

Current Transducer HAT 200 .. 1500-S

For the electronic measurement of currents: DC, AC, pulsed,..., with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

	_			D 110 1
	Туре	Primary nominal	Primary current,	RoHS since
		current rms	measuring range ¹⁾	date code
		I _{PN} (A)	I _{PM} (A)	
	HAT 200-S	200	± 600	47143
	HAT 400-S	400	± 1200	46115
	HAT 500-S	500	± 1500	46129
	HAT 600-S	600	± 1800	46115
	HAT 800-S	800	± 2400	46115
	HAT 1000-S	1000	± 2500	46097
	HAT 1200-S	1200	± 2500	77271
	HAT 1500-S	1500	± 2500	46158
V _c	Supply voltage (±	± 5 %) ¹⁾	± 15	V
I _c	Current consump	tion	± 15	mA
Ř _{is}	Isolation resistance	ce @ 500 VDC	> 10	00 MΩ
V _{OUT}	Output voltage (A	nalog) @ ± I _{PN} , R _I =	10 kΩ, T _A = 25°C ± 4	V
R _{OUT}	Output internal re		100	Ω
R	Load resistance		> 10	kΩ

Accuracy - Dynamic performance data

X E _L V _{OE}	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ (excluding offset) Linearity error ²⁾ (0 ± I_{PN}) Electrical offset voltage @ $T_A = 25^{\circ}C$	≤±1 ≤±1 <±20	% of I _{PN} % of I _{PN} mV
V _{OH}	Hysteresis offset voltage $\widehat{\mathbf{Q}} \cdot \widehat{\mathbf{I}}_{P} = 0$,		
TCV	after an excursion of 1 x $I_{_{PN}}$ Temperature coefficient of $V_{_{OF}}$	< ± 10 < ± 1	mV mV/K
	Temperature coefficient of \mathbf{V}_{OUT} (% of reading)	< ± 0.1	%/K
t,	Response time to 90 % of $I_{_{PN}}$ step	< 5	μs
BW	Frequency bandwidth ³⁾ (- 3 dB)	DC 25	kHz

General data

T	Ambient operating temperature	- 10 + 80	°C
T	Ambient storage temperature	- 25 + 85	°C
m	Mass	300	g

<u>Notes</u>: ¹⁾ Operating at \pm 12V \leq V_c $< \pm$ 15V will reduce the measuring range

²⁾ Linearity data exclude the electrical offset

³⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.

I_{PN} = 200 .. 1500 A V_{OUT} = ± 4 V

Features

- Hall effect measuring principle
- Galvanic isolation between
 primary and secondary circuit
- Isolation voltage 3000 V
- Low power consumption
- Extended measuring range (3 x I_{PN})
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Easy installation
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Power supplies for welding applications.

Application domain

Industrial

Page 1/3

Current Transducer HAT 200 .. 1500-S

Isolation characteristics			
\mathbf{V}_{d}	Rms voltage for AC isolation test, 50 HZ, 1 min	4.9	kV
Ŷ	Impulse withstand voltage 1.2/50 µs	> 9.0	kV
		Min	
dCp	Creepage distance	9.9	mm
dCl	Clearance distance	9.9	mm
СТІ	Comparative Tracking Index (group IIIa)	275	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category III
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, \hat{V}_{w}	Rated isolation voltage	Nominal voltage
Single isolation	800 V	800 V
Reinforced isolation	400 V	300 V

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Page 2/3

Dimensions HAT 200 .. 1500-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening •

Connection of secondary

± 1 mm By base-plate or on busbar with M4 screws All slots Ø 4.5 mm Recommended fastening torque 0.75Nm ± 20% (0.6~0.9Nm) Molex 5045-04A

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- The temperature of the primary busbar cannot exceed • 100°C.

Page 3/3