2-bit dual supply level translator without direction control pin #### **Features** - 90 Mbps (max) data rate when driven by a totem pole driver - 8 Mbps (max) data rate when driven by an open drain pole driver - Bidirectional level translation without direction control pin - Wide V_L voltage range of 1.65 to 3.6 V - Wide V_{CC} voltage range of 1.80 to 5.5 V - Power down mode feature when either supply is off, all I/Os are in high impedance - Low quiescent current (max 12 µA) - Able to be driven by totem pole and open drain drivers - 5.5 V tolerant enable pin - ESD performance on all pins: ±2 kV HBM - Small package and footprint QFN10L (1.8 x 1.4 mm) package #### **Applications** - Low voltage system level translation - Mobile phones and other mobile devices - I²C level translation - UART level translation #### **Description** The ST2329 is a 2-bit dual supply level translator which provides the level shifting capability to allow data transfer in a multi-voltage system. Externally applied voltages, V_{CC} and V_{L} , set the logic levels on either side of the device. It utilizes transmission gate-based design that allows bidirectional level translation without a control pin. The ST2329 accepts a V_L from 1.65 to 3.6 V and V_{CC} from 1.80 to 5.5 V, making it ideal for data transfer between low-voltage ASICs/PLD and higher voltage systems. This device has a tri-state output mode which can be used to disable all I/Os The ST2329 supports power down mode when V_{CC} is grounded/floating and the device is disabled via the OE pin. Table 1. Device summary | Order code | Package | Packaging | | | |------------|-----------------------|-------------------------------------|--|--| | ST2329QTR | QFN10L (1.8 x 1.4 mm) | Tape and reel (3000 parts per reel) | | | Contents ST2329 ### **Contents** | 1 | Pin s | settings | . 3 | |-------|-------|---|------| | | 1.1 | Pin connection | . 3 | | | 1.2 | Pin description | . 3 | | 2 | Devi | ce block diagrams | . 4 | | 3 | Sup | plementary notes | | | | 3.1 | Driver requirement | . 5 | | | 3.2 | Load driving capability | . 5 | | | 3.3 | Power off feature | . 5 | | | 3.4 | | | | 4 | Max | imum rating | . 6 | | | 4.1 | Recommended operating conditions | | | 5 | Elec | trical characteristics | . 7 | | | 5.1 | AC characteristics (device driven by open drain driver) | . 9 | | | 5.2 | AC characteristics (device driven by totem pole driver) | 11 | | 6 | Wav | eforms | . 14 | | 7 | Pack | kage mechanical data | . 16 | | 8 - (| Revi | sion history | 20 | ST2329 Pin settings # 1 Pin settings ### 1.1 Pin connection Figure 1. Pin connection (top through view) ### 1.2 Pin description Table 2. Pin description | | Pin number | Symbol | Name and function | |-----|------------|---------------------|-------------------| | | 0(4) | I/O _{VL1} | Data input/output | | | 2 | I/O _{VL2} | Data input/output | | 10 | 3 | OE | Output enable | | | 4 | NC | No connection | | 205 | 5 | NC | No connection | | Ob | 6 | GND | Ground | | | 7 | I/O _{VCC2} | Data input/output | | | 8 | I/O _{VCC1} | Data input/output | | | 9 | V _{CC} | Supply voltage | | | 10 | V_{L} | Supply voltage | # 2 Device block diagrams Figure 2. ST2329 block diagram Figure 3. Application block diagram ### 3 Supplementary notes #### 3.1 Driver requirement The