

L4989D L4989MD

Low power voltage regulator

Datasheet - production data

Features

- Operating DC supply voltage range 5.6 V to 31 V
- Very low quiescent current with watchdog disabled
- Precision output voltage (3%)
- Low drop voltage (180 mV typ at I_o = 150 mA)
- Reset circuit sensing the output voltage down to 1 V
- Programmable reset delay with external capacitor
- Watchdog disable input
- Programmable watchdog timer with external capacitor
- Thermal shutdown and short circuit protection
- Wide temperature range (T_i = -40°C to 150°C)

Description

The L4989M and L4989MD are monolithic integrated 5 V voltage regulators with a low drop voltage at currents up to 150 mA.

The output voltage regulating element consists in a p-channel MOS and the regulation is performed regardless of input voltage transients up to 40 V. The high precision of the output voltage is obtained with a pre-trimmed reference voltage.

The devices are protected against short circuit and an overtemperature protection switches off the devices in case of extremely high power dissipation.

The L4989M and L4989MD watchdogs are active when the Enable pin is high. Features like reset and watchdog make this devices particularly suitable to supply microprocessor systems in automotive applications.

Table 1. Device summary

Package	Order codes				
rackaye	Tube	Tape and reel			
SO-8	L4989D	L4989D013TR			
SO-20	L4989MD	L4989MD013TR			

September 2013

Doc ID 022376 Rev. 2

Contents

1	Blo	ock diagram and pin configuration5
2	Elec	trical specifications7
	2.1	Absolute maximum ratings7
	2.2	Thermal data
	2.3	Electrical characteristics 8
3	Арр	lication information11
	3.1	Voltage regulator
	3.2	Reset
	3.3	Watchdog 12
4	Pack	age and packing information13
	4.1	ECOPACK [®] packages
	4.2	SO-8 package information 13
	4.3	SO-20 package information15
	4.4	SO-8 packing information 16
	4.5	SO-20 packing information 17
5	Revi	sion history

List of tables

Table 1.	Device summary
Table 2.	Pins description
Table 3.	Absolute maximum ratings
Table 4.	Thermal data7
Table 5.	General
Table 6.	Reset
Table 7.	Watchdog
Table 8.	Watchdog Enable
Table 9.	SO-8 mechanical data
	SO-20 mechanical data
Table 11.	Document revision history

List of figures

Figure 1.	Block diagram	5
Figure 2.	Pins configuration (top view).	6
Figure 3.	Behavior of output current versus regulated voltage Vo.	11
Figure 4.	Reset timing diagram	12
Figure 5.	Watchdog timing diagram	12
Figure 6.	SO-8 package dimensions	13
Figure 7.	SO-20 package dimensions	15
Figure 8.	SO-8 tube shipment (no suffix)	16
Figure 9.	SO-8 tape and reel shipment (suffix "TR")	16
Figure 10.	SO-20 tube shipment (no suffix)	17
Figure 11.	SO-20 tape and reel shipment (suffix "TR")	17

1 Block diagram and pin configuration

Table 2. Pins description

Pin name	SO-8(D)	S0-20(MD)	Function	
WE _n	1	1	Watchdog Enable input If high watchdog functionality is active	
Gnd	2	4	Ground reference	
Gnd		5, 6, 15, 16	Ground. Connected these pins to a heat spreader ground	
Res	3	7	Reset output. It is pulled down when output voltage goes below V_{o_th} or frequency at Wi is too low.	
Vcr	4	10	Reset timing adjust. A capacitor between Vcr pin and gnd, sets the reset delay time (t _{rd})	
Vcw	5	11	Watchdog timer adjust A capacitor between Vcw pin and gnd, sets the time response of the watchdog monitor.	
Wi	6	14	Watchdog input. If the frequency at this input pin is too low, the Reset output is activated.	

