

L99SD01-E

Integrated solenoid driver for automotive applications

Datasheet - production data

PowerSSO-36

Features

- Automotive qualified
- Excitation switch $S_1 = 60 \text{ m}\Omega$
- Recirculation switch S₂ = 60 mΩ
- CMOS compatible inputs
- Load current up to 14 A
- Integrated clamp structure
 - Switch S_1 clamp voltage = 45 V (minimum)
- Current sense amplifier with internal sense resistor
- S₁ switch PWM operation above 10 KHz
- I²C standard interface for mode control and enhanced diagnostic
- Diagnostic output:
 - Open drain fault detection
 - Flag of clamp activation at the end of injection cycle
- Input for voltage monitoring and feedback
- Thermal shutdown and warning
- Overcurrent shutdown and diagnostic
- Undervoltage and overvoltage detection
- Open-load detection

Description

The L99SD01-E is a device intended for driving inductive loads such as Compressed Natural Gas (CNG) injectors.

The inputs are CMOS-compatible. The diagnostic outputs CLAMP_FLAG and FAULT provide an indication of demagnetization mode and fault conditions, respectively.

The integrated standard serial interface (I²C) allows to digitally set peak and hold current values and other injection parameters. It also provides detailed diagnostic information. The device should work with pre-programmed peak and hold current values when values are not set by external micro. All injection parameters can be changed during operating conditions and taken into account at the first injection rising edge after the end of communication. Diagnostic information is available in case of overcurrent, overtemperature, overvoltage and open-load.

Table 1. Device summary

Package	Order	codes
гаскауе	Tube	Tape and reel
PowerSSO-36	L99SD01-E	L99SD01TR-E

This is information on a product in full production.

Contents

1	Bloc	k diagram and pin description6
2	Injec	tion cycle description
	2.1	Phase 1
	2.2	Phase 2
	2.3	Phase 3
	2.4	Phase 4
	2.5	Phase 5
3	Diagi	nostic
4	l²C p	rotocol description
	4.1	SDA and SCL signals 17
	4.2	Data validity 17
	4.3	START and STOP conditions 18
	4.4	Byte format
	4.5	Acknowledge (ACK) and Not Acknowledge (NACK) 19
	4.6	Device addressing 19
	4.7	Write operation
	4.8	Read operation
	4.9	Registers Addresses and Fault register 22
5	Regis	ster description
	5.1	Register A
	5.2	Register B
	5.3	Register C 24
	5.4	Register D 25
	5.5	Register E
	5.6	Register F
	5.7	Register G
	5.8	Register H 26
	5.9	Fault register

6	Electrical specification
	6.1 Absolute maximum rating 28
	6.2 Thermal data 29
	6.3 Electrical characteristics
7	OTP (One Time Programmable Memory)
8	Application schematic
9	Package and PCB thermal data 40
	9.1 PowerSSO-36 thermal data 40
10	Package and packing Information
	10.1 ECOPACK [®] packages 43
	10.2 PowerSSO-36 package information 43
11	Revision history

List of tables

Table 1.	Device summary1
Table 2.	Pin description
Table 3.	Diagnostic fault
Table 4.	Registers addresses
Table 5.	Absolute maximum rating
Table 6.	Thermal data
Table 7.	V _{BATT} supply
Table 8.	Power switches $S_1 - S_2 \dots \dots$
Table 9.	S ₁ switching (excitation path) 30
Table 10.	Switching (recirculating path)
Table 11.	V _{DDL} undervoltage detection
Table 12.	Enable
Table 13.	Input: SYNC_INJ
Table 14.	Input: PWM
Table 15.	Inputs: E0, E1, E2
Table 16.	IN_SIGNAL VOLTAGE MONITOR, CHECK_SIGNAL
Table 17.	Differential current sense amplifier
Table 18.	Current sense comparator
Table 19.	8-bit digital to analog converter
Table 20.	S ₁ protections and diagnostic
Table 21.	Application registers range
Table 22.	IPEAK, IHOLD (-40 °C < T _j < 150 °C, unless otherwise specified)
Table 23.	Charge pump
Table 24.	I ² C-bus SDA, SCL I/O stages
Table 25.	I ² C-bus SDA, SCL bus lines characteristics
Table 26.	Electrical transient requirements (part 1)
Table 27.	Electrical transient requirements (part 2)
Table 28.	Electrical transient requirements (part 3)
Table 29.	16 bit OTP modules
Table 30.	Thermal parameters
Table 31.	PowerSSO-36 mechanical data
Table 32.	Document revision history

List of figures

Figure 1.	Block diagram	. 6
Figure 2.	Waveforms	. 9
Figure 3.	Load configuration	. 9
Figure 4.	Registers (default values)	12
Figure 5.	FSM (state machine)	13
Figure 6.	Thermal protection	15
Figure 7.	Short to battery protection	
Figure 8.	Soft short to battery protection	16
Figure 9.	Open-load diagnostic	16
Figure 10.	Connection of I^2C -devices to I^2C -bus	
Figure 11.	Bit transfer on the I ² C-bus	
Figure 12.	START and STOP conditions	
Figure 13.	Data transfer on the I ² C-bus	19
Figure 14.	Complete data transfer	19
Figure 15.	The first byte after the START procedure	20
Figure 16.	WRITE command	20
Figure 17.	Current READ command	
Figure 18.	Random READ command	
Figure 19.	Fault Register	
Figure 20.	Definition of timing on the I ² C-bus	36
Figure 21.	Application schematic	39
Figure 22.	PowerSSO-36 PC board.	40
Figure 23.	Rthj-amb vs PCB copper area in open box free air condition	41
Figure 24.	PowerSSO-36 thermal impedance junction ambient	41
Figure 25.	Thermal fitting model of a HSD in PowerSSO-36	
Figure 26.	PowerSSO-36 package dimensions	43

