

STA529

Datasheet – production data

FFX[™] audio codec with analog and digital inputs and 2 x 1.2 W (or 2 x 100 mW HP) class-D amplifier

Features

- Up to 96 dB dynamic range
- Sample rates from 8 kHz to 192 kHz
- FFX[™] class-D driver
- 1.55 V to 1.95 V digital power supply
- 1.80 V to 3.60 V analog and I/O power supply
- 18-bit audio processing and class-D FFX[™] modulator
- >90-dB SNR analog-to-digital converter
- Digital volume control:
 - +36 dB to -105 dB in 0.5-dB steps
 - Software volume update
- 16-bit ADC
- Individual channel and master gain/attenuation
- Automatic invalid input detect mute
- 2-channel I²S input/output data interface
- Digitally controlled pop-free operation
- 90% efficiency
- Output power for stereo headphones or stereo speakers applications (at THD = 10% and V_{CC} = 3.3 V):
 - 45 mW with 32- Ω headphones
 - 85 mW with 16- Ω headphones
 - 720 mW with 8- Ω speakers
 - 1.1 W with 4- Ω speakers

Table 1.Device summary

Applications

- Portable devices
 - Laptops
 - Digital cameras
 - Microless applications

Order code	Operating temp. range	Package	Packaging	
STA529Q	-40 to 85 °C	VFQFPN52	Tray	
STA529	-40 to 85 °C	TFBGA48	Tray	

This is information on a product in full production.

Contents

1	Desc	ription				
2	Con	nection diagrams and pin descriptions				
	2.1	TFBGA48 package				
	2.2	VFQFPN52 package 10				
3	Elec	rical and thermal specifications				
	3.1	Thermal data				
	3.2	Absolute maximum ratings 13				
	3.3	Recommended operating conditions				
	3.4	Electrical characteristics				
	3.5	Lock time				
4	Inpu	t clock				
	4.1	SELCLK33 17				
5	Digit	al processing				
	5.1	Signal processing flow				
	5.2	I ² C interface disable				
	5.3	Volume control and gain 19				
6	PLL					
	6.1	Functional description				
	6.2	Configuration examples 22				
	6.3	Set fractional PLL				
7	ADC					
	7.1	ADC performance values 25				
	7.2	Functional description				
		7.2.1 Digital filter characteristics				
		7.2.2 High-pass filter characteristics				
		7.2.3 Programmable gain amplifier (PGA)26				
	7.3	Applications scheme				

	7.4	Configuration examples 27				
8	Drive	r configi	uration	28		
	8.1		ss			
9	Serial	audio i	nterface	29		
	9.1	Master n	node	29		
	9.2	Slave me	ode	30		
	9.3	Serial fo	rmats	31		
		9.3.1	DSP	32		
		9.3.2	I ² S	32		
		9.3.3	PCM/IF (non-delayed mode)	33		
		9.3.4	PCM/IF (delayed mode)	33		
10	I ² C in	terface		34		
	10.1	Data trai	nsition and change	34		
	10.2	Start cor	ndition	34		
	10.3	Stop cor	ndition	34		
	10.4	Data inp	ut	34		
	10.5	Device a	ddressing	34		
	10.6		eration			
		10.6.1	Byte write	35		
		10.6.2	Multi-byte write	35		
	10.7	Read op	eration	35		
		10.7.1	Current address byte read	35		
		10.7.2	Current address multi-byte read	35		
		10.7.3	Random address byte read	35		
		10.7.4	Random address multi-byte read	36		
11	Regis	ters		37		
	11.1	Summar	у	37		
	11.2	General	eneral registers			
12	Packa	age mec	hanical data	53		
	12.1	Package	TFBGA48	53		
	12.2	-	VFQFPN52			

13	Revision history	5	56
----	-------------------------	---	----

List of figures

Connection diagram for TFBGA48 (bottom view)	. 8
Connection diagram for VFQFPN52 (bottom view)	10
Circuit for crystal drive	17
PLL block diagram	20
PLL filter circuit	21
Diagram of input coupling and supply decoupling	27
Slave mode	30
Right justified	31
Left justified	31
l ² S	32
PCM/IF (non delayed mode)	33
PCM/IF (delayed mode)	33
•	
Package outline (VFQFPN52)	
	Block diagram Connection diagram for TFBGA48 (bottom view) Connection diagram for VFQFPN52 (bottom view) Circuit for crystal drive PLL block diagram PLL filter circuit Diagram of input coupling and supply decoupling Master mode Slave mode Right justified Left justified DSP I ² S PCM/IF (non delayed mode) PCM/IF (delayed mode) I ² C read operations I ² C read operations Package outline (TFBGA48) Package outline (VFQFPN52)

List of tables

Table 1.	Device summary	1
Table 2.	Pin description for TFBGA48	8
Table 3.	Pin description for VFQFPN52 1	0
Table 4.	Thermal data	3
Table 5.	Absolute maximum ratings 1	3
Table 6.	Recommended operating conditions1	
Table 7.	Electrical characteristics	
Table 8.	Load power at 1% distortion in headphone mode1	6
Table 9.	Load power at 10% distortion in headphone mode1	6
Table 10.	Load power at 1% distortion in speaker mode 1	6
Table 11.	Load power at 10% distortion in speaker mode 1	6
Table 12.	PLL lock time	
Table 13.	Master volume offset as a function of register MVOL 1	
Table 14.	Channel volume as a function of registers LVOL and RVOL	9
Table 15.	Oversampling table	
Table 16.	Programmable gain performance 2	5
Table 17.	Digital filter characteristics	:6
Table 18.	High-pass filter characteristics 2	:6
Table 19.	Pin functions in driver-configuration mode 2	8
Table 20.	Master mode	:9
Table 21.	Slave mode	
Table 22.	Register summary	7
Table 23.	Package dimensions (TFBGA48)	4
Table 24.	Package dimensions (VFQFPN52)5	5
Table 25.	Document revision history	6

1 Description

The STA529 is a digital stereo class-D audio amplifier. It includes an audio DSP, an ST proprietary high-efficiency class-D driver and CMOS power output stage. It is intended for high-efficiency digital-to-power-audio conversion for portable applications. The STA529 also provides output capabilities for FFX[™]. In conjunction with a power device, the STA529 provides high-quality digital amplification.

The STA529 contains an on-chip volume/gain control.

The PWM amplifier achieves greater than 90% efficiency for longer battery life for portable systems.

The innovative class-D modulation, allows the STA529 to work without external LC filters and without a heatsink.

The STA529 I2CDIS pin disables the audio DSP functions and the I²C interface provides a direct conversion of the input signal into output power. This conversion is done without the microcontroller.

The STA529 is designed for low-power operation with extremely low-current consumption in standby mode. It is available in packages TFBGA48 and VFQFPN52. These are very thin packages (1.2 mm thick) ideal for small portable applications.

