FDJ1032C # Complementary PowerTrench® MOSFET #### **Features** ■ Q1 –2.8 A, –20 V. $R_{DS(ON)} = 160 \text{ m}\Omega$ @ $V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 230 \text{ m}\Omega$ @ $V_{GS} = -2.5 \text{ V}$ $R_{DS(ON)} = 390 \text{ m}\Omega @ V_{GS} = -1.8 \text{ V}$ **Q2** 3.2 A, 20 V. $R_{DS(ON)} = 90 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 130 \text{ m}\Omega$ @ $V_{GS} = 2.5 \text{ V}$ ■ Low gate charge High performance trench technology for extremely low R_{DS(ON)} ■ FLMP SC75 package: Enhanced thermal performance in industry-standard package size ■ RoHS Compliant #### **Applications** - DC/DC converter - Load switch - Motor Driving ### **General Description** These N & P-Channel MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance. These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required. ## **Absolute Maximum Ratings** T_A = 25°C unless otherwise noted | Symbol | Parameter | | Q1 | Q2 | Units | |-----------------------------------|--|-----------|------|--------|-------| | V _{DSS} | Drain-Source Voltage | | -20 | 20 | V | | V _{GSS} | Gate-Source Voltage | | ±8 | ±12 | V | | I _D | Drain Current - Continuous | (Note 1a) | -2.8 | 3.2 | А | | | - Pulsed | | -12 | 12 | | | P _D | Power Dissipation for Single Operation (Note 1a) 1. | | .5 | W | | | | | (Note 1b) | (|).9 | | | T _J , T _{STG} | Operating and Storage Junction Temperature Range -55 to +150 | | | o +150 | °C | | Thermal Cha | racteristics | | • | | | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 80 | | °C/W | | $R_{\theta JC}$ | Thermal Resistance, Junction-to-Case | (Note 1a) | 5 | | | ## Package Marking and Ordering Information | Device Marking | Device | Reel Size | Tape width | Quantity | |----------------|----------|-----------|------------|------------| | .Н | FDJ1032C | 7" | 8mm | 3000 units | ### **Electrical Characteristics** | Symbol | Parameter | Test Conditions | Туре | Min | Тур | Max | Units | |--|---|---|----------|-------------|--------------------------|--------------------------|-------| | Off Charact | eristics | | | | | | | | BV _{DSS} | Drain-Source Breakdown
Voltage | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$
$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$ | Q1
Q2 | -20
20 | | | V | | $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature
Coefficient | I_D = -250 μA, Referenced to 25°C I_D = 250 μA, Referenced to 25°C | Q1
Q2 | | -13
13 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$
$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$ | Q1
Q2 | | | -1
1 | μА | | I _{GSS} | Gate-Body Leakage | $V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$
$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$ | Q1
Q2 | | | ±100
±100 | nA | | On Charact | eristics (Note 2) | | | ! | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$
$V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | Q1
Q2 | -0.4
0.6 | -0.8
1.0 | -1.5
1.5 | V | | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate Threshold Voltage
Temperature Coefficient | $I_D = -250 \mu A$, Referenced to 25°C $I_D = 250 \mu A$, Referenced to 25°C | Q1
Q2 | | 3
-3 | | mV/°C | | R _{DS(on)} | Static Drain-Source
On-Resistance | $V_{GS} = -4.5 \text{ V}, I_D = -2.8 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -2.2 \text{ A}$ $V_{GS} = -1.8 \text{ V}, I_D = -1.7 \text{ A}$ $V_{GS} = -4.5 \text{ V}, I_D = 2.8 \text{ A}, T_J = 125^{\circ}\text{C}$ | Q1 | | 108
163
283
150 | 160
230
390
238 | mΩ | | | | $V_{GS} = 4.5 \text{ V}, I_D = 3.2 \text{ A}$
$V_{GS} = 2.5 \text{ V}, I_D = 2.7 \text{ A}$
$V_{GS} = 4.5 \text{ V}, I_D = 3.2, T_J = 125^{\circ}\text{C}$ | Q2 | | 70
100
83 | 90
130
132 | | | 9FS | Forward Transconductance | $V_{DS} = -5 \text{ V}, I_{D} = -2.8 \text{ A}$
$V_{DS} = 5 \text{ V}, I_{D} = 3.2 \text{ A}$ | Q1
Q2 | | 5
7.5 | | S | | Dynamic Cl | naracteristics | | • | | | | • | | C _{iss} | Input Capacitance | Q1:
V _{DS} = -10 V, V _{GS} = 0 V, f = 1.0 MHz | Q1
Q2 | | 290
200 | | pF | | C _{oss} | Output Capacitance | Q2:
V _{DS} = 10 V, V _{GS} = 0 V, f = 1.0 MHz | | pF | | | | | C _{rss} | Reverse Transfer Capacitance | VDS = 10 V, VGS = 0 V, I = 1.0 WI12 | Q1
Q2 | | 29
30 | | pF | | R _G | Gate Resistance | | Q1
Q2 | | 14
3 | | Ω | | Switching C | Characteristics | | | | | | | | t _{d(on)} | Turn-On Delay Time | Q1:
V _{DD} = -10 V, I _D = -1 A, | Q1
Q2 | | 8
7 | 16