1 Block diagram and pin description

DocID022573 Rev 5

Table 2. Pin description

Pin number	Pin name	Description
1	OTP_15V	Power supply for OTP test purposes. Not connected.
2	IN_SIGNAL	This pin is used to acquire (through an external resistor) the signal coming from the Main ECU
3	CHECK_SIGNAL	The voltage on the "IN_SIGNAL" pin is compared with V _{BATT} /2: IF IN_SIGNAL > Vbatt/2 then CHECK_SIGNAL = H IF IN_SIGNAL <= Vbatt/2 then CHECK_SIGNAL = L
4	MAINT_IPK	Diagnostic pin going high when device is regulating Ipeak current value
5	CLAMP_FLAG	Reporting the CLAMP intervention and the end of injection cycle
6	SDA	I ² C serial interface data line
7	SCL	I ² C serial interface clock line (100 kHz)
8	FAULT	The FAULT pin is pulled low whenever a fault condition is detected.
9	PWM	External PWM clock
10	SYNC_INJ	It is used for injection synchronization and to set the single injection duration.
11	ENABLE	This pin is used to enable/disable the device. When low, device enters standby low consumption mode
12	TEST	Test activation. Not connected.
13	TEST_OUT3	Pin for test purposes. Not connected
14	SGND	Signal ground pin. Do not connect to ground module. Use for local capacitor connection
15-18	PGND	Power ground pin
19-22	REC	Recirculation path – the external recirculation diode is connected between this pin and battery.
23	TEST_OUT2	Pin for test purposes. Not connected
24	TEST_OUT1	Pin for test purposes. Not connected
25	BATT	Power supply voltage
26	CPUMP1	Charge pump pin for external capacitor connection
27	CPUMP2	Charge pump pin for external capacitor connection
28	CTANK	Supply voltage for high side driver
29	VDDL	5 V external supply voltage
30	C3V3	3.3 V supply pin for external capacitor connection
31	SGND	Signal ground pin. Do not connect to ground module. Use for local capacitor connection
32	EO	Address pin externally hard wired to ground or VDDL to address till 8 devices in parallel
33	E1	Address pin externally hard wired to ground or VDDL to address till 8 devices in parallel

Pin number	Pin name	Description
34	E2	Address pin externally hard wired to ground or VDDL to address till 8 devices in parallel
35	SGND	Signal ground pin. Do not connect to ground module. Use for local capacitor connection
36	OTP_0V	Power ground for OTP test purposes. Not connect
Tab	OUT	Excitation path – the injector is connected between battery and this pin

Table 2. Pin description (continued)

2 Injection cycle description

Figure 2 includes the main waveforms showing a typical injection cycle while *Figure 3* shows typical load connection and recirculation diode.

2.1 Phase 1

Injection phase starts by closing S₁ switch when there is a rising edge of SYNC_INJ signal. During this phase current on injector rises till an I_{PEAK} value set in the register A. If current doesn't reach I_{PEAK} value within a maximum time fixed in register H, the device status switches from phase 1 to phase 2.

2.2 Phase 2

If current hasn't still reached I_{PEAK} value S_1 switch continues to be ON and current continues to flow through load during all phase 2 whose length is set in register B. As soon as current reaches I_{PEAK} value it will be regulated in PWM mode at this value. PWM frequency is fixed by external clock via PWM pin.

Current is controlled by shutting-down S_1 when current reaches I_{PEAK} value. During the remaining period injector current is re-circulating through S_2 switch which should be always closed during phase 1 and phase 2. We speak about slow-recirculation during this phase.

Pin MAINT_IPK should be kept high (5 V) when current has reached and is regulated around I_{PEAK} value.

2.3 Phase 3

This is the temporary phase to go from I_{PEAK} to I_{HOLD} value. During this phase S_1 is open. Register C sets the time length of this phase. Register D sets the recirculation mode:

- Slow recirculation: S₂ closed.
- Fast recirculation: S₂ open and clamp on S₁ activated.

A particular case is when at the end of phase 2 current has not reached I_{PEAK} value yet. In this case device will go to phase 3 in slow recirculation mode whatever the value set in register D.

2.4 Phase 4

During this phase current is controlled to I_{HOLD} value. During this phase S_2 is always closed. Register E sets I_{HOLD} current value. Current is controlled by shutting-down S_1 when current reaches I_{HOLD} value. Recirculation is slow because S_2 is closed during this phase.

PWM clock signal is given externally on pin PWM.

This phase starts at the end of phase 3 when current on injector has slowed down but not below the holding value. For this reason at the beginning of this phase PWM duty cycle will be fixed by the minimum turn-on time of regulation loop, till the current reaches I_{HOLD} value.

This phase lasts till the end of injection given by the falling edge of SYNC_INJ signal. Shutting of injector is done by turning off S₁ and S₂. Fast recirculation happens through S₁ by clamp activation. CLAMP_FLAG is set to high value (5 V) during 350 µsec minimum. To minimize the current ripple during the passage from phase 3 to phase 4, a temporary hold value could be used for some PWM cycles. Register F sets this temporary hold current value, whilst Register G sets time length.

2.5 Phase 5

System is waiting for next injection cycle. No current is flowing through injector. Switches S_1 and S_2 are open.

End of injection cycle could happen everywhere during injection cycle. So device should sustain fast recirculation even during phase 2 with high current values.

If the time duration of one phase is set to zero then the corresponding phase should be skipped and device must enter the following phase.

All registers have pre-programmed values hard coded in the device. So device can operate as it is without needing of a first programming phase (for typical application). In all other applications first register writing is done automatically at the beginning of communication. All registers could be modified during the operating phase. Modified values are activated at the beginning of the first injection cycle following the end of the serial communication. Synchronization event is the rising edge of SYNC_INJ signal. In reset state all registers are cleared.

Enable pin allows device to enter standby mode with very low current consumption. Enable signal can be supplied directly by microcontroller.

Typical applications include 4 to 8 injectors which are driven via a microcontroller through a serial interface (I^2C). Each device is recognizable by a unique hard wired address code. Three pins are devoted to code up to 8 device addresses.

Each communication between microcontroller and each device is closed by an acknowledgment message. If this message does not arrive it means that something is not working in communication between microcontroller and L99SD01-E.

Figure 4. Registers (default values)

3 Diagnostic

Device is auto-protected against some failures and is able to send the information fault to microcontroller via FAULT pin and serial communication line. The following table resumes all the fault conditions detected by the device and the corresponding device behavior.