ST2329 may be driven by an open drain or totem pole driver and the nature of the device's output is "open drain". It must not be used to drive a pull-down resistor since the impedance of the output at HIGH state depends on the pull-up resistor placed at the I/Os. As the device has pull-up resistors on both the I/O_{VCC} and I/O_{VL} ports, the user needs to ensure that the driver is able to sink the required amount of current. For example, if the settings are V_{CC} = 5.5 V, V_L = 4.3 V and the pull-up resistor is 10 kΩ, then the driver must be able to sink at least (5.5 V/10 kΩ) + (4.3 V /10 kΩ) = 1 mA and still meet the V_{IL} requirements of the ST2329. #### 3.2 Load driving capability To support the open drain system, the one-shot transistor is turned on only during state transition at the output side. When it drives a high state, after the one-shot transistor is turned off, only the pull-up resistor is able to maintain the state. In this case, the resistive load is not recommended. During the translation from V_{CC} side to V_L side, the oscillation might be triggered when the signal is reflected back as a glitch. This is caused by the architecture of the device (autodirection). When using the ST2329, care need to be taken in the PCB data-track design and output loading. It is recommended that the load is less than 25 pf. #### 3.3 Power off feature In some applications where it might be required to turn off one of the power supplies powering up the level translator, the user may turn off the $V_{\rm CC}$ only when the OE pin is low (device is disabled). There will be no current consumption in $V_{\rm L}$ due to floating gates or other causes, and the I/Os are in a high-impedance state in this mode. #### 3.4 Truth table Table 3. Truth table | Enable | Bidirectional Input/Output | | | | | | | |------------------|----------------------------|-------------------|--|--|--|--|--| | OE | I/O _{VCC} | I/O _{VL} | | | | | | | H ⁽¹⁾ | H ⁽²⁾ | H ⁽¹⁾ | | | | | | | H ⁽¹⁾ | L | L | | | | | | | L | Z ⁽³⁾ | Z ⁽³⁾ | | | | | | - 1. High level V_L power supply referred - 2. High level V_{CC} power supply referred - 3. Z = high impedance Maximum rating ST2329 ### 4 Maximum rating Stressing the device above the rating listed in the "Absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only, and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 4. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |---------------------|--|-------------------------------|------| | V _L | Supply voltage | -0.3 to 4.6 | V | | V _{CC} | Supply voltage | -0.3 to 6.5 | V | | V _{OE} | DC control input voltage | -0.3 to 6.5 | V | | V _{I/OVL} | DC I/O _{VL} input voltage (OE = GND or V _L) | -0.3 to V _L + 0.3 | V | | V _{I/OVCC} | DC I/O _{VCC} input voltage (OE = GND or V_L) | -0.3 to V _{CC} + 0.3 | V | | I _{IK} | DC input diode current | -20 | mA | | I _{I/OVL} | DC output current | ±25 | mA | | I _{I/OVCC} | DC output current | ±258 | mA | | I _{SCTOUT} | Short circuit duration, continuous | 40 | mA | | P _D | Power dissipation ⁽¹⁾ | 500 | mW | | T _{STG} | Storage temperature | -65 to 150 | °C | | TL | Lead temperature (10 seconds) | 300 | °C | | ESD | Electrostatic discharge protection (HBM) | ±2 | kV | ^{1. 