LTC3778 #### DESCRIPTION Demonstration circuit 389 is a step down controller featuring the LTC3778. It produces an output voltage suitable for Intel Mobile Tualatin, Low Voltage Tualatin and Ultra Low Voltage mobile processors. The LTC3778 is a synchronous step-down controller. It uses valley current control architecture to deliver low duty cycles. The maximum current supported by each version of the DC389 conforms to Intel IMVP-II Mobile Processor Core Voltage Design Guide REF. NO. OR-2980. Please contact Intel to obtain this restricted docu*ment.* DC389 includes a dynamic load circuit for the convenience of the user. There are three versions of the board: - 389A-A: Mobile Tualatin, 23A max output - 389A-B: Low Voltage Tualatin, 15A max - 389A-C: Ultra Low Voltage Tualatin, 13A max Design files for this circuit board are available. Call the LTC factory. **Table 1. Performance Summary** | PARAMETER | CONDITION | VALUE | |--|--|---------------------| | Minimum Input Voltage | | 7.5V | | Maximum Input Voltage | | 24 | | V _{OUT} , I _{OUT} | | See Tables 2,3,4 | | Typical Output Ripple V _{OUT} | V _{IN} = 12V, I _{OUT} =15A | 20mV _{P-P} | | Nominal Switching Frequency | | 300kHz | #### **QUICK START PROCEDURE** Demonstration circuit 389 is easy to set up to evaluate the performance of the LTC3778. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below: Table 2. Jumper Descriptions (See Figure 1) | JUMPER
Description | | JUMPER POSITION | | | | | |-----------------------|-----|---------------------------------|-----------------------------|--|--|--| | PURPOSE NUM
BER | | 1-2 | 2-3 | | | | | Dynamic
Load | JP1 | Disabled | Enabled | | | | | VRON | JP2 | Enabled | Disabled | | | | | Deep Sleep | JP3 | Disabled | Enabled | | | | | Deeper
Sleep | JP4 | Enabled | Disabled | | | | | Perform-
ance Mode | JP5 | Performance Opti-
mized Mode | Battery Opti-
mized Mode | | | | When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the input or output and ground terminals. See Figure 2 for proper scope probe technique. - 1. Set jumpers as shown in Figure 1. See also Table 2 for jumper descriptions. - 2. With power off, connect the input power supply to VIN and GND. - **3.** Turn on the power in this sequence: - a. VIN (Do not exceed 24V) - b. 3.3V - c. 5V (Do not allow 5V to be ON without VIN ON) - d. ±12V. - 4. Check for the proper output voltages. See Tables 3 to 5 for expected output voltages. - If there is no output, temporarily disconnect the load to make sure that the load is not set too high. - 5. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters. See Figures 3 to 5 for expected performance. Figure 1. Proper Measurement Equipment Setup Figure 2. Measuring Input or Output Ripple ## QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 389 HIGH EFFICIENCY NOTEBOOK CPU POWER SUPPLY Figure 3. Step Load Response (389A-A, Performance Optimized Mode, $V_{IN} = 15V$) Figure 4. Typical Output Ripple (389A-A, Performance Optimized Mode, I_{OUT} = 15A, V_{IN} = 15V) Figure 5. Typical Performance Mode Efficiency curves for the 389A-A, 389A-B and 389A-C Table 3. Version A for Mobile Tualatin CPU | MODE | JP2 | JP3 | JP4 | JP5 | 0A | 3A | 6A | 8A | 14A | 23A | |----------------------|-----|-----|-----|-----|------------------|-------------------|-----------------|-----------------|-----------------|------------------| | BOM* | 1–2 | 1–2 | 2–3 | 2–3 | 1.115–
1.155 | | | | 1.059–
1.099 | | | POM** | 1–2 | 1–2 | 2–3 | 1–2 | 1.380-
1.420 | | | | | 1.288 –
1.328 | | POM**
DEEP
SLP | 1–2 | 2–3 | 2–3 | 1–2 | 1.318–
1.358 | | | 1.286-
1.326 | | | | BOM*
DEEP
SLP | 1–2 | 2–3 | 2–3 | 2–3 | 1.064–
1.104 | | 1.040–
1.080 | | | | | DEEPER
SLP | 1–2 | 2–3 | 1–2 | 2–3 | 0 .810–
0.870 | 0 .810 –
0.870 | | | | | ^{*}Battery Optimized Mode TECHNOLOGY TECHNOLOGY ^{**}Performance Optimized Mode # QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 389 HIGH EFFICIENCY NOTEBOOK CPU POWER SUPPLY Table 4. Version B for Low Voltage Tualatin CPU | MODE | JP2 | JP3 | JP4 | JP5 | 0A | 3A | 5A | 6A | 10A | 15A | |----------------------|-----|-----|-----|-----|------------------|-----------------|-----------------|-----------------|-----------------|------------------| | BOM* | 1–2 | 1–2 | 2–3 | 2–3 | 1.016-
1.056 | | | | 0.976–
1.016 | | | P0M** | 1–2 | 1–2 | 2–3 | 1–2 | 1.130 –
1.170 | | | | | 1.070 –
1.110 | | POM**
DEEP
SLP | 1–2 | 2–3 | 2–3 | 1–2 | 1.094–
1.134 | | | 1.070-
1.110 | | | | BOM*
DEEP
SLP | 1–2 | 2–3 | 2–3 | 2–3 | 0.996 –
1.036 | | 0.976–
1.016 | | | | | DEEPER
SLP | 1–2 | 2–3 | 1–2 | 2–3 | 0 .810–
0.870 | 0.810-
0.870 | | | | | ^{*}Battery Optimized Mode Table 5. Version C for Ultra Low Voltage Tualatin CPU | MODE | JP2 | JP3 | JP4 | JP5 | 0A | 3A | 4A | 5A | 8A | 13A | |----------------------|-----|-----|-----|-----|------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | BOM* | 1–2 | 1–2 | 2–3 | 2–3 | 0.918–
0.958 | | | | 0.886-
0.926 | | | POM** | 1–2 | 1–2 | 2–3 | 1–2 | 1.080–
1.120 | | | | | 1.028–
1.068 | | POM**
DEEP
SLP | 1–2 | 2–3 | 2–3 | 1–2 | 1.048–
1.088 | | | 1.028-
1.068 | | | | BOM*
DEEP
SLP | 1–2 | 2–3 | 2–3 | 2–3 | 0.902-
0.942 | | 0.886-
0.926 | | | | | DEEPER
SLP | 1–2 | 2–3 | 1–2 | 2–3 | 0 .810–
0.870 | 0.810-
0.870 | | | | | ^{*}Battery Optimized Mode LINEAD ^{**}Performance Optimized Mode ^{**}Performance Optimized Mode ### QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 389 HIGH EFFICIENCY NOTEBOOK CPU POWER SUPPLY