Fault condition	Device behavior
THERMAL SHUTDOWN	Shutdown S_1 with slow recirculation (S_2 on). Fault pin low and fault register set. Device restarts when temperature slows down the reset value. Fault register reset by microcontroller.
THERMAL WARNING	Normal mode. Fault register set. Fault register reset by microcontroller. No action on Fault pin.
UNDERVOLTAGE	Normal mode. Fault pin low and fault register set. Fault register reset by microcontroller.
OVERVOLTAGE	Normal mode. Fault pin low and fault register set. Fault register reset by microcontroller.
OUTPUT SHORTED TO BATT ⁽¹⁾	Shut down immediately after minimum turn on time. Fault pin low and fault register set. To avoid false overcurrent detections, fault is latched in register only if happens during phase 1 or 2. In case of resistive short circuit, at the beginning of injection cycle current through load rises too fast and this will set as a short fault. Device couldn't restart until fault register is reset by microcontroller.
OPEN LOAD ⁽²⁾	Normal mode. Fault pin low and fault register set. Fault register reset by microcontroller.

1. No internal current limiter. Response time of current limiter would be longer than shut-off time.

2. CHECK during PHASE 1. If max duration time of phase1 is reached (register H value) Open-load detection signal is read by control logic and validated.

4 I²C protocol description

The L99SD01-E is compatible with the standard I²C serial bus. This is a two wire serial interface that uses a bi-directional data bus (SDA) and serial clock (SCL). Each device connected to the bus is recognized by a unique address (whether it is a microcontroller, memory or injector driver) and can operate as either a transmitter or receiver, depending on the function of the device. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave. L99SD01-E can only be a slave, transmitter or receiver, during communication.

4.1 SDA and SCL signals

Both SDA and SCL are bidirectional lines, connected to a positive supply voltage via a current-source or pull-up resistor. When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function.

Data on the I^2C bus can be transferred at rates up to 100 kbit/s in the standard-mode. The number of devices connected to the bus is limited by the max bus capacitance.

4.2 Data validity

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each data bit transferred.

DocID022573 Rev 5

4.3 START and STOP conditions

All transactions begin with a START (S) and can be terminated by a STOP (P).

A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after a STOP condition.

The bus stays busy if a repeated START (Sr) is generated instead of a STOP signal. In this respect, the START (S) and repeated START (Sr) conditions are functionally identical.

4.4 Byte format

Every byte put on the SDA line must be 8 bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant Bit (MSB) first.

4.5 Acknowledge (ACK) and Not Acknowledge (NACK)

The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter that the byte was successfully received and another byte may be sent. All clock pulses including the acknowledge 9th clock pulse are generated by the master.

The acknowledge signal is defined as follows: the transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH period of this clock pulse. Setup and hold times must also be taken into account.

When the SDA remains HIGH during this 9th clock pulse, this is defined as the Not Acknowledge signal. The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

4.6 Device addressing

Data transfers follow the format shown in fig.10. After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R/W). A 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer.

4.7 Write operation

WRITE command in L99SD01-E is used to store data into volatile memory.

Master initiates a START condition (S) and then sends the first byte which is the slave address followed by the R/W= '0'. If L99SD01-E recognizes its address then it generates an ACK signal.

Each L99SD01-E has a different slave address. The first four bits of the address are the device type identifier and do not change for all L99SD01-E devices. The following three bits are used to address till 8 different L99SD01-E on the same bus.

Second byte sent by master in write mode is the register address where data must be written. After Acknowledge from slave, master starts to send the data, which can be one or more bytes. Eight different registers may be written in L99SD01-E. If more than eight data bytes are sent by the master, roll-over occurs.

The transfer finishes when master sends a STOP condition (P).

After the successful completion of write operations, the device internal address counter is incremented automatically, to point to the next byte address after the last one that was modified.

	S	SLAVE ADDRESS	R/W	А	REGISTER ADDRESS	А	DATA	А	DATA	A/Ā	Р
			 '0' (write)							
		From master to slave			A = acknowledge	(SDA	LOW)				
		From slave to master			Ā = not acknowle	dge (SDA HIGH)				
					S = START condi	ition					
					P = STOP conditi	ion					
Exam	nple: w	vrite 119 value in register lpe	ak for L	99SD	01-E with enable chip = 3						
	S	0101011	0	А	10100000	А	01110) 1 1	1 A/Ā	Ρ	

Figure 16. WRITE command

DocID022573 Rev 5

4.8 Read operation

READ command in L99SD01-E is used to read data contained into volatile memory. There are essentially two different Read operation modes: Current Read and Random Read.

In Random READ mode a dummy write is first performed to load the address into the address counter, then without sending a STOP condition, the Master sends another START condition, and repeats the slave address, with the R/W bit set to '1' (READ). At this point slave acknowledges and starts sending data output from the addressed register. One or more bytes can be sent to master. L99SD01-E stops sending data when it receives a NACK signal from master. At this point master can decide to stop transmission by sending a STOP condition or to generate a repeated START condition to start communication with another slave. At the end of communication internal address counter is incremented automatically, to point to the next byte address after the last one that was read.

In Current READ mode, following a START condition, the master sends a slave address with a R/W bit set to '1'. At this point slave acknowledges and starts sending data output from the register addressed by the internal counter. One or more bytes can be sent to master. L99SD01-E stops sending data when it receives a NACK signal from master. At this point master can decide to stop transmission by sending a STOP condition or to generate a repeated START condition to start communication with another slave.

S SLAVE ADDRESS	R/W	А	DATA	А	DATA	А	DATA	Ā P	
)							
From master to slave			A =	ackno	owledge (SDA	LOW)			
From slave to master			Ā =	not a	cknowledge (S	DA HI	GH)		
			S =	STAF	RT condition				
			P =	STO	^D condition				
Example: Read two registers value	s for L99	9SD0	1-E with enable	chip :	= 1. Internal reg	gister c	ounter is pointi	ng to registe	r 7 (0:7)
S 0101001	1	А	Phase1 tir	ne m	ax A		Ipeak current	Ā	Р
					•••				
After read operation internal regist	er count	er is p	pointing to regist	er 1					

Figure 17. Current READ command

5	SLAVE ADDRESS	R/W	A	REGISTER ADDRESS	A	S	SLAVE ADDRESS	R/W	А	DATA	A	DATA	Ā	
		1 10' (write	.)						I)					-
	From master to slave			A = acknow	ledg	e (SD	A LOW)							
	From slave to master			Ā = not ack	nowl	edge	(SDA HIGH)							
				S = START	cond	dition								
				P = STOP	condi	tion								
kan	nple:Read Hold curre	nt and	temp	porary hold current regis	sters	valu	es for L99SD01-E wit	h enab	le ch	nip =0.				

Figure 18. Random READ command

Besides the eight parameter registers, there is another eight bit register which corresponds to the fault register. It can only be reset and read via dedicated commands.