2 Connection diagrams and pin descriptions

This section includes connection diagrams and pin descriptions for the following packages:

- TFBGA48
- VFQFPN52

2.1 TFBGA48 package

Figure 2. Connection diagram for TFBGA48 (bottom view)

Table 2. Pin description for TFBGA48

Pin	Name	Туре	Description
A1	VCC2	Supply	Channel 2 power supply
A2	GND2	Ground	Channel 2 power ground
A3	OUT2A	Analog output	Channel 2 half-bridge A output
A4	OUT2B	Analog output	Channel 2 half-bridge B output
A5	OUT1B	Analog output	Channel 1 half-bridge B output
A6	OUT1A	Analog output	Channel 1 half-bridge A output
A7	GND1	Ground	Channel 1 power ground
A8	VCC1	Supply	Channel 1 power supply
B1	GNDIO	Ground	I/O ring ground
B2	GND33	Ground	Pre-driver ground
B3	OUT2A	Analog output	Channel 2 half-bridge A output
B4	OUT2B	Analog output	Channel 2 half-bridge B output

Table 2.	Pin description for TFBGA48 (continued)			
Pin	Name	Туре	Description	
B5	OUT1B	Analog output	Channel 1 half-bridge B output	
B6	OUT1A	Analog output	Channel 1 half-bridge A output	
B7	MUTE	Digital input	Mute (active high)	
B8	GND	Ground	Digital ground	
C1	VDDIO	Supply	I/O ring supply	
C2	VCC33	Supply	Pre-driver supply	
C7	CLKOUT / PWM2B	Digital output	Buffered clock output / PWM2B FFX	
C8	VDD	Supply	Digital supply	
D1	хті	Digital input 1.8V	Crystal input or master clock input	
D2	хто	Digital output 1.8V	Crystal output	
D7	RST_N	Digital input	Reset (active low)	
D8	VCM	Analog I/O	ADC common mode voltage	
E1	MCLK33	Digital input	Master clock input 3.3-V capable	
E2	SDATAI	Digital input	Input serial audio interface data	
E7	VLO	Analog input	ADC low reference voltage	
E8	AGND	Ground	ADC analog ground	
F1	SCL	Digital input	I ² C serial clock	
F2	POWERFAULT / EAPD	Digital output	Power fault signal (active high) / external audio power-down signal	
F7	VHI	Analog input	ADC high reference voltage	
F8	AVDD	Supply	ADC analog supply	
G1	SDA	Digital I/O	I ² C serial data	
G2	I2CDIS	Digital input	I ² C disable pin (active high)	
G3	SELCLK33	Digital input	Master clock input selector: 0: XTI selected 1: MCLK33 selected	
G4	SDATAO / PWM2A	Digital output	Output serial audio interface data / PWM2A FFX	
G5	LRCLKO / PWM1B	Digital I/O	Output serial audio interface L/R-clock (volume increases when I2CDIS = 1) / PWM1B FFX	
G6	BICLKO / PWM1A	Digital I/O	Output serial audio interface bit-clock (volume decreases when I2CDIS = 1) / PWM1A FFX	
G7	VBIAS	Analog I/O	ADC microphone bias voltage	
G8	STBY	Digital input	Standby (active high)	
H1	FILT	Analog I/O	PLL loop filter terminal	

Table 2. Pin description for TFBGA48 (continued)

	r in descri	r in description for the barrie (continued)		
Pin	Name	Туре	Description	
H2	ТМ	Digital input	Test mode (active high)	
H3	GNDPLL	Ground	PLL analog ground	
H4	VDDPLL	Supply	PLL analog supply	
H5	LRCLKI	Digital I/O	Input serial audio interface L/R-clock	
H6	BICLKI	Digital I/O	Input serial audio interface bit-clock	
H7	INL	Analog input	ADC left channel line input or microphone input	
H8	INR	Analog I/O	ADC right channel line input	

Table 2. Pin description for TFBGA48 (continued)

2.2 VFQFPN52 package

Table 3. Pin description for VFQFPN5	n description for VFQFPN52
--------------------------------------	----------------------------

Pin	Name	Туре	Description	
1	STBY	Digital input	Standby (active high)	
2	INL	Analog input	ADC left channel line input or microphone input	
3	INR	Analog I/O	ADC right channel line input	
4	VBIAS	Analog I/O	ADC microphone bias voltage	
5	AVDD	Supply	ADC analog supply	
6	VHI	Analog input	ADC high reference voltage	
7	VLO	Analog input	ADC low reference voltage	

Pin	Name	Туре	Description
8	AGND	Ground	ADC analog ground
9	VCM	Analog I/O	ADC Common mode voltage
10	RST_N	Digital input	Reset (active low)
11	CLKOUT / PWM2B	Digital output	Buffered clock output / PWM2B FFX
12	GND1	Ground	Digital ground
13	VDD1	Supply	Digital supply
14	MUTE	Digital input	Mute (active high)
15	VCC1A	Supply	Channel 1 half-bridge A power supply
16	OUT1A	Analog output	Channel 1 half-bridge A output
17	GND1A	Ground	Channel 1 half-bridge A power ground
18	GND1B	Ground	Channel 1 half-bridge B power ground
19	OUT1B	Analog output	Channel 1 half-bridge B output
20	VCC1B	Supply	Channel 1 half-bridge B power supply
21	VCC2B	Supply	Channel 2 half-bridge B power supply
22	OUT2B	Analog output	Channel 2 half-bridge B output
23	GND2B	Ground	Channel 2 half-bridge B power ground
24	GND2A	Ground	Channel 2 half-bridge A power ground
25	OUT2A	Analog output	Channel 2 half-bridge A output
26	VCC2A	Supply	Channel 2 half-bridge A power supply
27	GND33	Ground	Pre-driver ground
28	GNDIO1	Ground	I/O ring ground
29	VDDIO1	Supply	I/O ring supply
30	VCC33	Supply	Pre-driver supply
31	POWERFAULT / EAPD	Digital output	Power fault signal (active high) / external audio power down signal
32	ТМ	Digital input	Test mode (active high)
33	I2CDIS	Digital input	I ² C disable pin (active high)
34	SCL	Digital input	I ² C serial clock
35	SDA	Digital I/O	I ² C serial data
36	SELCLK33	Digital input	Master clock input selector: 0: XTI selected 1: MCLK33 selected
37	MCLK33	Digital input	Master clock input 3.3-V capable
38	хті	Digital input 1.8V	Crystal input or master clock input

 Table 3.
 Pin description for VFQFPN52 (continued)

Pin	Name	Туре	Description		
39	хто	Digital output 1.8V	Crystal output		
40	FILT	Analog I/O	PLL loop filter terminal		
41	GNDPLL	Ground	PLL analog ground		
42	VDDPLL	Supply	PLL analog supply		
43	GND2	Ground	Digital ground		
44	VDD2	Supply	Digital supply		
45	SDATAI	Digital input	Input serial audio interface data		
46	SDATAO / PWM2A	Digital output	Output serial audio interface data / PWM2A FFX		
47	LRCLKI	Digital I/O	Input serial audio interface L/R-clock		
48	LRCLKO / PWM1B	Digital I/O	Output serial audio interface L/R-clock (volume increases when I2CDIS = 1) / PWM1B FFX		
49	GNDIO2	Ground	I/O ring ground		
50	VDDIO2	Supply	I/O ring supply		
51	BICLKI	Digital I/O	Input serial audio interface bit-clock		
52	BICLKO / PWM1A	Digital I/O	Output serial audio interface bit-clock (volume decreases when I2CDIS = 1) / PWM1A FFX		

 Table 3.
 Pin description for VFQFPN52 (continued)

STA529

3 Electrical and thermal specifications

3.1 Thermal data

Table 4. Thermal data

Device	Parameter	Min	Тур	Max	Unit
TFBGA48	Thermal resistance junction to ambient	-	40	-	°C/W
VFQFPN52	Thermal resistance junction to ambient	-	22	-	°C/W

3.2 Absolute maximum ratings

Table 5.Absolute maximum ratings

g-				
Pin/symbol	Description	Min	Max	Unit
VDD VDD1 VDD2	Digital supply voltage	-0.5	+2.5	V
AVDD	ADC supply voltage	-0.5	+4	V
VDDPLL	PLL analog supply voltage	-0.5	+2.5	V
VCC1A VCC1B VCC2A VCC2B	Power stage supply voltage	-0.5	+4	V
VCC33	Pre-driver supply	-0.5	+4	V
VDDIO	Digital I/O supply	-0.5	+4	V
T _{STG}	Storage temperature	-40	150	°C
TJ	Junction temperature	-40	150	°C

Note: All grounds must be within 0.3 V of each other.