500}mW: 65 °C derated to 300 mW by 10W/°C: 65 °C to 85 °C ### 4.1 Recommended operating conditions Table 5. Recommended operating conditions | Symbol | Parameter | Min | Тур | Max | Unit | |----------------------------------|---|------|-----|----------|------| | V_{L} | Supply voltage | 1.65 | | 3.6 | V | | V _{CC} ⁽¹⁾ | Supply voltage | 1.8 | | 5.5 | V | | V _{OE} | Input voltage (OE output enable pin, V_L power supply referred) | 0 | | 3.6 | V | | VI/O _{VL} | I/O _{VL} voltage | 0 | | V_{L} | V | | V _I /O _{VCC} | I/O _{VCC} voltage | 0 | | V_{CC} | V | | T _{op} | Operating temperature | -40 | | 85 | °C | | dt/dV | Input rise and fall time (for 45 Mbps operation) | 0 | | 1 | ns/V | ^{1.} V_{CC} must be greater than V_L . ### 5 Electrical characteristics **Table 6. DC characteristics** (over recommended operating conditions unless otherwise noted. All typical values are at $T_A = 25$ °C) | | | | Test cor | ditions | | | Value | | | | |--------------------|---|----------------|-----------------------|---------|---------|-----|--------------|-----|------|---| | Symbol | Parameter | | | TA | = 25 °C | ; | -40 to 85 °C | | Unit | | | | | V _L | V _{CC} | | Min | Тур | Max | Min | Max | | | | | 1.65 | | | 1.4 | | | 1.4 | | | | | | 2.0 | | | 1.6 | | | 1.6 | | | | V_{IHL} | High level input voltage (I/O _{VL}) | 2.5 | V _L to 5.5 | | 2.0 | | | 2.0 | 1/2 | V | | | νοπα σ ο (πογ <u>ι</u>) | 3.0 | | | 2.4 | | | 2.4 | | | | | | 3.6 | | | 2.8 | | | 2.8 | | | | | | 1.65 | | | | 0 | 0.3 | | 0.3 | | | | | 2.0 | | | | 2. | 0.4 | | 0.4 | | | V_{ILL} | Low level input voltage (I/O _{VL}) | 2.5 | V _L to 5.5 | | 10 | | 0.5 | | 0.5 | V | | | νοπα g σ (π σ γ <u>ι</u>) | 3.0 | | C | 0/_ | | 0.6 | | 0.6 | | | | | 3.6 | | 003 | | | 0.8 | | 0.8 | | | | | 1.8 | 0. | 1.6 | | | 1.6 | | | | | | | | 2.5 | | 2.3 | | | 2.3 | | | | V | High level input voltage | 1.65 to | 3.0 | 1 | 2.7 | | | 2.7 | | V | | V_{IHC} | (I/O _{VCC}) | V_{CC} | 3.6 | | 3.3 | | | 3.3 | | | | | | 70,0 | 4.3 | | 3.5 | | | 3.5 | | | | | 01 | | 5.5 | | 4.2 | | | 4.2 | | | | V | Low level input voltage | 1.65 -
2.5 | 3 - 5.5 | | | | | 0.3 | | V | | V _{ILC} | (I/O _{VCC}) | 2.7 -
3.6 | 3.6 - 5.5 | | | | | 0.5 | | ľ | | Q, | | 1.65 | | | 1.0 | | | 1.0 | | | | | | 2.0 | | | 1.2 | | | 1.2 | | | | V _{IH-OE} | High level input voltage (OE) | 2.5 | V _L to 5.5 | | 1.4 | | | 1.4 | | V | | | (= , | 3.0 | | | 1.6 | | | 1.6 | | | | | 3.6 | | | 2.0 | | | 2.0 | | | | | | | 1.65 | | | | | 0.33 | | 0.33 | | | | | 2.0 | | | | | 0.40 | | 0.40 | | | V_{IL-OE} | Low level input voltage (OE) | 2.5 | V _L to 5.5 | | | | 0.50 | | 0.50 | V | | | | 3.0 | | | | | 0.60 | | 0.60 | | | | | 3.6 | | | | | 0.75 | | 0.75 | | Electrical characteristics ST2329 Table 6. DC characteristics (over recommended operating conditions unless otherwise noted. All typical values are at $T_A = 25$ °C) (continued) | | | | Test cor | nditions | Value | | | | | | |---------------------|--|----------------|-----------------------|---|------------|------|------|--------------|------|------| | Symbol | Parameter | V | V | | TA = 25 °C | | | -40 to 85 °C | | Unit | | | | V _L | V _{CC} | | Min | Тур | Max | Min | Max | | | V _{OLL} | Low level
output voltage
(I/O _{VL}) | 1.65 to
3.6 | V _L to 5.5 | IO = 1.0 mA
I/O _{VCC} ≤ 0.15 V | | | 0.40 | | 0.40 | ٧ | | V _{OLC} | Low level
output voltage