4.9 **Registers Addresses and Fault register**

L99SD01-E does not need to be first configured via I²C-bus line. Default application parameters are hard-wired in the device. At first turn-on default application parameters are transferred inside registers which can be further modified by customer via I²C-bus if needed. In order to permit "real-time" parameter changes each register will have an equivalent temporary register to store the data until the first low-to-high transition on SYNC_INJ signal at the end of communication. At this time temporary registers are transferred into the actual parameter registers.

Each register can be read/written via serial interface. Fault register can be read and reset (fault cleared).

	Register address	Register content	Length	Access	Purpose
R0	1010 0000	l peak current	1 byte	R/W	Read/Store data
R1	1010 0001	Phase 2 duration	1 byte	R/W	Read/Store data
R2	1010 0010	Phase 3 duration	1 byte	R/W	Read/Store data
R3	1010 0011	Demag mod	1 byte	R/W	Read/Store data
R4	1010 0100	Hold Current	1 byte	R/W	Read/Store data
R5	1010 0101	Temporary hold current	1 byte	R/W	Read/Store data
R6	1010 0110	Temporary hold current time duration	1 byte	R/W	Read/Store data
R7	1010 0111	Phase 1 time max	1 byte	R/W	Read/Store data
R8	1111 1100	Fault Register	1 byte	W	Clear Fault
110			' byte	R	Read Fault

Table 4. Registers addresses

		Open load	Output shorted to	Over voltage	Under voltage	Thermal warning	Thermal shutdown								
			batt	voltage	voltage	warning	shutdown								
Exan	nple: reset fa	ult reaiste	er for L99	SD01-E	with en	able chip	= 1.								
			=												
s	010	1001	1	0	A A	1 1 1 1	1 1 0 0	A	Р						
S	010	1001	1	0	A	1111	1 1 0 0	A	Ρ						
S	010	1001	1	0	A	1111	1 1 0 0	A	Ρ						
S	010	1001	1	0	A	1 1 1 1	1 1 0 0	A	Ρ						
S	010	1001	1	0	A	1 1 1 1	1100	A	Ρ						
	0 1 0														
	ple: read fau		r for L99	SD01-E	with enat	ble chip =				0 0	 	 	_	Ā	Р

5 Register description

5.1 Register A

	MOD							
	MSB							LSB
_	7	6	5	4	3	2	1	0
	IPK[7]	IPK[6]	IPK[5]	IPK[4]	IPK[3]	IPK[2]	IPK[1]	IPK[0]
Address:	0xA0	0						
Туре:	R/W	1						
Reset:	0010	0 1000b						
Description:	IPK[70]: I _{PEAk}	current val	ue.				
			ampere car ween 2 A ar		ited as IPK	[70] * 20.	55 / 255. \	/alue are only

5.2 Register B

	MSB							LSB	
	7	6	5	4	3	2	1	0	
	TPK[7]	TPK[6]	TPK[5]	TPK[4]	TPK[3]	TPK[2]	TPK[1]	TPK[0]	
Address:	0xA	1							
Туре:	R/W								
Reset:	010	1 0010b							
Description:	TPK	[70]: Pha	se 2 (I _{PEAK} (current) dur	ation.				
	Pha	Phase 2 duration in ms can be computed as TPK[70] * 5 / 255.							

5.3 Register C

	MSB							LSB		
_	7	6	5	4	3	2	1	0		
	TPH[7]	TPH[6]	TPH[5]	TPH[4]	TPH[3]	TPH[2]	TPH[1]	TPH[0]		
Address:	0xA2	2								
Туре:	R/W	1								
Reset:	0010	0100b								
Description:	TPH	TPH[70]: t _{PEAK_TO_HOLD} (Phase 3) duration.								
		If DEMAG_MODE bit is 0, t _{PEAK_TO_HOLD} in microseconds can be computed as TPH[70] * 500 / 255.								

If DEMAG_MODE bit is set to 1, $\,t_{PEAK_TO_HOLD}$ in milliseconds can be computed as TPH[7...0] * 10 / 255.

5.4 Register D

	MSB							LSB
	7	6	5	4	3	2	1	0
	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	DEMAG_MODE
Address:	0xA	3						
Туре:	R/W	1						
Reset:	000	0 0001b						
Description		/IAG_MODE erwise.	: demagnat	tization duri	ing phase (3 is fast if th	iis bit is se	t to 1 or slow
Note:			2 the curren luring phase					

5.5 Register E

	MSB							LSB
_	7	6	5	4	3	2	1	0
	IH[7]	IH[6]	IH[5]	IH[4]	IH[3]	IH[2]	IH[1]	IH[0]
Address:	0xA4	4						
Туре:	R/W	,						
Reset:	0110	0 1001b						
Description:	IH[7	0]: I _{HOLD}	current valu	e.				
		-	alue in ampe d between 0		•	as IH[70]	* 4.11 / 25	5. Value are

5.6 Register F

	MSB							LSB		
	7	6	5	4	3	2	1	0		
	IHTMP[7]	IHTMP[6]	IHTMP[5]	IHTMP[4]	IHTMP[3]	IHTMP[2]	IHTMP[1]	IHTMP[0]		
Address:	0xA	5								
Туре:	R/W	R/W								
Reset:	0111	1100b								
Description	: IHTI	IHTMP[70]: I _{HOLD_TEMP} current value (reference current during Phase 4).								
	The current value in ampere can be computed as IHTMP[70] * 4.11 / 255. Value are only guaranteed between 0.5 A and 3.5 A.									

5.7 Register G

	MSB							LSB
	7	6	5	4	3	2	1	0
	THTMP[7]	THTMP[6]	THTMP[5]	THTMP[4]	THTMP[3]	THTMP[2]	THTMP[1]	THTMP[0]
Address:	0xA6	6						
Туре:	R/W							
Reset:	0000	0000b						
Description:	THT	MP[70]: I _H	IOLD_TEMP d	uration insi	de Phase 4	4.		
	Pha	se3 duratio	n in ms can	be compute	ed as THTI	MP[70] *	5 / 255.	