3.3 Recommended operating conditions

Table 6.	Recommended	operating	conditions
----------	-------------	-----------	------------

Symbol	Parameter	Min	Тур	Max	Unit
VDD VDD1 VDD2	Digital supply voltage	1.55	1.80	1.95	v
AVDD	ADC supply voltage	1.8	3.3	3.6	V
VDDPLL	PLL analog supply voltage	1.55	1.80	1.95	V
VCC1A VCC1B VCC2A VCC2B	Power stage supply voltage	1.8	3.0	3.3	v
VCC33	Pre-driver supply (must be at same level as VCC1A/1B/2A/2B)	1.8	3.0	3.3	V
VDDIO	Power supply for I/Os	1.8	3.0	3.6	V
GND1, GND2, GND33	Channel 1 and 2 power ground, pre-driver ground	-	0	-	v
GNDIO	Ground for I/Os	-	0	-	V
VIH	3.3-V supply	2.0	-	-	V
VIL	3.3-V supply	-	-	0.8	V
VHYST	Schmitt trigger hysteresis (VDDIO)	0.4	-	-	V
T _{AMB}	Ambient operating temperature	-40	-	85	°C

3.4 Electrical characteristics

The electrical specifications in *Table 7* below are given for operation under the recommended conditions listed in *Table 6*. Unless otherwise specified, LRCLKI frequency (fs) = 48 kHz, input frequency = 1 kHz, and $R_{LOAD} = 32 \Omega$.

Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
Eff	Output power efficiency	-	-	90	-	%
R _{dson}	Output stage N/PMOS on- resistance	-	-	250	380	mΩ
IstbyL	Logic power supply current at standby	-	-	1.3	-	μA
IstbyP	Bridges power supply current in standby	-	-	0.7	-	μA
IddL	Logic power supply current at operating	-	-	15	-	mA
IddP	Bridges power supply current at operating	-	-	0.5	-	mA
Tds	Low current dead time (static)	-	-	1	-	ns
Tdd	High current dead time (dynamic)	-	-	2.5	-	ns
Tr	Rise time	-	-	3	-	ns
Tf	Fall time	-	-	3	-	ns
DNR	Dynamic range A-weighted	Speaker mode	-	96	-	dB
SNR	Signal-to-noise ratio (A- weighted)	Speaker mode	-	92	-	dB
		0 dBFS input, 8 Ω speakers	-	0.1	-	%
THDN	Total harmonic distortion	-6 dBFS input, 8 Ω speakers	-	0.05	-	%
		0 dBFS input, 32 Ω headphones	-	0.1	-	%
		-6 dBFS input, 32 Ω headphones	-	0.05	-	%

Table 7.Electrical characteristics

The following tables give the output power for 1% and 10% THD levels for headphones and speakers.

 Table 8.
 Load power at 1% distortion in headphone mode

Load (Ω)	P (mW) at 1.8 V	P (mW) at 3.3 V
16	20	65
32	10	32

Table 9.Load power at 10% distortion in headphone mode

Load (Ω)	P (mW) at 1.8 V	P (mW) at 3.3 V
16	25	85
32	13	42

Table 10. Load power at 1% distortion in speaker mode

Load (Ω)	P (mW) at 1.8 V	P (mW) at 3.3 V
4	310	860
8	166	560
16	86	290
32	43	147

 Table 11.
 Load power at 10% distortion in speaker mode

Load (Ω)	P (mW) at 1.8 V	P (mW) at 3.3 V
4	400	1100
8	216	720
16	112	380
32	57	200

3.5 Lock time

Table 12 gives the typical lock time of the PLL using the suggested loop filter with 1.8 V supply and 30 $^{\circ}$ C junction temperature.

Table 12.PLL lock time

Parameter	Value
Lock time	200 µs

4 Input clock

4.1 SELCLK33

In STA529 the oversampling clock comes from MCLK33 or from pin XTI. The selection is done by applying the appropriate voltage to pin SELCLK33. If SELCLK33 is logical 1 then MCLK33 is selected, otherwise XTI is selected.

If an external crystal is used, SELCLK33 pin must be connected to GND and the suggested circuit shown below should be used.

Figure 4. Circuit for crystal drive

5 Digital processing

The STA529 processor block is a digital block providing two channels of audio processing and channel-mapping capability.

5.1 Signal processing flow

 $\rm I^2S$ or stereo ADC data can be selected. The $\rm I^2S$ frequency range is 8 kHz to 192 kHz. The ADC sampling frequency can be selected between 8 kHz and 48 kHz.

5.2 I²C interface disable

When pin I2CDIS = 1, the SDA, SCL, LRCLKO and BICLKO pins can be pulled high or low to change certain parameters of operation.

- SDA = 0: FFX input comes from ADC
 SDA = 1: FFX input comes from digital audio interface
- SCL = 0: binary output mode (binary soft start/stop enabled) SCL = 1: phase shift output mode
- LRCLKO = 0: no volume change LRCLKO = 1: channel volume up on both channel
- BICLKO = 0: no volume change BICLKO = 1: channel volume down on both xchannel.

At power up, the channel volume is set to -60 dB. When holding pin LRCLKO = 1 and pin BICLKO = 1 simultaneously, the channel volume is set to 0 dB. A high pulse on pin LRCLKO causes a channel volume change of +0.5 dB and a high pulse on pin BICLKO causes a channel volume change of -0.5 dB.

5.3 Volume control and gain

The volume control structure of the STA529 consists of individual volume registers for each channel and a master volume register that provides an offset to each channel's volume setting. The individual channel volumes are adjustable in 0.5-dB steps from +36 dB to -91.5 dB. As an example, if register LVOL = 0x00 or +36 dB and register MVOL = 0x18 or -12 dB, then the total gain for the left channel is +24 dB.

When the mute bit is set to 1, all channels are muted. The volume control provides a soft mute with the volume ramping down to mute in 4096 samples from the maximum volume setting at the internal processing rate (around 48 kHz).

MVOL[7:0]	Volume offset from channel value
0x00	0 dB
0x01	-0.5 dB
0x02	-1dB
0x78	-60 dB
0xFE	-105 dB
0xFF	Hard master mute

Table 13. Master volume offset as a function of register MVOL

Table 14.	Channel volume as a function of registers LVOL and RVOL
-----------	---

LVOL/RVOL[7:0]	Volume
0x00	+36 dB
0x01	+35.5 dB
0x02	+35 dB
0x47	+0.5 dB
0x48	0 dB
0x49	-0.5 dB
0xFF	-91.5 dB

6 PLL

Figure 5 shows the main components of the PLL.

6.1 Functional description

Phase/frequency detector

The phase/frequency detector (PFD) compares the phase difference between the corresponding rising edges of INFIN and FBCLK, (clock output from the loop frequency divider) by generating voltage pulses with widths proportional to the input phase error.