(I/O _{VCC}) | 1.65 to
3.6 | V _L to 5.5 | IO = 1.0 mA
I/O _{VL} ≤ 0.15 V | | | 0.40 | | 0.40 | ٧ | | I _{OE} | Control input
leakage current
(OE) | 1.65 to
3.6 | V _L to 5.5 | V _{OE} = GND or
V _L | | | ±0.1 | AUC | ±0.1 | μΑ | | I _{IO_LKG} | High impedance leakage current (I/O _{VL} , I/O _{VCC}) | 1.65 to
3.6 | V _L to 5.5 | OE = GND | × | 98 | ±0.1 | O. | ±0.1 | μА | | I _{QVCC} | Quiescent
supply current
V _{CC} | 1.65 to
3.6 | V _L to 5.5 | only pull-up
resistor
connected to I/O | Ole, | 3 | 5 | | 12 | μΑ | | I _{QVL} | Quiescent
supply current
V _L | 1.65 to
3.6 | V _L to 5.5 | only pull-up
resistor
connected to I/O | | 0.01 | 0.1 | | 1 | μΑ | | I _{z-vcc} | High impedance quiescent supply current V _{CC} | 1.65 to
3.6 | V _L to 5.5 | OE = GND;
only pull-up
resistor
connected to I/O | | 3 | 5 | | 12 | μΑ | | I _{Z-VL} | High impedance quiescent supply current V _L | 1.65 to
3.6 | V _L to 5.5 | OE = GND;
only pull-up
resistor
connected to I/O | | 0.01 | 0.1 | | 1 | μΑ | ### **5.1 AC characteristics** (device driven by open drain driver) **Table 7.** AC characteristics - test conditions: $V_L = 1.65 - 1.8 \text{ V}$ (load $C_L = 15 \text{ pF}$; $R_{up} = 4.7 \text{ k}\Omega$; driver $t_r = t_f \le 2 \text{ ns}$) over temperature range -40 °C to 85 °C | Symbol | Parameter | | V _{CC} = 1.8 -2.5 V | | $V_{CC} = 2.7 - 3.6 \text{ V}$ | | V _{CC} = 4.3 -
5.5 V | | Unit | |-----------------------------------|---|------------------|------------------------------|-----|--------------------------------|-----|----------------------------------|-----|------| | | | | Min | Max | Min | Max | Min | Max | | | t _{RVCC} | Rise time I/O _{VCC} | | | 80 | | 50 | | 30 | ns | | t _{FVCC} | Fall time I/O _{VCC} | | | 3 | | 3 | | 3 | ns | | t _{RVL} | Rise time I/O _{VL} | | | 7 | | 6 | | 6 | ns | | t _{FVL} | Fall time I/O _{VL} | | | 4 | | 5 | | 5 | ns | | | Propagation delay time | t _{PLH} | | 5 | | 5 | | 5 | ns | | t _{I/OVL-VCC} | I/O _{VL-LH} to I/O _{VCC-LH} I/O _{VL-HL} to I/O _{VCC-HL} | t _{PHL} | | 5 | | 5 | 190 | 5 | ns | | | Propagation delay time | t _{PLH} | | 5 | | 5 | | 5 | ns | | t _I /OVCC-VL | I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-LH} | t _{PHL} | | 5 | 3/8 | 7 | | 7 | ns | | t _{PZL} t _{PZH} | Output enable and | En | | 10 | | 10 | | 10 | ns | | t _{PLZ} t _{PHZ} | disable time | Dis | | 40 | | 40 | | 40 | ns | | D _R | Data rate ⁽¹⁾ | | | 1.6 | | 2.5 | | 4 | MHz | The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation not less than 30%. Table 8. AC characteristics - test conditions: $V_L = 2.5$ –2.7 V (load $C_L = 15$ pF; $R_{up} = 4.7$ kΩ; driver $t_r = t_f \le 2$ ns) over temperature range -40 °C to 85 °C | Symbol | Parameter | | V _{CC} = 2.7 | $V_{CC} = 2.7 - 3.6 \text{ V}$ | | $V_{CC} = 4.3 - 5.5 \text{ V}$ | | |-------------------------|---|------------------|-----------------------|--------------------------------|-----|--------------------------------|----| | Symbol | Parameter | Min | Max | Min | Max | Unit | | | t _{RVCC} | Rise time I/O _{VCC} | | | 70 | | 40 | ns | | † _{FVCC} | Fall time I/O _{VCC} | | | 3 | | 3 | ns | | t _{RVL} | Rise time I/O _{VL} | | | 5 | | 5 | ns | | t _{FVL} | Fall time I/O _{VL} | | | 3 | | 3 | ns | | | Propagation delay time | t _{PLH} | | 2 | | 2 | ns | | t _{I/OVL-VCC} | I/O _{VL-LH} to I/O _{VCC-LH} | t _{PHL} | | 3 | | 3 | ns | | | Propagation delay time | t _{PLH} | | 3 | | 3 | ns | | t _I /OVCC-VL | I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-LH} | t _{PHL} | | 4 | | 4 | ns | Electrical characteristics ST2329 Table 8. AC characteristics - test conditions: $V_L = 2.5$ –2.7 V (load $C_L = 15$ pF; $R_{up} = 4.7$ kΩ; driver $t_r = t_f \le 2$ ns) over temperature range -40 °C to 85 °C | Symbol | Parameter | $V_{CC} = 2.7 - 3.6 \text{ V}$ | | $V_{CC} = 4.3 - 5.5 \text{ V}$ | | Unit | | |-----------------------------------|--------------------------|--------------------------------|--|--------------------------------|-----|------|-------| | Symbol | Parameter | rarameter | | Max | Min | Max | Offic | | t _{PZL} t _{PZH} | Output enable and | En | | 6 | | 6 | ns | | t _{PLZ} t _{PHZ} | disable time | Dis | | 40 | | 40 | ns | | D _R | Data rate ⁽¹⁾ | | | 2.5 | | 3.2 | MHz | The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation not less than 30%. Table 9. AC characteristics - test conditions: $V_L = 2.7 - 3.6 \text{ V}$ (load $C_L = 15 \text{ pF}$; $R_{up} = 4.7 \text{ k}\Omega$; driver $t_r = t_f \le 2 \text{ ns}$) over temperature range -40 °C to 85 °C | Symbol | Parameter | V _{CC} = 4.3 | $V_{CC} = 4.3 - 5.5 \text{ V}$ | | | | |-----------------------------------|---|-----------------------|--------------------------------|------|-----|--| | Symbol | Parameter | Min | Max | Unit | | | | t _{RVCC} | Rise time I/O _{VCC} | | | 55 | ns | | | t _{FVCC} | Fall time I/O _{VCC} | | 010 | 3 | ns | | | t _{RVL} | Rise time I/O _{VL} | -0 | 0 | 4 | ns | | | t _{FVL} | Fall time I/O _{VL} | 205 | | 3 | ns | | | | Propagation delay time | [†] PLH | | 2 | ns | | | t _{I/OVL-VCC} | I/O _{VL-LH} to I/O _{VCC-LH} I/O _{VL-HL} to I/O _{VCC-HL} | t _{PHL} | | 4 | ns | | | | Propagation delay time | t _{PLH} | | 4 | ns | | | t _{I/OVCC-VL} | I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-HL} | t _{PHL} | | 4 | ns | | | t _{PZL} t _{PZH} | Output enable and disable time | En | | 6 | ns | | | t _{PLZ} t _{PHZ} | Output enable and disable time | Dis | | 40 | ns | | | D _R | Data rate ⁽¹⁾ | | | 2.8 | MHz | | The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation not less than 30%. ### **5.2 AC characteristics** (device driven by totem pole driver) Table 10. AC characteristics (test conditions: $V_L = 1.65 - 1.8 \text{ V}$ (load $C_L = 15 \text{ pF}$; $R_{up} = 10 \text{ k}\Omega$; driver $t_r = t_f \le 2 \text{ ns}$) over temperature range -40 °C to 85 °C) | Symbol | Parameter | | V _{CCB} = 1.8 – 2.5 V | | $V_{CCB} = 2.7 - 3.6 \text{ V}$ | | $V_{CCB} = 4.3 - 5.5 \text{ V}$ | | Unit | |---|--|------------------|--------------------------------|-----|---------------------------------|-----|---------------------------------|-----|-------| | Symbol | | | Min | Max | Min | Max | Min | Max | Oiiit | | t _{RVCC} | Rise time I/O _{VCC} | | | 7 | | 3 | | 4 | ns | | t _{FVCC} | Fall time I/O _{VCC} | | | 7 | | 3 | | 3 | ns | | t _{RVL} | Rise time I/O _{VL} | | | 6 | | 4 | | 5 | ns | | t _{FVL} | Fall time I/O _{VL} | | | 4 | | 4 | | 4 | ns | | t _{I/OVL} -