5.8 Register H

	MSB							LSB		
	7	6	5	4	3	2	1	0		
	TNPM[7]	TNPM[6]	TNPM[5]	TNPM[4]	TNPM[3]	TNPM[2]	TNPM[1]	TNPM[0]		
Address:	0xA	7								
Туре:	R/W	,								
Reset:	0100	0000b								
Description:	TNF	PKM[70]:	NO_PEAK_M	_{4X} value.						
	During phase 1, if I_{PEAK} value is not reached within $t_{NO_PEAK_MAX}$, the device switches into Phase 2. $t_{NO_PEAK_MAX}$ in millisecond can be computed as TNPKM[70] * 10 / 255.									

5.9 Fault register

	MS	SB							LSB	
	7	7	6	5	4	3	2	1	0	
	Rese	erved	Reserved	Open Load	OUT short to battery	Over voltage	Under voltage	Thermal warning	Thermal shutdown	
Address:		0xF(С							
Туре:		R/W. Any write action will result in a register clear.								
Reset:		0000 0000b								
	Bit [4]	Bit [4] Output shorted to battery flag. Bit is set by HW when an over current is detected on the output at the beginning of the injection cycle (phases 1 and 2). Write the register to clear this bit.								
	Bit [3]	Bit is	voltage flag. set by HW v this bit.	/hen an over	voltage is de	etected on th	ne battery vol	tage, write	the register to	
	Bit [2] Under voltage flag. Bit is set by HW when an under voltage is detected on the battery voltage, write the register to clear this bit.									
	Bit [1]			0	emperature	exceeds T _T	W threshold, v	write the re	gister to clear	
	Bit [0]		mal shutdown set by HW w	0	emperature e	exceeds T_{TS}	_{:D} threshold, a	a register w	riting clears this	

bit only if the die temperature is lower than T_{TR} .

6 Electrical specification

6.1 Absolute maximum rating

Table 5. Absolute maximum rating

Symbol	Parameter	Value	Unit
V _{BATT}	Maximum DC supply voltage	40	V
V _{BATT_REV}	Reverse DC supply voltage	-0.3	V
V _{LOAD}	Maximum DC load voltage	Internally limited	V
I _{LOAD}	Maximum DC load current	Internally limited to I _{SHORT}	А
I _{R(LOAD)}	Maximum reverse output current, $T_C = 25^{\circ}C$; t = 5 ms.	-20	А
E _{AS}	Single pulse energy S1 switch; $V_{BATT} = 13.5 \text{ V}$; T _j = 150°C; L = 6 mH; R _L = 0 Ω , typical clamp voltage	88	mJ
E _{REP1}	Repetitive energy S1 switch. $V_{BATT} = 13.5 \text{ V};$ T _j = 125°C; L = 6 mH; R _L = 0 Ω , typical clamp voltage	38.6	mJ
E _{REP2}	Repetitive energy S1 switch. $V_{BATT} = 13.5 \text{ V};$ T _j = -40°C; L = 6 mH; R _L = 0 Ω , typical clamp voltage	70	mJ
V _{C3V3}	3.3 V logic supply voltage range	-0.3 to 3.6	V
V _{VDDL}	5 V external supply voltage	5.5	V
V _{SYNC_} INJ V _{E0} V _{E1} V _{E2} V _{CHECK_SIGNAL} V _{SCL} V _{SDA} V _{MAINT_} IPK V _{PWM} V _{CLAMP_FLAG} V _{FAULT} V _{ENABLE}	Logic input / output voltage range	-0.3 to V _{DDL} +0.3	V
V _{IN_SIGNAL} V _{REC}	HV signal pins	-0.3 to V _{BATT}	V
V _{OUT}	Output pin	55	V
V _{CTANK}	Maximum charge pump output voltage	V _{BATT} + 15V	V
V _{CPUMP1} V _{CPUMP2}	Maximum charge pump pins voltage	V _{BATT}	V
V _{ESD}	Electrostatic discharge (R = 1.5kW, C = 100pF, all pins)	+/-2000	V
Tj	Junction operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

6.2 Thermal data

Table	6.	Thermal	data

Symbol	Parameter	Value	Unit
R _{thj-amb}	Thermal resistance junction-ambient	See Figure 23	°C/W

6.3 Electrical characteristics

6 V < V_{BATT} < 28 V; -40°C < T_j < 150°C; unless otherwise specified

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{BATT}	Operating supply voltage		6		28	V
I _{SON}	V _{BATT} DC supply current	$V_{BATT} = 13 V; V_{DDL} = 5 V;$ $V_{ENABLE} = 5 V; Output floating$		2		mA
I _{STBY}	V _{BATT +} V _{VDDL} quiescent supply current	$V_{BATT} = 13V$; $V_{DDL} = 5V$; $V_{ENABLE} = 0V$; Output floating $-40^{\circ}C < T_j < 85^{\circ}C$			10	μA
I _{DDL}	V _{DDL} DC supply current	V _{BATT} = 13 V; V _{DDL} = 5 V; V _{ENABLE} = 5 V		8	10	mA
V _{OV}	Overvoltage threshold		34		40	V
V _{UV}	Undervoltage threshold				6	V
V _{UV_hyst}	Undervoltage threshold hysteresis		0.4	0.6		V

Table 7. V_{BATT} supply

Table 8. Power switches $S_1 - S_2$

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
		I _{LOAD} = 5 A; S ₁ = ON; V _{BATT} = 13 V; T _j = 25°C		_	0.060	Ω
RON1	On state resistance (excitation path)	I _{LOAD} = 5 A; S ₁ = ON; V _{BATT} = 13 V		_	0.120	Ω
		$I_{LOAD} = 5 \text{ A}; \text{ S}_1 = \text{ON};$ $V_{BATT} = 6 \text{ V}$		_	0.150	Ω
		I _{LOAD} = 5 A; S ₂ = ON; V _{BATT} = 13 V; T _j = 25°C		_	0.060	Ω
RON2	On state resistance Recirculation Path	$I_{LOAD} = 5 \text{ A}; \text{ S}_2 = \text{ON};$ $V_{BATT} = 13 \text{ V}$		_	0.120	Ω
		$I_{LOAD} = 5 \text{ A}; \text{ S}_2 = \text{ON};$ $V_{BATT} = 6 \text{ V}$			0.150	Ω

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
TD _{ON_S1}	Turn-on delay time		100	180	300	ns
T _{R_S1}	Rise time of output voltage	V _{BATT} = 13.5 V;		500	900	ns
TD _{OFF_S1}	Turn-off delay time	$R_{LOAD} = 2.5 \Omega$	600	1400	2000	ns
T _{F_S1}	Fall time of output voltage			600	1000	ns
V _{CLAMP_S1}	Switch S ₁ clamp voltage	$I_{LOAD} = 0.5/14 \text{ A}; \text{ S}_1 = \text{off};$ S ₂ = off	44		55	V