Charge pump and loop filter

This block converts the voltage pulses from the phase/frequency detector to current pulses which charge the loop filter and generate the control voltage for the voltage-controlled oscillator. The loop filter is placed external to the PLL on pin FILT.

Voltage controlled oscillator

The voltage controlled oscillator (VCO) is the oscillator inside the PLL. It produces a frequency (f_{VCO}) proportional to the input control voltage.

Input frequency divider

This frequency divider divides the PLL input clock CLKIN by a factor called the input division factor (IDF) to generate the PFD input frequency INFIN.

Loop frequency divider

This frequency divider is present within the PLL for dividing f_{VCO} by a factor called the loop division factor (LDF). The output of this block is clock FBCLK.

Output frequency divider

The output frequency divider divides f_{VCO} by the output division factor (ODF) to produce the output clock PHI and the clock to the core. In the STA529, ODF = 2 and cannot be reconfigured.

Lock-detect circuit

The output of this block (signal LOCKP) is asserted high when the PLL enters the state of Coarse Lock in which the output frequency is within $\pm 10\%$, approximately, of the desired frequency. LOCKP is refreshed every 32 cycles of clock INFIN. The generated value is based on the result of comparing the number of FBCLK cycles in a window of 14 INFIN cycles. The different cases generated after comparison are as follows.

- If LOCKP is already at 0, then in the next refresh cycle LOCKP goes to 1 if the number of FBCLK cycles in the 14-cycle INFIN window is 13, 14, or 15. Otherwise LOCKP stays at 0.
- If LOCKP is already at 1, then in the next refresh cycle LOCKP goes to 0 if the number of FBCLK cycles in the 25-cycle INFIN window is less than 11 or higher than 17, otherwise LOCKP stays at 1.
- If LOCKP is already at 1 and CLKIN is lost (no longer present on the input pin), LOCKP stays at 1. In this case, the PLL is unlocked.

PLL filter

Figure 6 below shows the PLL filter circuit. Recommended values are R1 = 12.5 k Ω , C1 = 250 pF and C2 = 82 pF.

Figure 6. PLL filter circuit

6.2 Configuration examples

The STA529 PLL can be configured in two ways:

- default startup configuration
- direct PLL programming

The default startup configuration reads the device defaults. With this configuration, it is not necessary to program the PLL dividers directly as preset values are used. In this mode, the oversampling ratio between pins XTI (or MCLK33) and LRCLKI is fixed to 256.

The direct PLL programming bypasses the automatic presets allowing direct programming of the PLL dividers.

The output PLL frequency can be determined by the following equations.

Output division factor:

ODF = 2.

Relation between input and output clock frequency:

 $f_{INFIN} = f_{XTI} / IDF.$

If register bit PLLCFG0.FRAC_CTRL = 1

 $f_{VCO} = f_{INFIN} * (LDF + FRACT / 2^{16} + 1 / 2^{17})$ $f_{PHI} = f_{VCO} / ODF.$

When register bit PLLCFG0.DITHER_DISABLE[1] = 1, the $1/2^{17}$ factor is not in the multiplication. This is recommended in order to keep register bit PLLCFG0.DITHER_DISABLE[1] = 0, otherwise there can be spurious signals in the output clock spectrum.

If register bit PLLCFG0.FRAC_CTRL = 0, then:

 $f_{VCO} = f_{INFIN} * LDF$ $f_{PHI} = f_{VCO} / ODF.$

In the above equations:

FRACT = decimal equivalent of register bit PLLCFG1.FRAC_INPUT[15:0]

IDF = input division factor

LDF = loop division factor

ODF = output division factor = 2

f_{INFIN} = INFIN frequency

f_{XTI} = XTI frequency

f_{VCO} = VCO frequency

 f_{PHI} = frequency of the PLL output clock.

When selecting the values for IDF, LDF and FRACT, ensure that the following limits are maintained:

2.048 MHz < f_{XTI} < 49.152 MHz 2.048 MHz < f_{INFIN} < 16.384 MHz 65.536 MHz < f_{VCO} < 98.304 MHz

There are also some additional constraints on IDF and LDF. IDF should be greater than 0, LDF should be greater than 5 if $FRAC_CTRL = 0$ and greater than 8 if $FRAC_CTRL = 1$.

When automatic settings are not used, the PLL must be configured to generate an internal frequency, f_{PHI} , of N * fs, where fs is the frequency of pin LRCLKI. Values for N are given in *Table 15*.

fs (kHz)	N	f _{PHI} (MHz)
8	4096	32.768
11.025	4096	45.1584
12	4096	49.152
16	2048	32.768
22.05	2048	45.1584
24	2048	49.152
32	1024	32.768
44.1	1024	45.1584
48	1024	49.152
64	512	32.768
88.2	512	45.1584
96	512	49.152
128	256	32.768
176.4	256	45.1584
192	256	49.152

Table 15. Oversampling table

Example 1

 $f_{XTI} = 13 \text{ MHz}$ and fs = 44.1 kHz

IDF should be equal to 3 otherwise LDF becomes less than 8 (FRAC_CTRL must be 1): LDF = floor(45.1584 / (13 / IDF)) = 10

FRACT = round([(45.1584 / (13 / IDF)) - floor(45.1584 / (13 / IDF))] * 2¹⁶) = 27602.

where:

floor means rounded down and *round* means rounded to nearest integer.

Using the above configuration, the system clock is 45.15841675 MHz, the approximate static error is 16 Hz (that is, 0.5 ppm).

Example 2

 f_{XTI} = 19.2 MHz and fs = 48 kHz

IDF should be equal to 4 otherwise LDF become less than 8 (FRAC_CTRL must be 1):

LDF = floor(49.152 / (19.2 / IDF)) = 10

Using the above configuration, the system clock is 49.151953125 MHz, the approximate static error is 47 Hz (that is, 1 ppm).

6.3 Set fractional PLL

The following procedure is mandatory to configure the fractional PLL:

- 1. Set bit D7 reg 0x18 (PLL_BYP_UNL) to "1"
- 2. Write reg 0x17 (PLLCFG3)
- 3. Write reg 0x14 (PLLCFG0)
- 4. Write reg 0x15 (PLLCFG1)
- 5. Write reg 0x16 (PLLCFG2)
- 6. Set bit D7 reg 0x18 (PLL_BYP_UNL) to "0"

7 ADC

7.1 ADC performance values

Table 16. Programmable gain performance

Parameter	Min	Тур	Max	Unit
Dynamic range 1 kHz, A-weighted (3.3 V supply)		92		dB
Dynamic range 1 kHz, A-weighted (1.8 V supply)		84		dB
SNDR 1 kHz, A-weighted (3.3 V supply)		92		dB
SNDR 1 kHz, A-weighted (1.8 V supply)		84		dB
THD 1 kHz (-1 dB input) (3.3 V supply)		-85		dB
THD 1 kHz (-1 dB input) (1.8 V supply)		-75		dB
Cross talk (3.3 V supply)		-80		dB
Cross talk (1.8 V supply)		-60		dB

7.2 Functional description

The STA529 analog input is provided through a low-power, low-voltage, 16-bit stereo audio analog-to-digital converter front end designed for audio applications. It includes a programmable gain amplifier, anti-aliasing filter, low-noise microphone biasing circuit, third-order MASH2-1 delta-sigma modulator, digital decimating filter and a first-order DC-removal filter.

The ADC works in the microphone input (mic-in) mode and in the line-input mode. If the line input mode is selected, the ADC is configured in stereo and all conversion channels are active.

