



### Dynamically Adjustable Dual µCap LDO

## **General Description**

The MIC2219 is a dual  $\mu$ Cap low dropout regulator. The first regulator is capable of sourcing 150mA, while the second regulator can source up to 300mA.

Ideal for battery operated applications, the MIC2219 offers 1% accuracy, extremely low dropout voltage (80mV @ 100mA), and extremely low ground current, only 48 $\mu$ A total. Equipped with TTL logic compatible enable pins, the MIC2219 can be put into a zero-off-mode current state, drawing no current when disabled. Separate enable pins allow individual control of each output voltage.

The additional feature incorporated in the MIC2219 is bringing out the feedback nodes to two external pins, allowing for dynamic adjustment of the LDO output voltages.

The MIC2219 is a  $\mu$ Cap design, operating with very small ceramic output capacitors for stability, reducing required board space and component cost.

The MIC2219 is available in fixed output voltages in the 10-pin 3mm × 3mm MLF<sup>™</sup> leadless package.

### **Features**

- Input voltage range: 2.25V to 5.5V
- Stable with ceramic output capacitor
- 2 LDO outputs
  - Output 1 150mA output current
  - Output 2 300mA output current
- Feedback pins externally accessible
- Low dropout voltage of 80mV @ 100mA
- Ultra-low quiescent current of 48µA total (24µA/LDO)
- High output accuracy:
  - +1.0% initial accuracy
  - +2.0% over temperature
- Thermal shutdown protection
- Current limit protection
- Tiny 10-pin 3mm × 3mm MLF<sup>™</sup> package

### **Applications**

- Cellular phones
- Wireless modems
- PDAs
- LEDs

### **Typical Application**



**MIC2219 Typical Cell Phone Application** 

MicroLeadFrame and MLF are trademarks of Amkor Technology, Inc.

Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

# Ordering Information

| Part Number        |               | Voltage*      | Junction  |                 |                 |
|--------------------|---------------|---------------|-----------|-----------------|-----------------|
| Full Part Number   | Standard      | Pb-Free       | (Vo1/Vo2) | Temp. Range     | Package         |
| MIC2219-3.0/3.3BML | MIC2219-PSBML | MIC2219-PSYML | 3.0V/3.3V | –40°C to +125°C | 10-Pin 3×3 MLF™ |

\*For other output voltage options, contact Micrel marketing.

# **Pin Configuration**



10-Pin 3mm × 3mm MLF™ (ML) (Top View)

| Voltage | Code |
|---------|------|
| Adj.    | A    |
| 1.5     | F    |
| 1.6     | W    |
| 1.8     | G    |
| 1.85    | D    |
| 1.9     | Y    |
| 2.0     | Н    |
| 2.1     | E    |
| 2.5     | J    |
| 2.6     | K    |
| 2.7     | L    |
| 2.8     | М    |
| 2.850   | N    |
| 2.9     | 0    |
| 3.0     | Р    |
| 3.1     | Q    |
| 3.2     | R    |
| 3.3     | S    |
| 3.4     | Т    |
| 3.5     | U    |
| 3.6     | V    |

Table 1. Voltage Codes

# Pin Description

| Pin Number | Pin Name | Pin Function                                                                                                                |
|------------|----------|-----------------------------------------------------------------------------------------------------------------------------|
| 1          | VIN      | Supply Input: (VIN1 and VIN2 are internally tied together.)                                                                 |
| 2          | EN1      | Enable Input to Regulator 1: Enables regulator 1 output. Active high input.<br>High = on, low = off. Do not leave floating. |
| 3          | EN2      | Enable Input to Regulator 2: Enables regulator 2 output. Active high input.<br>High = on, low = off. Do not leave floating. |
| 4          | CBYP     | Reference Bypass: Connect external 0.01 $\mu$ F to GND to reduce output noise. May be left open.                            |
| 5          | FB1      | Feedback Node (OUT1). Connected to internal feedback resistor divider network.                                              |
| 6          | GND      | Ground: Connect externally to Exposed Pad.                                                                                  |
| 7          | FB2      | Feedback Node (OUT2). Connected to internal feedback resistor divider<br>network.                                           |
| 8          | N/C      | No Connection.                                                                                                              |
| 9          | VOUT2    | Output of Regulator 2: 300mA output current.                                                                                |
| 10         | VOUT1    | Output of Regulator 1: 150mA output current.                                                                                |
| EP         | GND      | Ground: Internally connected to the Exposed Pad. Connect externally to pin 6.                                               |

