresh Period d. EF When the input changes rapidly, the display refresh period can be lengthened to control flickering and make the display easier to read. ### Position Meter Pos-t, Pos-H, Pos-L The present measurement value can be displayed as a position in relation to the scaling width on a 20-gradation position meter. #### Prescale PS.Ru, PS.Ru, PS.bu, PS.bu The input signal can be converted and displayed as any value. #### Comparative Set Value Display 50.45P Select whether or not to display the comparative value during operation. #### Display auto-return CE Automatically returns the display to RUN level when there are no key operations (e.g., max./min. switching, bank settings using keys). ### Other #### Max./Min. Hold Holds the maximum and minimum measurement values. #### Bank Selection boy-[Switch between 8 comparative value banks using the keys on the front panel or external inputs. A set of set comparative values can be selected as a group. ### Bank Copy [5P4 Any bank settings can be copied to all banks. ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527. #### Terms and Conditions Agreement #### Read and understand this catalog. Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments. #### Warranties. - (a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied. - (b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See http://www.omron.com/global/ or contact your Omron representative for published information. #### Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted. #### Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases. NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM. #### Programmable Products. Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof. #### Performance Data. Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability. #### Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product. <u>Errors and Omissions.</u> <u>Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is accurate.</u> assumed for clerical, typographical or proofreading errors or omissions. 2015.8 In the interest of product improvement, specifications are subject to change without notice.