5/19

Pin name	SO-8(D)	S0-20(MD)	Function
Vo	7	17	Voltage regulator output Block to ground with a capacitor >100nF (needed for regulator stability)
V _S	8	20	Supply voltage Block to ground directly at IC pin with a capacitor
N.C.		2, 3, 8, 9, 12, 13, 18, 19	Not connected

 Table 2.
 Pins description (continued)

Figure 2. Pins configuration (top view)

2 Electrical specifications

2.1 Absolute maximum ratings

Table 3.Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{Vsdc}	DC supply voltage	-0.3 to 40	V
I _{Vsdc}	Input current	Internally limited	
V _{Vo}	DC output voltage	-0.3 to 6	V
I _{Vo}	DC output current	Internally limited	
V _{Wi}	Watchdog input voltage	-0.3 to V _{Vo} + 0.3	V
V _{od}	Open Drain output voltage	-0.3 to V _{Vo} + 0.3	V
I _{od}	Open Drain output current	Internally limited	
V _{cr}	Reset delay voltage	-0.3 to V _{Vo} + 0.3	V
V _{cw}	Watchdog delay voltage	-0.3 to V _{Vo} + 0.3	V
V _{WEn}	Watchdog Enable input voltage	-0.3 to 40	V
Тj	Junction temperature	-40 to 150	"C
V _{ESD}	ESD voltage level (HBM-MIL STD 883C)	±2	kV

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause permanent damage to the integrated circuit.

2.2 Thermal data

Table 4.Thermal data

Symbol	Parameter	S0-8	S0-12+4+4	Unit
R _{th-jamb}	Thermal resistance junction to ambient	130 to 180	50 ⁽¹⁾	°C/W

1. With 6 sq. cm on board heat sink.

57

2.3 **Electrical characteristics**

 V_S = 5.6 V to 31 V, T_j = -40°C to +150°C unless otherwise specified.

Table 5.	Genera	al					
Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vo	V _{o_ref}	Output voltage	$V_{S} = 5.6 \text{ to } 31 \text{ V};$ $I_{o} = 1 \text{ to } 150 \text{ mA}$	4.85	5.0	5.15	۷
Vo	I _{short_13}	Short circuit current	$V_{\rm S} = 13.5 \ V^{(1)}$	160	210	250	mA
Vo	I _{lim}	Output current limitation	$V_{\rm S} = 13.5 \ V^{(1)}$	170	250	290	mA
V _S , V _o	V _{line}	Line regulation voltage	$V_{S} = 5.6 \text{ to } 31 \text{ V};$ $I_{o} = 1 \text{ to } 150 \text{ mA}$			25	mV
Vo	V _{load}	Load regulation voltage	I _o = 1 to 150 mA			25	mV
$V_{\rm S}, V_{\rm o}$	V _{dp}	Drop voltage	l _o = 150 mA		180	400	mV
V_{S}, V_{o}	SVR	Ripple rejection	fr = 100 Hz	55			dB
V _S , V _o	I _{qs_1}	Current consumption with watchdog not active $I_{qs_{-1}} = I_{VS}$ - I_o	V_{S} = 13.5 V; I_{o} < 1 mA; WE _n = low		69	115	μΑ
V _S , V _o	I _{qs_10}	Current consumption with watchdog not active $I_{qs_{-10}} = I_{VS}$ - I_{o}	V_S = 13.5 V; I _o = 10 mA; WE _n = low		127	300	μA
V _S , V _o	I _{qs_50}	Current consumption with watchdog not active $I_{qs_{50}} = I_{VS}$ - I_{o}	V_S = 13.5 V; I _o = 50 mA; WE _n = low		498	900	μA
V _S , V _o	I _{qs_150}	Current consumption with watchdog not active $I_{qs_{-}150} = I_{VS}$ - I_{o}	$V_{S} = 13.5 \text{ V};$ $I_{o} = 150 \text{ mA};$ $WE_{n} = \text{low}$		1.40	2	mA
V _S , V _o	I _{qn_1}	Current consumption with watchdog active $I_{qn_1} = I_{VS}$ - I_o	V_{S} = 13.5 V; I_{o} < 1 mA; WE _n = high		110	170	μA
V _S , V _o	I _{qn_10}	Current consumption with watchdog active $I_{qn_10} = I_{VS} - I_0$	V_{S} = 13.5 V; I_{o} = 10 mA; WE _n = high		168	350	μA
V _S , V _o	I _{qn_50}	Current consumption with watchdog active $I_{qn_{-50}} = I_{VS}$ - I_{o}	V_{S} = 13.5 V; I _o = 50 mA; WE _n = high		538	1000	μA
V _S , V _o	l _{qn_150}	Current consumption with watchdog active $I_{qn_{-150}} = I_{VS}$ - I_{o}	$V_S = 13.5 V;$ $I_o = 150 mA;$ $WE_n = high$		1.45	2	mA
	Tw	Thermal protection temperature		150		190	°C
	Tw_hy	Thermal protection temperature hysteresis			10		°C