If the microphone input mode is selected, the ADC is configured in mono. The mono channel is routed through the left conversion path, and the right conversion path is kept in power-down mode to minimize power consumption. A programmable gain amplifier (PGA) is available in mic-in mode, making it possible to amplify the signal from 0 to +42 dB in steps of 6 dB.

7.2.1 Digital filter characteristics

Table 17. Digital filter characteristics

Parameter	Typical	Unit
Pass band	0.4535 * fs	kHz
Pass-band ripple:		
Fs mode	0.08 at 44.1 kHz	dB
Fs_by_2 mode	0.08 at 22.05 kHz	dB
Fs_by_4 mode	0.08 at 11.025 kHz	dB
Stop-band attenuation:		
Fs mode	45 at 44.1 kHz	dB
Fs_by_2 mode	45 at 22.05 kHz	dB
Fs_by_4 mode	45 at 11.025 kHz	dB
Group delay:		
Fs mode	0.4 at 32 kHz	ms
Fs_by_2 mode	0.7 at 16 kHz	ms
Fs_by_4 mode	1.4 at 8 kHz	ms

7.2.2 High-pass filter characteristics

Table 18.High-pass filter characteristics

Parameter	Typical	Unit
Frequency response:		
-3 dB	7	Hz
-0.08 dB	50	Hz
Phase deviation at 20 Hz	19.35	degree
Passband ripple	0.08	dB

7.2.3 Programmable gain amplifier (PGA)

The PGA is available in mic-in mode only. The input signal can be amplified from 0 to 42 dB in 6-dB steps via bits PGA of register *ADCCFG on page 49*.

7.3 Applications scheme

Figure 7. Diagram of input coupling and supply decoupling

7.4 Configuration examples

The ADC sampling frequency can be selected from three values:

- normal (from 32 kHz to 48 kHz)
- low (from 16 kHz to 24 kHz)
- very-low (from 8 kHz to 12 kHz)

The setting is done through bits ADC_FS_RANGE of register *MISC on page 50*. For all other settings register *ADCCFG on page 49* is used.

8 Driver configuration

A driver configuration is available that allows PWM commands to be used on an external power device. For this purpose, the output serial audio interface is disabled and the respective pins have an alternative name and a new function, as shown in *Table 19*.

Pin	Alternative pin name and function			
BICLKO	PWM1A (external bridge PWM command for output 1A)			
LRCLKO	PWM1B (external bridge PWM command for output 1B)			
SDATAO	PWM2A (external bridge PWM command for output 2A)			
CLKOUT	PWM2B (external bridge PWM command for output 2B)			
POWERFAULT	EADP (external audio power-down signal)			

Table 19. Pin functions in driver-configuration mode

The driver configuration is selected with the two programmable registers, PWMINT1 = 0x93 and PWMINT2 = 0x81, on page 51.

8.1 I²S bypass

A configuration is available which allows the passing of the I²S input signal straight to the I²S output signal.

This configuration is set using two programmable registers PWMINT1 = 0x93 and PWMINT2 = 0x80.

9 Serial audio interface

The serial-to-parallel interface and the parallel-to-serial interface can have different sampling rates.

The following terms are used in this section:

- **BICLK active edge:** Pins SDATAI, SDATAO, LRCLKI, LRCLKO always change synchronously with BITCLK active edges. The active edge can be configured as a rising or falling edge via register programming.
- **BICLK strobe edge:** Pins SDATAI, SDATAO, LRCLKI, LRCLKO should be stable near BICLK strobe edges, the slave device is able to use strobe edges to latch serial data internally.

9.1 Master mode

In this mode, pins BICLKI/BICLKO and pins LRCLKI/LRCLKO are configured as outputs.

Figure 8. Master mode

Table 20. Master mode

Symbol	Parameter	Min	Тур	Max	Unit
t _{DL}	LRCLKI/LRCLKO propagation delay from BICLK active edge	0		10	ns
t _{DDA}	SDATAO propagation delay from BICLKI/O active edge	0		15	ns
t _{DST}	SDATAI setup time to BICLKI/O strobing edge	10			ns
t _{DHT}	SDATAI hold time from BICLKI/O strobing edge	10			ns

9.2 Slave mode

In this mode, pins BICLKI/O and pins LRCLKI/O are configured as inputs.

Table 21. Slave mode

Symbol	Parameter	Min	Тур	Max	Unit
t _{BCY}	BICLK cycle time	50			ns
t _{BCH}	BICLK pulse width high	20			ns
t _{BCL}	BICLK pulse width low	20			ns
t _{LRSU}	LRCLKI/LRCLKO setup time to BICLK strobing edge	10			ns
t _{LRH}	LRCLKI/LRCLKO hold time to BICLK strobing edge	10			ns
t _{DS}	SDATAO setup time to BICLK strobing edge	25			ns
t _{DH}	SDATAO hold time to BICLK strobing edge	25			ns
t _{DD}	SDATAI propagation delay from BICLK active edge	0		10	ns

9.3 Serial formats

Different audio formats are supported in both master and slave modes. Clock and data configurations can be customized to match most of the serial audio protocols available on the market.

Data length can be customized to 8, 16, 24 or 32 bits.

Figure 10. Right justified

Figure 11. Left justified

9.3.1 DSP

9.3.2 I²S

9.3.3 PCM/IF (non-delayed mode)

- MSB first
- 16-bit data

Figure 14. PCM/IF (non-delayed mode)

9.3.4 PCM/IF (delayed mode)

- MSB first
- 16-bit data

Figure 15. PCM/IF (delayed mode)

10 I²C interface

10.1 Data transition and change

Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is high is used to identify a start or stop condition.

10.2 Start condition

A start condition is identified by a high to low transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A start condition must precede any command for data transfer.

10.3 Stop condition

A stop condition is identified by low to high transition of the data bus SDA signal while the clock signal SCL is stable in the high state. A stop condition terminates communication between the STA529 and the master bus.

10.4 Data input

During data input, the STA529 samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low.

10.5 Device addressing

To start communication between the master and the STA529, the master must initiate with a start condition. Following this, the master sends 8 bits (MSB first) on the SDA line corresponding to the device select address and read or write mode.

The 7 most significant bits are the device address identifiers, corresponding to the I^2C bus definition. In the STA529, the I^2C interface has the device address 0x34.

The 8th bit (LSB) identifies the read or write operation (R/W). It is set to 1 in read mode and 0 in write mode.

After the start condition, the STA529 waits for its device address on SDA. When a match is found, it acknowledges the identification on SDA during the 9th bit time. The byte following the device identification byte is the internal space address.

10.6 Write operation

Following the start condition the master sends a device select code with the R/W bit set to 0. The STA529 acknowledges this and then writes to the byte of the internal address. After receiving the internal byte address, the STA529 responds with an acknowledgement.

10.6.1 Byte write

In the byte-write mode the master sends one data byte. This is acknowledged by the STA529. The master then terminates the transfer by generating a stop condition.

10.6.2 Multi-byte write

The multi-byte write modes can start from any internal address. The master generates a stop condition which terminates the transfer.

10.7 Read operation

10.7.1 Current address byte read

Following the start condition the master sends a device select code with bit R/W set to 1. The STA529 acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a stop condition.

10.7.2 Current address multi-byte read

The multi-byte read modes can start from any internal address. Sequential data bytes are read from sequential addresses within the STA529. The master acknowledges each data byte read and then generates a stop condition terminating the transfer.

10.7.3 Random address byte read

Following the start condition the master sends a device select code with bit R/W set to 0. The STA529 acknowledges this and then the master writes the internal address byte. After receiving the internal byte address, the STA529 again responds with an acknowledgement. The master then initiates another start condition and sends the device select code with bit R/W set to 1. The STA529 acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a stop condition.

10.7.4 Random address multi-byte read

The multi-byte read modes could start from any internal address. Sequential data bytes are read from sequential addresses within the STA529. The master acknowledges each data byte read and then generates a stop condition terminating the transfer.

Figure 17. I²C read operations

This section describes the set-up register used in the device.

11.1 Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SOFT BIN_SOFT 0x00 FFXCFG0 MUTE POW_STBY TIM_SOFT_VOL[3:0] VOL_ON START MUTE_ON 0x01 FFXCFG1 L1_R2 PWM_MODE[1:0] PWM_SHIFT[1:0] Reserved INVALID 0x02 MVOL SET_VOL_MASTER[7:0] 0x03 LVOL SET_VOL_LEFT[7:0] RVOL 0x04 SET_VOL_RIGHT[7:0] 0x05 TTF0 TIM_TS_FAULT[15:8] 0x06 TTF1 TIM_TS_FAULT[7:0] 0x07 TTP0 TIM_TS_POWUP[15:8] 0x08 TTP1 TIM_TS_POWUP[7:0] BICLK_ LRCLK_ SHARE_ MASTER_ 0x0A S2PCFG0 MSB_FIRST DATA_FORMAT[2:0] STRB LEFT BILR MODE 0x0B S2PCFG1 PDATA_LENGTH[1:0] BICLK_OS[1:0] MAP_R[1:0] MAP_L[1:0] BICLK_ LRCLK_ SDATAO_ MASTER 0x0C P2SCFG0 MSB FIRST DATA_FORMAT[2:0] STRB LEFT ACT MODE 0x0D P2SCFG1 PDATA_LENGTH[1:0] BICLK_OS[1:0] MAP_L[1:0] MAP_R[1:0] PLL_DIREC FRAC PLLCFG0 0x14 DITHER_DISABLE[1:0] IDF[3:0] T_PROG CTRL PLLCFG1 0x15 FRAC_INPUT[15:8] PLLCFG2 0x16 FRAC_INPUT[7:0] STRB_ BYPASS PLLCFG3 0x17 STRB NDIV[5:0] PLL_ BYP_ UNL RESET_ 0x18 PLLPFE BICLK2PLL PLL_PWDN PFE1A PFE1B PFE2B PFE2A FAULT PLL PLL_PWD_ PLL_BYP_ 0x19 PLLST Reserved UNLOCK STATE STATE BYPASS_ 0x1E ADCCFG PGA[2:0] INSEL STBY CLKENBL Reserved CALIB CLKOUT_ 0x1F CKOCFG CLKOUT_SEL[1:0] Reserved DIS P2P_IN_ ADC CORE_ CLKENBL MISC 0x20 OSC_DIS P2P_FS_RANGE[2:0] ADC_FS_RANGE[1:0] 0x21 PADST0 Reserved 0x22 PADST1 Reserved

	-										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x23	FFXST		Reserved					MUTE_ INT_FBK	Reserved		
0x28	BISTRUN		Reserved								
0x29	BISTST0		Reserved								
0x2A	BISTST1		Reserved								
0x2B	BISTST2				Rese	erved					
0x2D	PWMINT1				PWM_II	NT[15:8]					
0x2E	PWMINT2		PWM_INT[7:0]								
0x32	POWST	POWER DOWN	POW_ TRISTATE	POW_ FAULT1A	POW_ FAULT1B	POW_ FAULT2A	POW_ FAULT2B	Rese	erved		

 Table 22.
 Register summary (continued)

All other registers not mentioned here are reserved and must not be used.

11.2 General registers

FFXCFG0

FFX configuration

	I			I	I		1	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MUTE	POW_STBY	SOFT_VOL_ON	BIN_ SOFTSTART		TIM_SOFT	_VOL[3:0]		
Address:	0x00							
Гуре:	R/W							
Buffer:	No							
Reset:	0x75							
Description	:							
	 7 MUTE: 0: standard operation (default) 1: FFX output is zero (muted condition) 							
		STBY: bridge is in pov bridge is in sta		efault)				
		VOL_ON: oth transition no oth transition w		volume control	(default)			
	_	DFTSTART: ed (1: default)						
	Time is	DFT_VOL: volu (2 ^{TIM_SOFT_VO} value: 0101. T	^{lL}) * 20.83 µs		0.5 dB volume o	change		

FFXCFG1						Cor	figuration	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
L1_R2	MUTE_ON_ INVALID	PWM_M	ODE[1:0]	PWM_S	HIFT[1:0]	RES	RES	
Address:	0x01							
Туре:	R/W							
Buffer:	No							
Reset:	0xF8							
Description:	:							
	0: right channe 1: left cl channe 6 MUTE_ 0: outpu	 7 L1_R2: channel mapping: 0: right channel is mapped to output channel 1 and left channel is mapped to output channel 2 1: left channel is mapped to output channel 1 and right channel is mapped to output channel 2 (default) 6 MUTE_ON_ INVALID: mutes PWM outputs if invalid digital data is received: 0: outputs are not muted 1: outputs are muted (default) 						
	01: bina 10: rese	ary (output B is	s (output B is se	utput A) 50% duty cycle	3)			
		ault eriod-shift betv s N * 90 ⁰	veen channels	1 and 2				

1:0 Reserved (00: default)

MVOL

Master volume control

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			SET_VOL_M	MASTER[7:0]	• •	• •	
Address:	0x02						
Туре:	R/W						
Buffer:	No						
Reset:	0x00						
Description	:						
	From 0	dB to -127.5 c	7:0]: master vo IB in 0.5-dB ste corresponds to	eps			

LVOL			Left channel volume control				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			SET_VOL	_LEFT[7:0]			
Address:	0x03						
Туре:	R/W						
Buffer:	No						
Reset:	0x48						

Description:

7:0 SET_VOL_LEFT[7:0]: left channel volume control: Left channel volume control (from +36 dB to -91.5 dB in 0.5-dB steps) Default value (0x48) corresponds to 0 dB

RVOL

Right channel volume control

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SET_VOL_RIGHT[7:0]								

Address:	0x04
Туре:	R/W
Buffer:	No
Reset:	0x48
Description:	

7:0 SET_VOL_RIGHT[7:0]: right channel volume control: Right channel volume control (from +36 dB to -91.5 dB in 0.5-dB steps) Default value (0x00) corresponds to 0 dB

TTF0

Tristate time after fault (MSBs)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			TIM_TS_F	AULT[15:8]			
Address:	0x05						
Туре:	R/W						
Buffer:	No						
Reset:	0x00						
Description:							
		f TIM_TS_FAU ister <i>TTF1</i> .	JLT[15:0]:				

TTF1

Tri-state time after fault (LSBs)

							•
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			TIM_TS_F	AULT[7:0]			
Address:	0x06						
Туре:	R/W						
Buffer:	No						
Reset:	0x02						
Description							

Description:

7:0 LSBs of TIM_TS_FAULT[15:0]: time in which power is held in tristate mode after a fault signal: Time is TIM_TS_FAULT * 83.33 μs.

Default value (0x0002) corresponds to 166.66 µs tristate time after fault

TTP0

Tri-state time after power-up (MSBs)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			TIM_TS_PC	DWUP[15:8]			
Address:	0x07						
Туре:	R/W						
Buffer:	No						
Reset:	0x00						
Description	:						
	7:0 MSBs of	TIM_TS_PO	WUP[15:0]:				

See register TTP1 below.

TTP1

Tristate time after power-up (LSBs)

						-	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			TIM_TS_P	OWUP[7:0]	1		
Address:	0x08						
Туре:	R/W						
Buffer:	No						
Reset:	0x02						
Description:							
	7:0 LSBs of power-u		VUP[15:0]: time	e in which pow	er is held in tri-	-state mode aft	er a

Time is TIM_TS_POWUP * 83.33 µs

Default value (0x0002) corresponds to 166.66 µs tristate time after power-up

S2PCFG0

Serial to parallel audio interface configuration

			Ocha				inigulati
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BICLK_STRB	LRCLK_LEFT	SHARE_BILR	MSB_FIRST		DATA_FORMAT[2:0]	MASTER_ MODE
Address:	0x0A						
Туре:	R/W						
Buffer:	No						
Reset:	0xD2						
Description:							
	7 BICLK_	STRB:					
					ive edge is risir		
	1: bit clo	ock strobe edg	e is rising edge	e, bit clock acti	ve edge is fallir	ig edge (defa	ult)
	6 LRCLK						
		ght clock is low					
				nei, iow ior rigi	nt channel (defa	un	
	5 SHARE 0: defau						
	1: left/ri				serial to parallel	interface and	I parallel to
	4 MSB_F	IRST:					
	0: LSB						
	1: MSB	first (default)					
	3:1 DATA_F	ORMAT[2:0]: :	serial interface	protocol forma	at:		
		t Justified					
		6 (default)					
	•	ht justified					
		CM no delay CM delay					
	111: DS	-					
	0 MASTE	R_MODE:					
	0: SAI (OUTis in slave	mode (default))			

0: SAI OUTis in slave mode (default) 1: SAI OUTis in master mode

S2PCFG1		Serial-to-parallel audio interface configuration								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PDATA_LE	NGTH[1:0]	BICLK	OS[1:0]	MAP_	L[1:0]	MAP_	_R[1:0]			
Address:	0x0B									
Туре:	R/W									
Buffer:	No									
Reset:	0x91									
Description	:									
	 Final Point Point									
	Value is		ock oversampli s (where fs = s	ng: ampling freque	ncy)					
	Value is	[1:0]: left data- nth slot (00) is slot 0	mapping slot:							
	Value is	[1:0]: right dat nth slot (01) is slot 1	a-mapping slot	:						

S2PCFG1

57

Doc ID 13095 Rev 3

			i aiai				inigarado
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BICLK_STRB	LRCLK_LEFT	SDATAO_ACT	MSB_FIRST		DATA_FORMAT[2:0]	MASTER_ MODE
Address:	0x0C						
Туре:	R/W						
Buffer:	No						
Reset:	0xD3						
Description:							
	0: strob	STRB: defines e is falling edg e is rising edge	e, active edge	is rising	ault)		
	0: clock	LEFT: defines is low for left of is high for left	hannel, high fo	or right chann	nel		
	0: outpu	D_ ACT: sets the set is tristated was never in tristated was never in trien.	hen no data is	sent (default))		
	0: LSB	IRST: data alig is the first bit is the first bit (rotocol for SI	DATAI and SDAT/	AO:	
	000: lef 001: l ² 5 010: rig 100: PC	FORMAT[2:0]: s t justified S (default) ht justified CM no delay CM delay SP	serial interface	protocol form	nat:		
	0: slave	ER_ MODE: sel e er (default)	ects serial inte	rface master/	/slave mode:		

P2SCFG0

Parallel-to-serial audio interface configuration

P2SCFG1			Paral	lel-to-seria	al audio int	erface cor	nfigurat			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PDATA_L	ENGTH[1:0]	BICLK	_OS[1:0]	MAP_	_L[1:0]	MAP_	_R[1:0]			
Address:	0x0D									
Туре:	R/W									
Buffer:	No									
Reset:	0x91									
Description	:									
	Length	PDATA_LENGTH[1:0]: serial-to-parallel interface data length: Length is (PDATA_LENGTH+1) * 8 bit Default (10) is 24 bits								
	Value is	OS[1:0]: bit cl (BICLK_OS+ (01) is 64 fs	ock oversampli 1) * 32 * fs	ng:						
	Value is	[1:0]: left data nth slot (00) is slot0	mapping slot:							
		[1:0]: right cha nth slot	annel data-map	ping slot:						

PLLCFG0

PLL configuration

1				1			1	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PLL_DIRECT_ PROG	FRAC_CTRL	DITHER_DI	SABLE[1:0]	IDF[3:0]				
Address:	0x14							
Туре:	R/W							
Buffer:	No							
Reset:	0x00							
Description:								
	7 PLL_DI	RECT_PROG:	PLL program	ming:				

0: default

Default (01) is slot1

1: PLL is programmed according to the PLLCFG register settings

6 FRAC_CTRL:

0: default

- 1: PLL fractional-frequency synthesis is enabled
- 5:4 DITHER_DISABLE[1:0]:
 - 00: default

1x: disables rectangular phase frequency divider dither input to fractional control x1: disables triangular Phase Frequency Divider dither input to Fractional Control The mentioned blocks are shown in *Figure 5*.

3:0 IDF[3:0]: PLL input division factor:

0000: IDF = 1 (default) 0001: IDF = 1 0010: IDF = 2 ... 1111: IDF = 15

PLLCFG1

PLL configuration (MSBs)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			FRAC_IN	PUT[15:8]			
Address:	0x15						
Туре:	R/W						
Buffer:	No						
Reset:	0x00						
Description:							

7:0 FRAC_INPUT[15:8]: MSBs of FRAC_INPUT[15:0] used to set the fractional part of PLL multiplication factor

PLLCFG2

PLL configuration (LSBs)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			FRAC_IN	IPUT[7:0]			
Address:	0x16						
Туре:	R/W						
Buffer:	No						
Reset:	0x00						
Description:							
						مطلمهما بمميط م	4 01 1

7:0 FRAC_INPUT[7:0]: LSBs of FRAC_INPUT[15:0] used to set the fractional part of PLL multiplication factor

PLLCFG3						PLL cor	figuration
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STRB	STRB_BYPASS			NDIV	/[5:0]		
Address:	0x17						
Туре:	R/W						
Buffer:	No						
Reset:	0x00						
Description	:						
	7 STRB: a 0: defau	-	strobe input to	the fractional of	controller:		
	0: STRE	BYPASS: stan 3 signal is not 3 signal is byp	bypassed (defa	ault)			
	0000 XX 0001 00 0001 01 	0]: PLL multip K: LDF = NA D: LDF = NA : LDF = 5 : LDF = 55	lication factor (integral part) n	amed as loop	division factor:	
		X: LDF = NA): default					

PLLPFE

PLL/POP-free configuration

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PLL_BYP_UNL	BICLK2PLL	PLL_PWDN	PFE1A	PFE1B	PFE2A	PFE2B	RESET_FAULT
Addroool	0,10						

Address:	0x18
Туре:	R/W
Buffer:	No
Reset:	0x00

Description:

7 PLL_BYP_UNL: PLL bypass:0: PLL is not bypassed (default)1: PLL is bypassed when not locked

- 6 BICLK2PLL: 0: default
 - 0: default
 - 1: BICLKI is input to PLL
- 5 PLL_PWDN:
 - 0: default
 - 1: PLL is in power-down mode