Table 9. S₁ switching (excitation path)

Table 10. Switching (recirculating path)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
TD _{ON_S2}	Turn-on delay time			280	600	ns
T _{R_S2}	Rise time of output voltage	V _{BATT} = 13.5 V; R _{LOAD} = 2.5Ω		1500	3000	ns
TD _{OFF_S2}	Turn-off delay time		_	150	600	ns
T _{F_S2}	Fall time of output voltage			200	800	ns

Table 11. V_{DDL} undervoltage detection

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{POR_OFF}	power-on-reset threshold	V _{DDL} increasing	3.8	4	4.2	V
V _{POR_ON}	power-on-reset threshold	V _{DDL} decreasing	3.2	3.4	3.6	V
V _{POR_hyst}	power-on-reset hysteresis	V _{POR_OFF} - V _{POR_ON}	0.3			V

Table 12. Enable

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{ENABLE H}	Enable voltage threshold	V _{BATT} = 13 V	1	1.8	2.3	V
V _{ENABLE_L}	Enable voltage reset	V _{BATT} = 13 V	0.8	1.5	1.9	V
V _{ENABLE_HYST}	Enable voltage hysteresis	V _{BATT} = 13 V	0.1	0.3		V
I _{ENABLE}	Enable pull down current	V _{ENABLE} = 5 V	20	50	100	μΑ

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{SYNC_L}	Input low level voltage	$V_{DDL} = 5 V$			1.08	V
V _{SYNC_H}	Input high level voltage	$V_{DDL} = 5 V$	2.1			V
V _{SYNC_HYST}	Input hysteresis voltage	$V_{DDL} = 5 V$	0.15			V
I _{SYNC_INJ}	pull down current at SYNC_INJ input	V _{SYNC_INJ} = 1.5 V	20	50	80	μΑ

Table 13. Input: SYNC_INJ

Table 14. Input: PWM

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{PWM_L}	Input low level voltage	V _{DDL} = 5 V			1.08	V
V _{PWM_H}	Input high level voltage	V _{DDL} = 5 V	2.1			V
V _{PWM_HYST}	Input hysteresis voltage	V _{DDL} = 5 V	0.15			V
I _{PWM}	Pull down current at PWM input	V _{PWM} = 1.5 V	20	50	80	μΑ

Table 15. Inputs: E0, E1, E2

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{Ex_L}	Input low level voltage	$V_{DDL} = 5V$			1.08	V
V _{Ex_H}	Input high level voltage	$V_{DDL} = 5V$	2.1			V
V _{Ex_HYST}	Input hysteresis voltage	$V_{DDL} = 5V$	0.15			V
I _{Ex_IN}	Pull down current at Ex input	V _{Ex} = 1.5V	20	50	80	μA

Table 16. IN_SIGNAL VOLTAGE MONITOR, CHECK_SIGNAL

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IN_SIGNAL_L}	Input low level voltage threshold		0.4 V _{BATT}	0.45 V _{BATT}	0.5 V _{BATT}	V
V _{IN_SIGNAL_H}	Input high level voltage threshold		0.5 V _{BATT}	0.55 V _{BATT}	0.6 V _{BATT}	V
VIN_SIGNAL_HYST	Input hysteresis voltage			0.1 V _{BATT}		V
V _{CHECK_SIGNAL}	Check_signal output voltage	V _{IN_SIGNAL} = 0 V; I _{CHECK_SIGNAL} = 1 mA			0.9	V

Table 17. Differential current sense amplifier

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{ICM_AMP}	Input voltage range – common mode		0		0.8	V

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit		
V	Input voltage range	Gain = 20; V _{DDL} = 5 V	10		80	mV		
V _{IDIFF_AMP}	 differential mode 	Gain = 4; V _{DDL} = 5 V	20		400	mV		
VIOFF_AMP	Input offset voltage	V _{DDL} = 5 V	-500		500	μV		
Gain	Opamp gain	I _{LOAD} = I _{HOLD}		20				
Gain _{AMP}	Gain _{AMP} Opamp gain	I _{LOAD} = I _{PEAK}		4				
	Gain bandwidth product	G = 20		2		MHz		
GDVVAMP		G = 4		0.4		MHz		
CMRR _{AMP}	Input common mode rejection	F = 1 KHz	60			dB		
PSRR+ _{AMP}	3.3 V power supply rejection ratio			55		dB		
PSRR- _{AMP}	GND power supply rejection ratio			40		dB		
T _{SETTLING_R}	Rising settling time	$ G = 20; (V_{RSP} - V_{RSN}) = 0 V to 10 mV in 10 ns G = 4; (V_{RSP} - V_{RSN}) = 0 V to 20 mV in 10 ns $			3.5	μs		
T _{SETTLING_F}	Falling settling time	$ G = 20; (V_{RSP} - V_{RSN}) = 10 \text{ mV} $ to 0 V in 10 ns $ G = 4; (V_{RSP} - V_{RSN}) = 20 \text{ mV to} $ 0 V in 10 ns			3.5	μs		

Table 17. Differential c	urrent sense amp	olifier (continued)
--------------------------	------------------	---------------------

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{ICM_PWMCOMP}	Input voltage range – common mode		0.05	—	2	V
V _{IOFF_PWMCOMP}	Input offset voltage	V _{DDL} = 5 V	-15	_	6	mV
TD _{PWMCOMP}	Input to output delay	V _{INPUT} from 200 mV to 1.7 V in 10 ns			200	ns

Table 19	. 8-bit	digital	to	analog	converter
----------	---------	---------	----	--------	-----------

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VLSB _{DAC}	Less significant bit voltage			4.851		mV