1. See Figure 3.

8/19

Table 0.	nesei						
Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Res	Vres_I	Reset output low voltage	$R_{ext} = 5 \text{ k}\Omega \text{ to } V_{o};$ $V_{o} > 1 \text{ V}$			0.4	V
Res	I _{Res_lkg}	Reset output high leakage current	V _{Res} = 5 V			1	μA
Res	R _{Res}	Pull up internal resistance	Versus V _o	10	20	50	kΩ
Res	V _{o_th}	Reset threshold voltage	V _S = 5.6 to 31 V; I _o = 1 to 150 mA	6%	8%	10%	Below V _{o_ref}
Vcr	V _{rlth}	Reset timing low threshold	V _S = 13.5 V	10%	13%	16%	V_{o_ref}
Vcr	V _{rhth}	Reset timing high threshold	V _S = 13.5 V	44%	47%	50%	V _{o_ref}
Vcr	I _{cr}	Charge current	V _S = 13.5 V	8	15	30	μA
Vcr	l _{dr}	Discharge current	V _S = 13.5 V	8	15	30	μA
Res	T _{rr_2}	Reset reaction time ⁽¹⁾	$V_o = V_{o_{th}} - 100 \text{ mV}$	100	250	700	μs
Res	T _{rd}	Reset delay time	V _S = 13.5 V; Ctr = 1 nF	65	115	165	ms

Table 6. Reset

1. When V_0 becomes lower than 4V, the reset reaction time decreases down to 2µs assuring a faster reset condition in this particular case.

	watont	log					
Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Wi	Vih	Input high voltage	V _S = 13.5 V	3.5			V
Wi	Vil	Input low voltage	V _S = 13.5 V			1.5	V
Wi	Vih	Input hysteresis	V _S = 13.5 V		500		mV
Wi	Rwi	Pull down resistor	V _S = 13.5 V	30	100	250	KΩ
Vcw	Vwhth	High threshold	V _S = 13.5 V	44%	47%	50%	V_{o_ref}
Vcw	Vwlth	Low threshold	V _S = 13.5 V	10%	13%	16%	V_{o_ref}
Vcw	lcwc	Charge current	V _S = 13.5 V; Vcw = 0.1 V	5	10	20	μΑ
Vcw	lcwd	Discharge current	V _S = 13.5 V; Vcw = 2.5 V	1.25	2.5	5	μA
Vcw	Тwop	Watchdog period	V _S = 13.5 V; Ctw = 47 nF	20	40	80	ms
Res	twol	Watchdog output low time	V _S = 13.5 V; Ctw = 47 nF	4	8	16	ms

Table 7. Watchdog

	······································						
Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
WE _n	V _{WEn_l}	Enable input low voltage				1	V
WE _n	V_{WEn_h}	Enable input high voltage		3			V
WE _n	V_{WEn_hy}	Enable input hysteresis		600	920	1300	mV
WE _n	I_leak	Pull down current	V _S = 13.5 V	1	2.5	5	μA

Table 8.Watchdog Enable

3 Application information

3.1 Voltage regulator

The voltage regulator uses a p-channel MOS transistor as a regulating element. With this structure a very low dropout voltage at current up to 150 mA is obtained. The output voltage is regulated up to transient input supply voltage of 40 V. No functional interruption due to over-voltage pulses is generated. The voltage Regulator is always active and not depending on the state of WE_n input pin. A short circuit protection to GND is provided.