VCC | Propagation delay time I/O _{VL-LH} to I/O _{VCC-LH} I/O _{VL-HL} to I/O _{VCC-HL} | t _{PLH} | | 6 | | 5 | | 4 C | ns | | | | t _{PHL} | | 5 | | 5 | | 5 | ns | | I/OVCC- I/O _{VCC-LH} to | Propagation delay time | t _{PLH} | | 6 | | 5 | 00, | 4 | ns | | | I/O _{VCC-LH} to I/O _{VL-LH}
I/O _{VCC-HL} to I/O _{VL-HL} | t _{PHL} | | 4.5 | | 5.2 | | 7 | ns | | t _{PZL} t _{PZH} Output enable
t _{PLZ} t _{PHZ} disable time | Output enable and | En | | 10 | | 10 | | 10 | ns | | | l | Dis | | 40 | VIO. | 40 | | 40 | ns | | D _R | Data rate ⁽¹⁾ | • | | 12 | | 32 | | 32 | MHz | The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation not less than 30%. Table 11. AC characteristics (test conditions: $V_L = 2.5 - 2.7 \text{ V}$ (load $C_L = 15 \text{ pF}$; $R_{up} = 10 \text{ kΩ}$; driver $t_r = t_f \le 2 \text{ ns}$) over temperature range -40 °C to 85 °C) | Symbol | Parameter | | $V_{CC} = 2.7 - 3.6 \text{ V}$ | | V _{CC} = 4.3 -5.5 V | | Unit | |------------------------|--|------------------|--------------------------------|-----|------------------------------|-----|------| | Symbol | | | Min | Max | Min | Max | Unit | | tRVCC | Rise time I/O _{VCC} | | | 6 | | 4 | ns | | t _{FVCC} | Fall time I/O _{VCC} | | | 3 | | 3 | ns | | t _{RVL} | Rise time I/O _{VL} | | | 5 | | 5 | ns | | t _{FVL} | Fall time I/O _{VL} | | | 3 | | 3 | ns | | t _{I/OVL-VCC} | Propagation delay time I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-HL} | t _{PLH} | | 3.5 | | 3 | | | | | t _{PHL} | | 4 | | 4 | ns | | | Propagation delay time I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-HL} | t _{PLH} | | 2.5 | | 2.1 | ns | | t _{I/OVCC-VL} | | | | 2.5 | | 2.1 | ns | | | | t _{PHL} | | 4 | | 4 | ns | | | | 'PHL | | 7 | | 7 | ns | Electrical characteristics ST2329 Table 11. AC characteristics (test conditions: $V_L = 2.5 - 2.7 \text{ V}$ (load $C_L = 15 \text{ pF}$; $R_{up} = 10 \text{ kΩ}$; driver $t_r = t_f \le 2 \text{ ns}$) over temperature range -40 °C to 85 °C) (continued) | Symbol | Parameter | | $V_{CC} = 2.7 - 3.6 \text{ V}$ | | V _{CC} = 4.3 -5.5 V | | Unit | |-----------------------------------|--------------------------|-----|--------------------------------|-----|------------------------------|-----|-------| | Symbol | | | Min | Max | Min | Max | Ollit | | t _{PZL} t _{PZH} | Output enable and | En | | 6 | | 6 | ns | | t _{PLZ} t _{PHZ} | disable time | Dis | | 40 | | 40 | ns | | D _R | Data rate ⁽¹⁾ | | | 45 | | 45 | MHz | The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation not less than 30%. Table 12. AC characteristics (test conditions: $V_L = 2.7 - 3.6 \text{ V}$ (load $C_L = 15 \text{ pF}$; $R_{up} = 10 \text{ k}\Omega$; driver $t_r = t_f \le 2 \text{ ns}$) over temperature range -40 °C to 85 °C) | Symbol | Parameter | | V _{CC} = 4. | Unit | | |--|--|------------------|----------------------|------|-------| | Symbol | | | Min | Max | Oilit | | t _{RVCC} | Rise time I/O _{VCC} | | | 5 | ns | | t _{FVCC} | Fall time I/O _{VCC} | | i ale | 3 | ns | | t _{RVL} | Rise time I/O _{VL} | | | 4 | ns | | t _{FVL} | Fall time I/O _{VL} | | 10S | 3 | ns | | t _{I/OVL} -VCC | Propagation delay time | t _{PLH} | | 2.5 | ns | | | I/O _{VL-LH} to I/O _{VCC-LH} I/O _{VL-HL} to I/O _{VCC-HL} | t _{PHL} | | 4 | ns | | | Propagation delay time I/O _{VCC-LH} to I/O _{VL-LH} I/O _{VCC-HL} to I/O _{VL-HL} | t _{PLH} | | 2 | ns | | t.