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
T _{TW}	Thermal warning threshold junction temperature	S ₁ = ON	130			°C
T _{TSD}	Thermal shutdown threshold junction temperature	S ₁ = ON	155	175		°C
T _{TR}	Thermal reset threshold junction temperature	S ₁ = ON	130			°C
I _{SHORT}	Over current detection	S ₁ = ON	15			А
	Open-load detection	S ₁ = ON; I _{PEAK} = 3.2 A	0.2 * (I _{PEAK} /4)	I _{PEAK} /4	1.2 * (I _{PEAK} /4)	А
I _{OL}		S ₁ = ON; I _{PEAK} = 5 A	0.4 * (I _{PEAK} /4)	I _{PEAK} /4	1.2 * (I _{PEAK} /4)	А
		S ₁ = ON; I _{PEAK} ≥ 8 A	0.7 * (I _{PEAK} /4)	I _{PEAK} /4	1.3 * (I _{PEAK} /4)	A
V _{FAULT_OUT}	Status output voltage	Diagnostic output active (low); I _{FAULT} = 1 mA			0.9	V
	Clamp diagnostic	$I_{CLAMPFLAG} = 100 \ \mu A$			0.1	V
V _{CLAMPFLAG_OUT}	pin output voltage	I _{CLAMPFLAG} = -100μA	V _{DDL} - 0.1			V
	MAINT_IPK	I _{MAINTIPK} = 100 μA			0.1	V
V _{MAINTIPK_OUT}	diagnostic pin voltage	I _{MAINTIPK} = -100 μA	V _{DDL} - 0.1			V

Table 20. S₁ protections and diagnostic

Table 21. Application registers range

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
I _{PEAK}	Register A	Application useful range = $2 \rightarrow 14 \text{ A}$	0	3.2	20.55	А
I _{HOLD}	Register E	Application useful range = $0.5 \rightarrow 3 \text{ A}$	0	1.7	4.11	A
I _{HOLD_TEMP}	Register F	Application useful range = $0.5 \rightarrow 3.5 \text{ A}$	0	2	4.11	A
t _{PEAK}	Register B		0	1.6	5	ms
t _{HOLD_TEMP}	Register G		0	0	5	ms
t _{NO_PEAK_MAX}	Register H		0	2.5	10	ms
+	Register C	DEMAG MODE = 0 (slow)	0		10	ms
^t PEAK_TO_HOLD	Register C	DEMAG MODE = 1 (fast)	0	70	500	μs

Symbol	Parameter	Test conditions ⁽¹⁾	Min	Тур	Max	Unit
		RegisterA = IDEFAULT	2.72	3.2	3.7	А
		RegisterA = 2 A	1.60	2	2.40	А
		T = 125°C; RegisterA = 2 A	1.70	2	2.30	А
I _{PEAK}	Peak current	RegisterA = 5 A	4.25	5	5.75	А
		RegisterA = 8 A	6.8	8	9.2	А
		T = 125°C; RegisterA = 14 A	12.6	14	15.4	А
		RegisterA = 14 A	11.9	14	16.1	А
		RegisterE = IDEFAULT	1.445	1.7	1.955	А
		T = 125°C; RegisterE = 0.5 A	0.325	0.5	0.6	А
I _{HOLD}	Hold current	T = 125°C; RegisterE = 1 A	0.9	1	1.1	А
		RegisterE = 1 A	0.85	1	1.15	А
		RegisterE = 3 A	2.55	3	3.45	А
F _{PWM}	PWM frequency	Design guaranteed	10	20		KHz
D _{CYCLE}	PWM duty cycle	F _{PWM} = 20 KHz	0.15			

Table 22. IPEAK, IHOLD (-40 °C < T_i < 150 °C, unless otherwise specified)

1. V_{BATT} > 8 V

Table 23. Charge pump

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{CP}	Charge pump output voltage ⁽¹⁾	I _{CP} = 200 μA	V _{BATT} + 7	V _{BATT} + 9	V _{BATT} + 13	V
C _{PUMP1}	External charge pump capacitor			4.7		nF
C _{PUMP2}	External charge pump capacitor			4.7		nF
C _{TANK}	External charge pump capacitor for S_2 driver peak current			100		nF
I _{CP1}	Charge pump output current positive	V _{BATT} + 7 V < V _{CTAK} < V _{BATT} + 13 V test mode	15	27	34	mA
I _{CP2}	Charge pump output current negative	V _{BATT} + 7 V < V _{CTAK} < V _{BATT} + 13 V test mode	-140	-100	-55	mA

 Guaranteed by design using suggested external network: C_{PUMP1}, C_{PUMP2}: 4.7 nF - 50 V ceramic capacitors; C_{TANK}: 100 nF - 50 V ceramic capacitor; Charge pump diodes: BAT41 type

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IL}	Low level input voltage			_	0.3 * V _{C3V3}	V
V _{IH}	High level input voltage		0.7 * V _{C3V3}	_		V
V _{HYS}	Hysteresis of Schmitt trigger inputs		0.05 * V _{C3V3}	_		V
V _{OL}	Low level output voltage	I _{SINK} = 3 mA		_	0.4	V
I _{OL}	Low level output current	V _{OL} = 0.4 V	3	_		mA
t _{OFF}	Output fall time from V_{IHmim} to V_{ILmax}			_	250	ns
t _{SP}	Pulse width of spikes that must be suppressed by the input filter			_	50	ns
li	Input current	0.1 * V _{DDL} < V _I < 0.9 * V _{DDL}	-10	_	10	μA
C _i	I/O pin capacitance			_	10	pF

Table 24. I²C-bus SDA, SCL I/O stages

Table 25. I²C-bus SDA, SCL bus lines characteristics

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
All va	All values are referred to $V_{IH(min)}$ (0.3 * V_{DDL}) and $V_{IL(max)}$ (0.7 * V_{DDL}). See also <i>Figure 20</i> .						
f _{SCL}	SCL clock frequency				100	kHz	
t _{HD;STA}	Hold time (repeated) START condition	After this period the first clock pulse is generated	4.0	_		μs	
t _{LOW}	LOW period of the SCL clock		4.7			μs	
t _{HIGH}	HIGH period of the SCL clock		4.0	_		μs	
t _{SU;STA}	Set-up time for a repeated START condition		4.7	_		μs	
t _{HD;DAT}	Data hold time ⁽¹⁾		300 ⁽²⁾	_	(3)	ns	
t _{SU;DAT}	Data set-up time		250	_		ns	
t _r	Rise time of both SDA and SCL signals			_	1000	ns	
t _f	Fall time of both SDA and SCL signals			_	300	ns	
t _{SU;STO}	Set-up time for a STOP condition		4.0	_		μs	
t _{BUF}	Bus free time between a STOP and START condition		4.7	_		μs	

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Cb	Capacitive load for each bus line			_	400	pF
t _{VD;DAT}	Data valid time ⁽⁴⁾			—	3.45 ⁽³⁾	μs
t _{VD;ACK}	Data valid acknowledge time ⁽⁵⁾			—	3.45 ⁽³⁾	μs
V _{nL}	Noise margin at the LOW level	For each connected device (including hysteresis)	0.1 * V _{DDL}	_		V
V _{nH}	Noise margin at the HIGH level	For each connected device (including hysteresis)	0.2 * V _{DDL}			V

Table 25. I²C-bus SDA, SCL bus lines characteristics

 t_{HD:DAT} is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.