| Supply Input Voltage (V <sub>IN</sub> ) | 0V to 7V                   |
|-----------------------------------------|----------------------------|
| Enable Input Voltage (V <sub>EN</sub> ) | 0V to 7V                   |
| Power Dissipation (P <sub>D</sub> )     | Internally Limited, Note 3 |
| Junction Temperature                    | –40°C to +125°C            |
| Storage Temperature (T <sub>S</sub> )   | –65°C to 150°C             |
| Lead Temperature (soldering, 5          | sec.) 260°C                |

## **Operating Ratings** (Note 2)

| Supply Input Voltage (VIN)                        | 2.25V to 5.5V   |
|---------------------------------------------------|-----------------|
| Enable Input Voltage (V <sub>EN</sub> )           | 0V to Vin       |
| Junction Temperature (T <sub>J</sub> )            | –40°C to +125°C |
| Package Thermal Resistance                        |                 |
| MLF™-10 (θ <sub>.IA</sub> )                       | 60°C/W          |
| MLF™-10 (θ <sub>JC</sub> ) 1" square 2 oz. copper |                 |

### **Electrical Characteristics** (Note 4)

 $V_{IN} = V_{OUT} + 1.0V$  for higher output of the regulator pair;  $C_{OUT} = 1.0\mu$ F,  $I_{OUT} = 100\mu$ A;  $T_J = 25^{\circ}$ C, **bold** values indicate  $-40^{\circ}$ C  $\leq T_J \leq +125^{\circ}$ C; unless noted.

| Parameter                        | Conditions                                                              | Min                  | Тур  | Max                 | Units    |
|----------------------------------|-------------------------------------------------------------------------|----------------------|------|---------------------|----------|
| Output Voltage Accuracy          | Variation from nominal V <sub>OUT</sub>                                 | -1.0<br>- <b>2.0</b> |      | +1.0<br><b>+2.0</b> | %<br>%   |
| Output Voltage Temp. Coefficient |                                                                         |                      | 40   |                     | ppm/C    |
| Line Regulation; Note 5          | $V_{IN} = V_{OUT} + 1V$ to 5.5V                                         | -0.3<br>- <b>0.6</b> | 0.02 | 0.3<br><b>0.6</b>   | %/V      |
| Load Regulation                  | I <sub>OUT</sub> = 100μA to 150mA (regulator 1 and 2)                   |                      | 0.2  | 1.0                 | %        |
|                                  | I <sub>OUT</sub> = 100μA to 300mA (regulator 2)                         |                      |      | 1.5                 | %        |
| Dropout Voltage; Note 6          | I <sub>OUT</sub> = 150mA (regulator 1 and 2)                            |                      | 120  | 190<br><b>250</b>   | mV<br>mV |
|                                  | I <sub>OUT</sub> = 300mA (regulator 2)                                  |                      | 240  | 340<br><b>420</b>   | mV       |
| Ground Pin Current               | $I_{OUT1} = I_{OUT2} = 0\mu A$                                          |                      | 48   | 65<br><b>80</b>     | μΑ<br>μΑ |
|                                  | I <sub>OUT1</sub> = 150mA & I <sub>OUT2</sub> = 300mA                   |                      | 60   |                     | μΑ       |
| Ground Pin Current in Shutdown   | $V_{EN} \le 0.4V$                                                       |                      |      | 1.0                 | μΑ       |
| Ripple Rejection                 | f = 1kHz; C <sub>OUT</sub> = 1.0μF ceramic; C <sub>BYP</sub> = 10nF     |                      | 60   |                     | dB       |
|                                  | f = 1kHz; C <sub>OUT</sub> = 1.0μF ceramic; C <sub>BYP</sub> = 10nF     |                      | 40   |                     | dB       |
| Current Limit                    | V <sub>OUT</sub> = 0V (regulator 1)                                     | 150                  | 280  | 460                 | mA       |
|                                  | V <sub>OUT</sub> = 0V (regulator 2)                                     | 300                  | 450  | 700                 | mA       |
| Output Voltage Noise             | $C_{OUT} = 1\mu F, C_{BYP} = 0.01\mu F, 10Hz \text{ to } 100\text{kHz}$ |                      | 30   |                     | μVrms    |
| Feedback Inputs                  |                                                                         | ·                    |      |                     |          |
| FB1                              | Resistance value, output1, V <sub>OUT</sub> to FB1                      |                      | 830  |                     | kΩ       |
|                                  | Resistance value, output1, FB1 to GND                                   |                      | 580  |                     | kΩ       |
| FB2                              | Resistance value, output2, V <sub>OUT</sub> to FB2                      |                      | 972  |                     | kΩ       |
|                                  | Resistance value, output2, FB2 to GND                                   |                      | 580  |                     | kΩ       |
| Enable Input                     |                                                                         | •                    |      |                     |          |
| Enable Input Voltage             | Logic low (regulator shutdown)                                          |                      |      | 0.6                 | V        |
|                                  | Logic high (regulator enabled)                                          | 1.8                  |      |                     | V        |
| Enable Input Current             | V <sub>IL</sub> < 0.6V (regulator shutdown)                             | -1                   | 0.01 | +1                  | μΑ       |
|                                  | V <sub>IH</sub> > 1.8V (regulator enabled)                              | 1                    | 0.01 | +1                  | μΑ       |

