|
MiniProg Users Guide
and Example Projects

Cypress MicroSystems, Inc.

2700 162" Street SW, Building D
Lynnwood, WA 98037

Phone: 800.669.0557

Fax: 425.787.4641

|
TABLE OF CONTENTS

Introduction to MiniProgc.ccceevveeveeiireeieeieieceeee e 4
What Comes with my MiniProg?ccccceevvvviviivievieiieiennen 5
Specifications for MiniProg..........ccccoevvevvivveviiiieniicieieeienens 6
MiniEval DesCription........cc.cccvevvieienieeieniieieeeeeeeieeneeveeneenees 8
Introduction to Example Projects.........ccocvevvevvevieveerieieenennnn 9
Example #1 Blink an LEDc..cccoooveviiviiiiiiieieceeeis 10
Example #2 Output a SINE Wave........ccoceevvvveeiiieeiennnns 11
Example #3 Dynamically Re-configuring a PWM 15
Example #4 Combining PWMs using Output Logic......... 20
CYPIESS SUPPOTT .veeirieiieeiiieiiie et eiie ettt eeae e 22

|
INTRODUCTION TO MINIPROG

The Cypress MicroSystems MiniProg gives you the ability to
program PSoC parts quickly and easily.

It is small and compact, and connects to your PC using the
provided USB 2.0 cable.

During prototyping, the MiniProg can be used as an in-system
serial programmer (ISSP) to program PSoC devices on your PCB
(see application notes AN2014 and AN2026 available online at
www.cypress.com for more details).

For production purposes, we recommend using the CY3207ISSP
programmer or a third-party production programmer.

Once the MiniProg is connected, you can use PSoC Programmer
software to program. (This free software can either be launched
from within PSoC Designer or run as a standalone program.)

|
WHAT COMES WITH MY MINIPROG?

Please confirm that your kit includes the following items:

e MiniEval Evaluation Board

¢ MiniProg Programmer

o CY8C29466-24PXI 28-Pin DIP Sample
e PSoC Designer CD

« USB Cable

e User Guide

|
SPECIFICATIONS FOR MINIPROG

The operating temperature of the MiniProg is from 0° C to 50° C.

Always plug the USB cable into the MiniProg before attaching it
to the five-pin header on the board.

When using an ISSP adapter cable with MiniProg, keep the length
under six inches to avoid signal integrity issues.

When using MiniProg, the LEDs blink at a variable rate to track
connection status. The green LED near the USB connector turns
on after MiniProg is plugged into the computer and configured by
the OS. If MiniProg cannot find the correct driver in the system,
this LED will not turn on. After the device has been configured,
the LED stays on at about a 4-Hz blink rate. This changes during
programming, where the blink duty cycle increases.

The red LED at the bottom turns on when the MiniProg powers the
part. The LED is off when power is provided by the target board.

USB Connector

Red Target
Power
Led

ISSP Connector

|
MINIEVAL DESCRIPTION

Shown below is the MiniEvall board, which can be used with

the MiniProg programmer to evaluate a PSoC device using some
simple example projects. No wire connections are needed from the
PSoC Socket.

PSoC Socket

ISSP Header

8 Switch

|
INTRODUCTION TO EXAMPLE PROJECTS

Four Example Projects are described in the following sections.
Each section is organized as follows:

Project Name: PSoC Designer project name.
Purpose: Overview of the project.

Implementation: A more detailed overview.
Example Code (main.asm): Code to run the project.

The example projects are available in PSoC Designer. To use,
open PSoC Designer and browse to select the correct file. The
example projects are found in ...\Program Files\Cypress
MicroSystems\ PSoC Designer\Examples. Choose the
chip type you desire and open the project’s .soc file.

When using the MiniEval programmer, do not use the “Connect”
and “Download” buttons in PSoC Designer. These are for use with
an In-Circuit Emulator (ICE).

Instead, click on the “Program” button to use PSoC Programmer
with your PSoC.

|
EXAMPLE PROJECT #1 BLINK AN LED

Project Name: ASM_Example Blink LED

Purpose: To demonstrate blinking an LED at a varying duty cycle
using a hardware PWM.

Implementation: The clock dividers VC1, VC2, and VC3 are used
to divide the 24 MHz system clock by 16, 16 and 256, respectively.
The resulting 366 Hz clock is used as the input to an 8-bit PWM.
This in turn produces an LED blink period of 1.4 Hz.