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | ۷ | ns | | t _{I/OVCC-VL} | | t _{PHL} | | 4 | ns | | | | | | 7 | ns | | t _{PZL} t _{PZH} | Output enable and disable | En | | 6 | ns | | t _{PLZ} t _{PHZ} | time | Dis | | 40 | ns | | D _R | Data rate ⁽¹⁾ | | | 45 | MHz | ^{1.} The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation not less than 30%. ST2329 Electrical characteristics Figure 4. Test circuit Table 13. Test circuit switches | Γ | Tool | | Switch | 0 | | |---------|-------------------------------------|---------------------------|----------------------------|--------------------|--| | | Test | Driving I/O _{VL} | Driving I/O _{VCC} | Open drain driving | | | | t _{PLH} , t _{PHL} | Open | Open | Open | | | Obsolet | e Produ | cile | 50 | | | Waveforms ST2329 ### 6 Waveforms Table 14. Waveform symbol value | | Driving | j I/O _{VL} | Driving I/O _{VCC} | | | |-----------------|---|---|---|--|--| | Symbol | $\begin{array}{c} \textbf{1.8 V} \leq \textbf{V_L} \leq \textbf{V_{CC}} \leq \\ \textbf{2.5 V} \end{array}$ | $\begin{array}{c} \textbf{3.3 V} \leq \textbf{V_L} \leq \textbf{V_{CC}} \leq \\ \textbf{5.0 V} \end{array}$ | $\begin{array}{c} \textbf{1.8 V} \leq \textbf{V_L} \leq \textbf{V_{CC}} \leq \\ \textbf{2.5 V} \end{array}$ | $\begin{array}{c} \textbf{3.3V} \leq \textbf{V}_{\textbf{L}} \leq \textbf{V}_{\textbf{CC}} \leq \\ \textbf{5.0 V} \end{array}$ | | | V_{IH} | V_{L} | V_{L} | V _{CC} | V _{CC} | | | V _{IM} | 50% V _L | 50% V _L | 50% V _{CC} | 50% V _{CC} | | | V _{OM} | 50% V _{CC} | 50% V _{CC} | 50% V _L | 50% V _L | | | V _X | V _{OL} +0.15V | V _{OL} +0.3V | V _{OL} +0.15V | V _{OL} +0.3V | | | V _Y | V _{OH} -0.15V | V _{OH} -0.3V | V _{OH} -0.15V | V _{OH} -0.3V | | Figure 5. Waveform - propagation delay (f = 1 MHz; 50% duty cycle) ST2329 Waveforms Figure 6. Waveform - output enable and disable time (f = 1 MHz; 50% duty cycle) ### 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 7. QFN10L (1.8 x 1.4 mm) package outline Table 15. QFN10L (1.8 x 1.4 mm) mechanical data | Cumbal | Millimeters | | | | | | |--------|-------------|------|------|--|--|--| | Symbol | Тур | Min | Max | | | | | А | 0.50 | 0.45 | 0.55 | | | | | A1 | 0.02 | 0 | 0.05 | | | | | A3 | 0.127 | | | | | | | b | 0.20 | 0.15 | 0.25 | | | | | D | 1.80 | 1.75 | 1.85 | | | | | E | 1.40 | 1.35 | 1.45 | | | | | е | 0.40 | | 1191 | | | | | L | 0.40 | 0.35 | 0.45 | | | | Figure 8. QFN10L (1.8 x 1.4 mm) footprint recommendation Figure 9. QFN10L (1.8 x 1.4 mm) carrier tape Figure 11. QFN10L (1.8 x 1.4 mm) reel information - front side Revision history ST2329 # 8 Revision history Table 16. Document revision history | | Date | Revision | Changes | |--------|-------------|----------|--| | | 15-May-2007 | 1 | Initial release | | | 01-Oct-2007 | 2 | Modified title, added pin description and complete electrical characteristics | | | 31-Oct-2007 | 3 | Updated Figure 4: Test circuit on page 13, Figure 7: QFN10L (1.8 x 1.4 mm) package outline on page 16 and Figure 8: QFN10L (1.8 x 1.4 mm) footprint recommendation on page 17, minor text changes. | | | 07-May-2008 | 4 | Updated data rate values and added paragraph on load driving capability (Section 3.2). | | Obsole | te Prod | Juct(s) | capability (Section 3.2). | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com