Figure 3. Behavior of output current versus regulated voltage Vo

3.2 Reset

The reset circuit supervises the output voltage V_o . The V_{o_th} reset threshold is defined with the in-ternal reference voltage and a resistor output divider. If the output voltage becomes lower than V_{o_th} then Res goes low with a reaction time trr. The reset low signal is guaranteed for an output voltage V_o greater than 1 V.

When the output voltage becomes higher than V_{o_th} then Res goes high with a delay $t_{rd}.$ This delay is obtained by an internal oscillator.

The oscillator period is given by:

$$T_{osc} = [(V_{rhth} - V_{rlth}) \times C_{tr}] / I_{cr} + [(V_{rhth} - V_{rlth}) \times C_{tr}] / I_{dr}$$

where:

l _{cr} :	is an internally generated charge current
l _{dr} :	is an internally generated discharge current
V _{rhth} , V _{rlth} :	are two voltages defined with the output voltage and a resistor output divider
C _{tr} :	is an external capacitance.

t_{rd} is given by:

 $t_{rd} = 512 \text{ x } T_{osc}$

The Reset is always active and not depending on the state of WE_n input pin.

3.3 Watchdog

A connected microcontroller is monitored by the watchdog input W_i. If pulses are missing, the Reset output pin is set to low. The pulse sequence time can be set within a wide range with the external capacitor, C_{tw}. The watchdog circuit discharges the capacitor C_{tw}, with the constant current I_{cwd}. If the lower threshold V_{wlth} is reached, a watchdog reset is generated. To prevent this the microcontroller must generate a positive edge during the discharge of the capacitor before the voltage has reached the threshold V_{wlth}. In order to calculate the minimum time t, during which the micro-controller must output the positive edge, the following equation can be used:

$$(V_{whth} - V_{wlth}) \times C_{tw} = I_{cwd} \times t$$

Every W_i positive edge switches the current source from discharging to charging. The same happens when the lower threshold is reached. When the voltage reaches the upper threshold, V_{whth} , the current switches from charging to discharging. The result is a saw-tooth voltage at the watchdog timer capacitor C_{tw} .

Figure 5. Watchdog timing diagram

4 Package and packing information

4.1 ECOPACK[®] packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.2 SO-8 package information

Figure 6. SO-8 package dimensions

Nillimetoro					
Symbol	Millimeters				
	Min.	Тур.	Max.		
А			1.75		
A1	0.10		0.25		
A2	1.25				
b	0.28		0.48		
с	0.17		0.23		
D ⁽¹⁾	4.80	4.90	5.00		
E	5.80	6.00	6.20		
E1 ⁽²⁾	3.80	3.90	4.00		
е		1.27			
h	0.25		0.50		
L	0.40		1.27		
L1		1.04			
k	0°		8°		
ссс			0.10		

Table 9.SO-8 mechanical data

1. Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs shall not exceed 0.15mm in total (both side).

2. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side.

4.3 SO-20 package information

Table 10. SO-20 mechanical data

Symbol		Millimeters	
Symbol	Min.	Тур.	Max.
A	2.35		2.65
A1	0.10		0.30
В	0.33		0.51
С	0.23		0.32
D ⁽¹⁾	12.60		13.00
E	7.40		7.60
е		1.27	
Н	10.0		10.65
h	0.25		0.75
L	0.40		1.27
k	0°		8°
ddd			0.10

1. "D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15mm per side.

4.4 SO-8 packing information

Figure 8. SO-8 tube shipment (no suffix)

Base Q.ty	100	
Bulk Q.ty	2000	
Tube length (± 0.5)	532	
Α	3.2	
В	6	
C (± 0.1)	0.6	
All dimensions are in mm.		

Figure 9. SO-8 tape and reel shipment (suffix "TR")

4.5 SO-20 packing information

Figure 10. SO-20 tube shipment (no suffix)

5 Revision history

Table 11.Document revision history

Date	Revision	Changes
16-Apr-2012	1	Initial release. This document replace the L4989 datasheet.
19-Sep-2013	2	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