Note 1 The device is not guaranteed to work outside its operating r

**Note 2.** The device is not guaranteed to work outside its operating rating.

Note 3. The maximum allowable power dissipation of any  $T_A$  (ambient temperature) is  $P_{D(max)} = (T_{J(max)} - T_A) / \theta_{JA}$ . Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

Note 4. Specification for packaged product only.

Note 5. Minimum input for line regulation test is set to  $V_{OUT}$  + 1V relative to the highest output voltage.

**Note 6.** Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. For outputs below 2.25V, dropout voltage is the input-to-output voltage differential with the minimum input voltage 2.25V. Minimum input operating voltage is 2.25V.

5

## **Typical Characteristics**













Dropout Voltage Output 2

0 20 40 60 80 100120140 TEMPERATURE (°C)

**Ground Current** vs. Output 2 Current

350

300

300mA \_oad

(mV)

040

60

40

30

20

1(

0

(MA) 50

CURRENT

GROUND

-20



Ground Current vs. Supply Voltage





M9999-042105

0 50 100 150 200 250 300 OUTPUT 2 LOAD CURRENT (mA)

300

# Typical Characteristics (cont.)





Output Voltage 1 vs. Temperature











Enable Voltage Threshold vs. Supply Voltage



Output Voltage 2 vs. Temperature



# **Functional Characteristics**





## **Functional Diagram**



MIC2219 Fixed Voltage Block Diagram

### **Functional Description**

The MIC2219 is a high performance, low quiescent current power management IC consisting of two  $\mu$ Cap low-dropout regulators. The first regulator is capable of sourcing 150mA at output voltages from 1.25V to 5V. The second regulator is capable of sourcing 300mA of current at output voltages from 1.25V to 5V.

#### Enable 1 and 2

The enable inputs allow for logic control of both output voltages with individual enable inputs. The enable input is active high, requiring 1.8V for guaranteed operation. The enable input is CMOS logic and cannot by left floating.

#### Input Capacitor

Good bypassing is recommended from input to ground to help improve AC performance. A  $1\mu$ F capacitor or greater located close to the IC is recommended.

#### **Bypass Capacitor**

The internal reference voltage of the MIC2219 can be bypassed with a capacitor to ground to reduce output noise and increase power supply rejection (PSRR). A quick-start feature allows for quick turn-on of the output voltage regardless of the size of the capacitor. The recommended nominal bypass capacitor is  $0.01\mu$ F, but it can be increased without limit.

#### **Output Capacitor**

Each regulator output requires a  $1\mu$ F ceramic output capacitor for stability. The output capacitor value can be increased to improve transient response, but performance has been optimized for a  $1\mu$ F ceramic type output capacitor.

X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. X7Rtype capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60% respectively over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.



#### MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.