2. A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the $V_{IH(min)}$ of the SCL signal) to bridge the undefined region of the falling edge of SCL.

3. The maximum $t_{HD;DAT}$ could be 3.45 us, but must be less than the maximum of $t_{VD;DAT}$ or $t_{VD;ACK}$ by a transition time.

t_{VD:DAT} = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse)

5. $t_{VD;ACK}$ = time for acknowledgment signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse)

DocID022573 Rev 5

Table 26. Electrical transient requirements (part 1)								
ISO 7637-2: 2004(E)	Test le	evels ⁽¹⁾	Number of	Burst cy	cle/pulse	Delays and		
Test Pulse	III IV				on time	impedance		
1	-75 V	-100 V	5000 pulses	0.5 s	5 s	2 ms, 10 Ω		
2a	+37 V	+50 V	5000 pulses	0.2 s	5 s	50 μs, 2 Ω		
3a	-100 V	-150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω		
3b	+75 V	+100 V	1h	90 ms	100 ms	0.1 μs, 50 Ω		
4	-6 V	-7 V	1 pulse			100 ms, 0.01 Ω		
5b ⁽²⁾	+65 V	+87 V	1 pulse			400 ms, 2 Ω		

Table 26. Electrical transient requirements (part 1)

1. The above test levels must be considered referred to V_{CC} = 13.5V except for pulse 5b.

2. Valid in case of external load dump clamp: 40V maximum referred to OUT.

ISO 7637-2:	Test level results ⁽¹⁾					
2004(E) test pulse	ш	IV				
1	С	E				
2a	С	С				
3a	С	С				
3b	С	С				
4	С	С				
5b ⁽²⁾	С	С				

1. The above test levels must be considered referred to V_{CC} = 13.5 V except for pulse 5b.

2. Valid in case of external load dump clamp: 40V maximum referred to OUT.

Table 28. Electrica	al transient requirem	ents (part 3)
---------------------	-----------------------	---------------

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the

7 OTP (One Time Programmable Memory)

L99SD01-E provides two 16 bit OTP modules for internal parameter trimming. Default application parameters are hard coded into the device. OTP use is reserved to ST and other access will be hardware forbidden.

	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OTP_0				Oso	Osc trimming Cur		Curi	Current reference trimming			ning	g Bandgap trimming				
OTP_1				Refei slo	rence pe	e		Blanking			IHOLD current trimming					

Table 29. 16 bit OTP modules

8 Application schematic

Figure 21. Application schematic

9 Package and PCB thermal data

9.1 PowerSSO-36 thermal data

 Board finish thickness 1.6 mm +/- 10%; Board double layer; Board dimension 129 mm x 60 mm; Board Material FR4; Cu thickness 0.070 mm; Thermal vias separation 1.2 mm; Thermal via diameter 0.3 mm +/-0.08 mm; Cu thickness on vias 0.025 mm; Footprint dimension 4.1 mm x 6.5 mm.

Figure 23. Rthj-amb vs PCB copper area in open box free air condition

Figure 24. PowerSSO-36 thermal impedance junction ambient

Figure 25. Thermal fitting model of a HSD in PowerSSO-36

Table 30.	Thermal	parameters

Area/island (cm ²)	FP	2	8
R1 = R7 (°C/W)	0.8		
R2 = R8 (°C/W)	1.2		
R3 (°C/W)	5		
R4 (°C/W)	8		
R5 (°C/W)	18	15	10
R6 (°C/W)	27	23	14
C1 = C7 (W⋅s/°C)	0.0005		
C2 = C8 (W·s/°C)	0.002		
C3 (W·s/°C)	0.03		
C4 (W·s/°C)	0.5		
C5 (W⋅s/°C)	1	1.5	3
C6 (W·s/°C)	3	5	9

10 Package and packing Information

10.1 ECOPACK[®] packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK[®] is an ST trademark.

10.2 PowerSSO-36 package information

Figure 26. PowerSSO-36 package dimensions

Table 31.	PowerSSO-36	mechanical	data
-----------	-------------	------------	------

Symbol	Millimeters			
	Min	Тур.	Мах	
А	2.15		2.47	
A2	2.15		2.40	
a1	0		0.1	
b	0.18		0.36	

• • • •	Millimeters			
Symbol	Min	Тур.	Max	
С	0.23		0.32	
D ⁽¹⁾	10.10		10.50	
E	7.4		7.6	
е		0.5		
e3		8.5		
F		2.3		
G			0.1	
G1			0.06	
Н	10.1		10.5	
h			0.4	
k	0°		8°	
L	0.55		0.90	
М		4.3		
N			10°	
0		1.2		
Q		0.8		
S		2.9		
Т		3.65		
U		1		
Х	4.1		4.7	
Y	6.5		7.1	

Table 31. PowerSSO-36 mechanical data

1. "D" and "E" do not include mold Flash or protrusions. Mold Flash or protrusion shall not exceed 0.15 mm per side (0.006").

11 Revision history

Date	Revision	Changes
05-Dec-2011	1	Initial release
12-Sep-2013	2	Table 2: Pin description: - SCL: updated description Updated Section 4.1: SDA and SCL signals Added Chapter 5: Register description Table 5: Absolute maximum rating: - ILOAD, IR(LOAD): updated value - EC: deleted rows - EC: deleted rows - EAS, EREP1, EREP2: added rows Updated Table 6: Thermal data Table 20: S1 protections and diagnostic: - I _{OL} : added test condition and values Table 22: IPEAK, IHOLD (-40 °C < Tj < 150 °C, unless otherwise
18-Sep-2013	3	Updated disclaimer.
11-Apr-2014	4	Updated document title.
18-Dec-2014	5	Updated document title, <i>Features</i> and <i>Description</i> .

Table 32	2. Document	revision	history
----------	-------------	----------	---------

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

DocID022573 Rev 5