Example Code (main.asm):

// include m8c specific declarations
include “m8c.inc”

// include User Module API specific
declarations

include “psocapi.inc”

export _main:

main:
// Enable PWM
lcall PWM8 1 Start
lcall PWM8 1 EnableInt

// Enable Global interrupts
M8C_ EnableGInt

loop:
jmp loop

10

|
EXAMPLE PROJECT #2 OUTPUT A SINE WAVE

Project Name: ASM_Example DAC_ADC

Purpose: To demonstrate a PSoC project that outputs a SINE wave
using a 6-bit DAC. The SINE wave period is based on the current
ADC value of the potentiometer.

Implementation: This project uses a 64-entry SINE look-up table
to generate values used to update a 6-bit DAC. An 8-bit counter is
utilized to generate an interrupt at the DAC update rate (1/64 SINE
wave period). By adjusting the counter period, the DAC frequency
and the resulting SINE frequency may be modified. The counter
period is reloaded with the current ADC conversion value. The
ADC input voltage may be between 0 and Vdd volts depending on
the potentiometer. At higher frequencies, SINE wave jitter may be
observed due to the large timing impact of a one-count change in
the ADC conversion.

Example Code (main.asm):

// include m8c specific declarations
include “m8c.inc”

// include User Module API specific
declarations

include “psocapi.inc”

export _main
export DbADCvalue
11

export DbTablePos
export SINtable

// inform assembler that variables follow
area bss (RAM)

// Store ADC value for debug watch variable
bADCvalue: blk 1

// Stores last table position index
bTablePos: blk 1

// inform assembler that program code follows
area text (ROM, REL)
_main:
// starts DAC value update counter
lcall Counter8 1 Start
lcall Counter8_ 1 Enablelnt
// Turn on PGA power
mov A, PGA_ 1 MEDPOWER
lcall PGA 1 Start

// Turn on DAC power
mov A, DAC6_1 HIGHPOWER
lcall DAC6_1 Start

// Turn on ADC power

mov A, DELSIG8_1 HIGHPOWER
12

lcall DELSIG8 1 Start
lcall DELSIG8 1 StartAD

// Enable Global interrupts
M8C_ EnableGInt

loop:
// 1f ADC conversion complete then.....
lcall DELSIG8 1 fIsDataAvailable

jz loop
// get ADC result and convert to offset
binary

lcall DELSIG8_ 1 cGetDataClearFlag

add A, 0x80

// store value for debug watch variable
mov [bADCvalue] , A

// counter period less then 0x03 is
invalid

cmp A, 0x03

// excessive interrupt servicing

jnc LoadCounter

mov A, 0x03

13

LoadCounter:
// update DAC update rate
lcall Counter8 1 WritePeriod
jmp loop

area 1lit

// 64 entry SINE look-up table

SINEtable:

do 31, 33, 36, 39, 41, 44, 46, 49, 51, 53,
55, 56, 58, 59, 59

do 60, 60, 60, 59, 59, 58, 56, 55, 53, 51,
49, 47, 44, 42, 39

do 36, 33, 31, 28, 25, 22, 19, 16, 13, 11,
9, 7, 5, 3, 2, 1, 0

d o0, 0, 0, 1, 2, 3, 4, 6, 7, 10, 12, 14,
17, 20, 23, 26, 29

area text

14

EXAMPLE PROJECT #3 DYNAMICALLY
RE-CONFIGURING A PWM

Project Name: ASM_Example Dynamic PWM_PRS

Purpose: To demonstrate PSoC’s dynamic re-configuration
capability by switching a digital block between a PWMS8 and a
PRS8 (Pseudo Random Sequence). This example project also
demonstrates the advantages of using a PRS to generate a pulse
width. A benefit of the PRS is that it does not generate the strong
frequency harmonics of an equivalent PWM.

Implementation: The clock dividers VC1, VC2, and VC3 are
used to divide the 24 MHz system clock by 16, 16 and 128,
respectively. The resulting 732 Hz clock becomes the input to an 8-
bit Counter User Module in the base configuration (this is the first
configuration in PSoC Designer).

If the button on the MiniProg is released, configuration PWM
config is loaded and a period of two is loaded into the counter.
If the button is pressed and held, configuration PRS_config is
loaded and a period of 128 is loaded into the counter.

The PWM configuration contains a standard 8-bit PWM with
a duty cycle of 50%. Both the pulse width and terminal count
outputs are displayed on LEDs.

The PRS configuration contains a PRS with pulse density
(analogous to pulse width) and shifted bit stream output on LEDs.

15

Example code (main.Asm):

// include m8c specific declarations
include “m8c.inc”

// include User Module API specific
declarations

include “psocapi.inc”

export main:

_main:
// configure port pins
and reg [PRT1DR], ~0x10

mov reg [PRT2DR], 0x00

// start clock generator
lcall Counter8 1 Start

// load PRS configuration
lcall LoadConfig PRS_ Config
jmp PWM
PRS:
// stop and unload PWM configuration
lcall PWM8 1 Stop
lcall UnloadConfig PWM Config
// then load PRS config
lcall LoadConfig PRS_Config

// update clock divider, don’t wait for
16

period
reload
lcall Counter8 1 Stop

mov A, O0xX7F

lcall Counter8 1 WritePeriod
lcall Counter8 1 Start

// configure and start PRS
mov A, 0x01

lcall PRS8_1 WriteSeed

mov A, 0xB8

lcall PRS8 1 WritePolynomial

17

lcall PRS8_1 Start
// load compare value, must be Iloaded
after PRS 1is
started
mov reg[PRS8 1 SEED REG], Ox7F

PRSloop:
// wait for button release
tst reg [PRT1DR], 0x10
jnz PRSloop
// simple debounce
tst reg [PRT1DR], 0x10
jnz PRSloop
jmp PWM

PWM:

// stop and unload PRS configuration

lcall PRS8_1 Stop

lcall UnloadConfig PRS Config

// then load PWM config

lcall LoadConfig PWM Config

// update clock divider, don’t wait for
period

reload

lcall Counter8 1 Stop

18

mov A, 0x01
lcall Counter8 1 WritePeriod
lcall Counter8 1 Start

// configure and start PWM
mov A, OxFF

lcall PWM8 1 WritePeriod
mov A, O0xX7F

lcall PWM8 1 WritePulseWidth
// enable PWM

lcall PWM8 1 Start

PWMloop:
// wait for button release
tst reg [PRT1DR], 0x10
jz PWMloop
// simple debounce
tst reg [PRT1DR], 0x10
jz PWMloop
jmp PRS

19

EXAMPLE PROJECT #4 COMBINING PWMS USING
OUTPUT LOGIC

Project Name: ASM_Example LED_Logic

Purpose: To demonstrate a PSoC project designed to blink an LED
using the output of two PWMs. The outputs are combined using an
AND gate in an output bus logic block. This logical combination
results in a beat frequency of 1.4 Hz.

Implementation: The clock dividers VC1 and VC2 are used to
divide the 24 MHz system clock by 16 and 16, respectively. The
resulting 93.37 kHz clock becomes the input to the two 8-bit
PWM User Modules with respective periods of 256 and 255. This
produces the LED beat frequency of 1.4 Hz.

20

Example code (main.Asm):

// include m8c specific declarations
include “m8c.inc”

// include User Module API specific
declarations
include “psocapi.inc”

export main:

_main:
// Enable PWMI1
lcall PWM8 1 Start
// Enable PWM2
lcall PWM8 2 Start

loop:
jmp loop

21

|
CYPRESS CUSTOMER SUPPORT

We are committed to meeting your every need.

For more information about PSoC, check us out on the web at
www.cypress.com/psoc. There you will find data sheets, hundreds
of application notes, contact information for local PSoC certified
consultants, and recorded tele-training modules for newcomers to
the PSoC world.

We offer live tele-training sessions regularly. Check online at
www.cypress.com/support/training.ctm for the next scheduled
time.

For application support please contact us online or call between 8
am — 6 pm PST at 1.800.669.0557 ext. 4814. We offer a four-hour
response time at our call center during normal business hours.

http://www.cypress.com/ http://www.cypress.com/support/
mysupport.cfm

Copyright © 2004 Cypress MicroSystems, Inc. All rights reserved.
PSoC™, Programmable System-on-Chip™, and PSoC Designer™
are trademarks of Cypress MicroSystems, Inc. All other trademarks
or registered trademarks referenced herein are the property of their

respective owners. The information contained herein is subject to

change without notice. Printed in the U.S.A.

22