14 | ns | | t _r | Turn-On Rise Time | $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ Q2: | Q1
Q2 | | 13
8 | 23
16 | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{DD} = 10 \text{ V}, V_{DD} = 1 \text{ A}, V_{GS} = 4.5 \text{ V}, V_{GEN} = 6 \Omega$ | Q1
Q2 | | 13
11 | 23
20 | ns | | t _f | Turn-Off Fall Time | den den | Q1
Q2 | | 18
2 | 32
4 | ns | ## **Electrical Characteristics (Continued)** | Symbol | Parameter | Test Conditions | Туре | Min | Тур | Max | Units | |-----------------|---------------------------------------|---|----------|-----|-------------|---------------|-------| | Q _g | Total Gate Charge | Q1: $V_{DS} = -10 \text{ V}, I_D = -2.8 \text{ A}, V_{GS} = -4.5 \text{ V}$ | Q1
Q2 | | 3
2 | 4
3 | nC | | Q _{gs} | Gate-Source Charge | Q2:
V _{DS} = 10 V, I _D = 3.2 A, V _{GS} = 4.5 V | | | 0.65
0.4 | | nC | | Q _{gd} | Gate-Drain Charge | VDS = 10 V, 1D = 3.2 A, VGS = 4.3 V | Q1
Q2 | | 0.75
1.0 | | nC | | Drain-Source | e Diode Characteristics and Ma | ximum Ratings | | • | | • | | | I _S | Maximum Continuous Drain-Sou | rce Diode Forward Current | Q1
Q2 | | | -1.25
1.25 | Α | | V _{SD} | Drain-Source Diode Forward
Voltage | $V_{GS} = 0 \text{ V, } I_S = -1.3 \text{ A (Note 2)}$
$V_{GS} = 0 \text{ V, } I_S = 1.3 \text{ A (Note 2)}$ | Q1
Q2 | | -0.8
0.8 | -1.2
1.2 | V | | t _{rr} | Diode Reverse Recovery Time | $\begin{aligned} I_F &= -4.2 A, \ d_{IF}/d_t = 100 \ A/\mu s \\ I_F &= 5.9 A, \ d_{IF}/d_t = 100 \ A/\mu s \end{aligned}$ | Q1
Q2 | | 14
11 | | nS | | Q _{rr} | Diode Reverse Recovery
Charge | $ \begin{aligned} I_F &= -4.2 \text{A}, \ d_{IF}/d_t = 100 \ \text{A}/\mu \text{s} \\ I_F &= 5.9 \text{A}, \ d_{IF}/d_t = 100 \ \text{A}/\mu \text{s} \end{aligned} $ | Q1
Q2 | | 4
2.5 | | nC | #### Notes 1. R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BJC} is guaranteed by design while R_{BCA} is determined by the user's board design. a) 80°C/W when mounted on a 1in² pad of 2 oz copper (Single Operation). b) 140°C/W when mounted on a minimum pad of 2 oz copper (Single Operation). Scale 1:1 on letter size paper 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0% Figure 1. On-Region Characteristics. Figure 3. On-Resistance Variation with Temperature. Figure 5. Transfer Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. Figure 7. Gate Charge Characteristics. Figure 8. Capacitance Characteristics. Figure 9. Maximum Safe Operating Area. Figure 10. Single Pulse Maximum Power Dissipation. Figure 11. On-Region Characteristics. Figure 13. On-Resistance Variation with Temperature. Figure 15. Transfer Characteristics. Figure 12. On-Resistance Variation with Drain Current and Gate Voltage. Figure 14. On-Resistance Variation with Gate-to-Source Voltage. Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature. Figure 17. Gate Charge Characteristics. Figure 19. Maximum Safe Operating Area. Figure 20. Single Pulse Maximum Power Dissipation. Figure 21. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design. ### **Dimensional Outline and Pad Layout** #### **Bottom View** #### **Top View** #### **Recommended Landing Pattern** Notes: Unless otherwise specified all dimensions are in millimeters. #### **TRADEMARKS** The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks. Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{TM}$ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * airchild® Fairchild Semiconductor® FACT Quiet SeriesTM FACT[®] $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FlashWriter® * FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench[®] Programmable Active Droop™ QSTM Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™ SyncFET™ SYSTEM ® The Power Franchise® p we franchise ⊎wer TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ Ultra FRFFT™ UniFFT™ VCXTM VisualMax™ * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. **DISCLAIMER**FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT COUNTY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS **Definition of Terms** | Datasheet Identification | Product Status | Definition | | | |---|------------------|---|--|--| | Advance Information Formative / In Design | | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | No Identification Needed Full Production | | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | Obsolete Not In Production | | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | |