MSA-0486 # Cascadable Silicon Bipolar MMIC Amplifier # AVAGO # **Data Sheet** #### **Description** The MSA-0486 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost, surface mount plastic package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in commercial and industrial applications. The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility. #### **86 Plastic Package** #### **Typical Biasing Configuration** #### **Features** - Lead-free Option Available - Cascadable 50 Ω Gain Block - 3 dB Bandwidth: DC to 3.2 GHz - 8 dB Typical Gain at 1.0 GHz - 12.5 dBm Typical P_{1 dB} at 1.0 GHz - Unconditionally Stable (k>1) - Surface Mount Plastic Package - Tape-and-Reel Packaging Option Available ### **MSA-0486 Absolute Maximum Ratings** | Parameter | Absolute Maximum [1] | |--------------------------|----------------------| | Device Current | 85 mA | | Power Dissipation [2, 3] | 500 mW | | RF Input Power | +13 dBm | | Junction Temperature | 150° C | | Storage Temperature | -65 to 150° C | | Thermal Resistance [2, 4]: | | |--|--| | $\theta_{jc} = 100^{\circ} \text{C/W}$ | | - 1. Permanent damage may occur if any of these limits are exceeded. - T_{CASE} = 25° C. Derate at 9.5 mW/°C for T_C > 100° C. # Electrical Specifications^[1], $T_A = 25^{\circ}$ C | Symbol | Parameters and Test Conditions: I _d = 50 mA, Z ₀ = 50 Ω | | | Min. | Тур. | Max. | |-------------------|--|--------------------|-------|------|-------|------| | G _P | Power Gain (S ₂₁ ²) | f = 0.1 GHz | dB | | 8.3 | | | | | f = 1.0 GHz | | 7.0 | 8.0 | | | ΔG_P | Gain Flatness | f = 0.1 to 2.0 GHz | dB | | +0.6 | | | f _{3 dB} | 3 dB Bandwidth ^[2] | | GHz | | 3.2 | | | VSWR | Input VSWR | f = 0.1 to 3.0 GHz | | | 1.5:1 | | | | Output VSWR | f = 0.1 to 3.0 GHz | | | 1.9:1 | | | NF | 50 Ω Noise Figure | f = 1.0 GHz | dB | | 7.0 | | | P _{1dB} | Output Power at 1 dB Gain Compression | f = 1.0 GHz | dBm | | 12.5 | | | IP ₃ | Third Order Intercept Point | f = 1.0 GHz | dBm | | 25.5 | | | t _D | Group Delay | f = 1.0 GHz | psec | | 140 | | | V _d | Device Voltage | | V | 4.2 | 5.25 | 6.3 | | dV/dT | Device Voltage Temperature Coefficient | | mV/°C | | -8.0 | | | _ | | | | | | | #### Notes: ### **Ordering Information** | Part Numbers | No. of Devices | Comments | |---------------|----------------|----------| | MSA-0486-BLK | 100 | Bulk | | MSA-0486-BLKG | 100 | Bulk | | MSA-0486-TR1 | 1000 | 7" Reel | | MSA-0486-TR1G | 1000 | 7" Reel | | MSA-0486-TR2 | 4000 | 13" Reel | | MSA-0486-TR2G | 4000 | 13" Reel | Note: Order part number with a "G" suffix if lead-free option is desired. ^{1.} The recommended operating current range for this device is 30 to 70 mA. Typical performance as a function of current is on the following page. MSA-0486 Typical Scattering Parameters (Z $_0$ = 50 Ω , T $_{\rm A}$ = 25° C, I $_{\rm d}$ = 50 mA) | Freq.
GHz | S ₁₁ | | S ₂₁ | S ₂₁ | | | S ₁₂ | | | S ₂₂ | | |--------------|-----------------|-----|-----------------|-----------------|-----|---------|-----------------|-----|--------|-----------------|--| | | Mag | Ang | dB | Mag | Ang | dB | Mag | Ang | Mag | Ang | | | 0.1 | 0.14 | 178 | 8.4 | 2.62 | 175 | -16.2 | 0.154 | 1 | 0.16 | -10 | | | 0.2 | 0.14 | 175 | 8.3 | 2.61 | 170 | -16.3 | 0.153 | 2 | 0.16 | -20 | | | 0.4 | 0.14 | 171 | 8.2 | 2.57 | 161 | -16.2-3 | 0.154 | 3 | 0.16-7 | -39 | | | 0.6 | 0.13 | 168 | 8.1 | 2.54 | 151 | -16.0 | 0.158 | 4 | 0.18 | -57 | | | 0.8 | 0.13 | 166 | 8.0 | 2.52 | 141 | -5.9 | 0.161 | 5 | 0.20 | -74 | | | 1.0 | 0.13 | 165 | 7.9 | 2.48 | 131 | -15.7 | 0.165 | 6 | 0.18 | -88 | | | 1.5 | 0.15 | 168 | 7.7 | 2.42 | 108 | -14.8 | 0.182 | 8 | 0.27 | -121 | | | 2.0 | 0.21 | 168 | 7.3 | 2.32 | 84 | -14.0 | 0.199 | 7 | 0.32 | -149 | | | 2.5 | 0.18 | 165 | 6.8 | 2.18 | 65 | -13.1 | 0.222 | 4 | 0.38 | -168 | | | 3.0 | 0.37 | 153 | 5.9 | 1.97 | 43 | -12.7 | 0.231 | -1 | 0.40 | 173 | | | 3.5 | 0.44 | 142 | 4.8 | 1.74 | 24 | -12.5 | 0.238 | -5 | 0.41 | 157 | | | 4.0 | 0.50 | 130 | 3.6 | 1.52 | 7 | -12.5 | 0.238 | -10 | 0.41 | 145 | | | 5.0 | 0.61 | 109 | 1.3 | 1.16 | -21 | -12.7 | 0.231 | -17 | 0.43 | 132 | | # Typical Performance, $T_A = 25^{\circ} C$ (unless otherwise noted) Figure 1. Typical Power Gain vs Frequency, $T_A = 25^{\circ}$ C. Figure 2. Device Current vs. Voltage. Figure 3. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, $f=1.0~{\rm GHz}$, $I_d=50~{\rm mA}$. Figure 4. Output Power at 1 dB Gain Compression vs. Frequency. Figure 5. Noise Figure vs. Frequency. # **86 Plastic Package Dimensions** Dimensions are in millimeters (inches) Avago