- 4 PFE1A:
 - 0: default
 - 1: POP-free resistances are connected to output 1A
- 3 PFE1B:
 - 0: default
 - 1: POP-free resistances are connected to output 1B
- 2 PFE2A:
 - 0: default
 - 1: POP-free resistances are connected to output 2A
- 1 PFE2B:
 - 0: default
 - 1: POP-free resistances are connected to output 2B
- 0 RESET_FAULT:
 - 0: default
 - 1: fault signal in the I²C register POWST is reset

PLLST

PLL status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0									
PLL_UNLOCK	PLL_PWD_ STATE	PLL_BYP_ STATE	Reserved													
Address:	0x19															
Туре:	RO															
Buffer:	No	No														
Reset:	Undefi	ned														
Description:	:															
	0: PLL i	NLOCK: PLL u s not in unlock s in unlock sta	state													
	6 PLL PV	ND STATE: P	LL power-dow	n state:			6 PLL PWD_STATE: PLL power-down state:									

- 6 PLL_PWD_ STATE: PLL power-down state: 0: PLL is not in power-down state
 - 1: PLL is in power-down state
- 5 PLL_BYP_STATE: PLL bypass state: 0: PLL is not in bypass state
 - 1: PLL is in bypass state
- 4:0 Reserved

ADCCFG	ADCCFG ADC configuration										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	PGA[2:0]		INSEL	STBY	BYPASS_CALIB	CLKENBL	Reserved				
Address:	0x1E										
Туре:	RO										
Buffer:	No										
Reset:	Undefi	ned									
Description:											
	000: de	PGA[2:0]: gain selection bits for the ADC programmable gain amplifier: 000: default Values are from 0 to 42 dB in 6 dB steps									
		nput selected (ophone input s		t be applied to	INL line)						
	0: ADC	 microphone input selected (it must be applied to INL line) STBY: ADC standby mode: ADC in power-up mode (default) ADC in standby mode 									
		DC-removal b	lock not bypas lock bypassed								

1 CLKENBL: Clock enable: 0: system clock not enabled 1: system clock available at ADC input (default)

0 Reserved

CKOCFG

Output clock configuration

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKOUT_DIS		SEL[1:]]	DIC4	Dit S	Reserved	Dit i	Dit U
01.0000.0	01.000	_0[]]					
Address:	0x1F						
Туре:	R/W						
Buffer:	No						
Reset:	Undefi	ned					
Description:							
	7 CLKOU 0: defau 1: enab	ult	UT PAD disable	ed			
	00: defa		frequency is the	e PLL output fr	equency divide	d by 2 ^{CLKOUT_}	SEL
	4:0 Reserve	ed					

MISC

Miscellaneous configuration

							•
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OSC_DIS	P	2P_FS_RANGE[2	:0]	ADC_FS_	RANGE[1:0]	P2P_IN_ADC	CORE_ CLKENBL
Address:	0x20						
Туре:	R/W						
Buffer:	No						
Reset:	0x20						
Description	:						
	7 OSC_D 0: defau 1: disab		able crystal oso	cillator:			
	 6:4 P2P_FS_RANGE[2:0]: FFX audio frequency range: 000: very low (fs = 8 to 12 kHz) 001: low (fs = 16 to 24 kHz) 010: normal (fs = 32 to 48 kHz) (default) 011: high (fs = 64 to 96 kHz) 1X: very high (fs = 128 to 192 kHz) 						
	 3:2 ADC_FS_RANGE[2:0]: ADC audio frequency range: 00: normal (fs = 32 to 48 kHz) (default) 01: low (fs = 16 to 24 kHz) 1X: very low (fs = 8 to 12 kHz) 						
	 P2P_IN_ADC: FFX input: 0: FFX input is from serial-to-parallel audio interface (default) 1: FFX input is from ADC 						
	0: FFX :	CLKENBL: av system clock c system clock e	lisabled (defau				

FFXST

FFX status

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Reserved	INVALID_INP_ FBK	MUTE_INT_FBK	Reserved		
Address:	0x23						
Туре:	RO						
Buffer:	No						
Reset:	Undefined						

Description:

- 7:3 Reserved
 - 2 INVALID_INP_FBK: invalid input status: 1: invalid input sent to FFX
 - 1 MUTE_INT_FBK: FFX mute status 1: FFX is in mute state
 - 0 Reserved

PWMINT1

PWM driver configuration (MSBs)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	PWM_INT[15:8]							
Address:	0x2D							
Туре:	R/W							
Buffer:	No							
Reset:	0x00							
Description:								

7:0 PWM_INT[15:8]: MSBs of PWM_INT[15:0], see Chapter 8: Driver configuration on page 28

PWMINT2

PWM driver configuration (LSBs)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			PWM_I	NT[7:0]			
Address:	0x2E						
Туре:	R/W						
Buffer:	No						
Reset:	0x00						
Description	:						

7:0 PWM_INT[7:0]: LSBs of PWM_INT[15:0], see Chapter 8: Driver configuration on page 28

POWST

Power bridge status register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
POW_ POWERDOWN	POW_ TRISTATE	POW_FAULT1A	POW_FAULT1B	POW_FAULT2A	POW_FAULT2B	Rese	rved	
Address:	0x32							
Туре:	RO							
Buffer:	No							
Reset:	Undefi	ned						
Description:								
	0: not ir	7 POW_POWERDOWN: power-down bridge:0: not in power-down state1: power-down state						
		6 POW_TRISTATE: 1: power bridge is in tristate						
	5 POW_FAULT1A: 1: power bridge 1A is in fault state							
	4 POW_FAULT1B: 1: power bridge 1B is in fault state							
	3 POW_F 1: powe	FAULT2A: er bridge 2A is	in fault state					
	2 POW_F 1: powe	FAULT2B: er bridge 2B is	in fault state					

1:0 Reserved

12 Package mechanical data

This section contains packaging information for the following packages:

- TFBGA48
- VFQFPN52

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

12.1 Package TFBGA48

Figure 18. Package outline (TFBGA48)

Defense	Dimensions in mm						
Reference	Min	Тур	Мах				
A	-	-	1.20				
A1	0.15	-	-				
A2	-	0.785	-				
A3	-	0.20	-				
A4	-	-	0.60				
b	0.25	0.30	0.35				
D	4.85	5.00	5.15				
D1	-	3.50	-				
E	4.85	5.00	5.15				
E1	-	3.50	-				
е	-	0.50	-				
F	-	0.75	-				
ddd	-	-	0.08				
eee	-	-	0.15				
fff	-	-	0.05				

 Table 23.
 Package dimensions (TFBGA48)

12.2 Package VFQFPN52

Figure 19. Package outline (VFQFPN52)

Reference	Dimensions in mm						
	Min	Тур	Мах				
A	0.800	0.900	1.000				
A1	-	0.020	0.050				
A2	-	0.650	1.000				
A3	-	0.250	-				
b	0.180	0.230	0.300				
D	7.875	8.000	8.125				
D2	2.750	5.700	6.250				
E	7.875	8.000	8.125				
E2	2.750	5.700	6.250				
е	0.450	0.500	0.550				
L	0.350	0.550	0.750				
ddd	-	-	0.080				

13 Revision history

Table 25.Document revision history

Date	Revision	Changes
25-Jan-2007	1	Initial release.
09-Apr-2010	2	Complete update and change in presentation
30-Mar-2012	3	Updated <i>Features</i> Added <i>Section 6.3: Set fractional PLL</i> Updated <i>Section 7.2: Functional description</i> Minor textual updates

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 13095 Rev 3