STL11N65M5

Datasheet - production data

N-channel 650 V, 0.475 Ω typ., 8.5 A MDmesh[™] M5 Power MOSFET in a PowerFLAT[™] 5x5 package

Figure 1. Internal schematic diagrams

Features

Order code	V _{DS} @ T _{j max.}	R _{DS(on)} max	I _D
STL11N65M5	710 V	0.530 Ω	8.5 A

- Extremely low R_{DS(on)}
- Low gate charge and input capacitance
- Excellent switching performance
- 100% avalanche tested

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET based on MDmesh[™] M5 innovative vertical process technology combined with the wellknown PowerMESH[™] horizontal layout. The resulting product offers extremely low onresistance, making it particularly suitable for applications requiring high power and superior efficiency.

Table 1. Device summary

Order code	Marking	Package	Packaging
STL11N65M5	11N65M5	PowerFLAT [™] 5x5	Tape and reel

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data1	0
5	Revision history	3

1

Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
V _{GS}	Gate-source voltage	± 25	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	8.5	А
$I_{D}^{(1)}$	Drain current (continuous) at T _C = 100 °C	4.9	А
I _{DM} ^{(1),(2)}	Drain current (pulsed)	34	А
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} =25°C	1.35	А
I _{D(3)}	Drain current (continuous) at T _{pcb} =100°C	0.86	А
I _{DM(2),(3)}	Drain current (pulsed)	5.4	А
P _{TOT} ⁽¹⁾	Total dissipation at T_{C} = 25 °C	70	W
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _j max)	1.9	A
E _{AS}	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 50 \text{ V}$)	130	mJ
dv/dt ⁽⁴⁾	Peak diode recovery voltage slope 15		V/ns
T _{stg}	Storage temperature	EE to 150	°C
Tj	Max. operating junction temperature	- 55 to 150	°C

Table 2.	Absolute	maximum	ratings
----------	----------	---------	---------

1. Limited by maximum junction temperature

2. Pulse width limited by safe operating area.

3. When mounted on FR-4 Board of 1 inch², 2 oz Cu (t < 100 s)

4. $I_{SD} \leq 8.5 \text{ A}, \text{ di/dt} \leq 400 \text{ A/}\mu\text{s}, \text{ V}_{Peak} \leq \text{V}_{(BR)DSS}, \text{ V}_{DD} = 400 \text{ V}.$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.78	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	58.5	°C/W

1. When mounted on 1inch² FR-4 board, 2 oz Cu, t<100 sec

2 Electrical characteristics

($T_C = 25$ °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 1 mA	650			V
I _{DSS} Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 650 V			1	μΑ	
	V _{DS} = 650 V, T _C =125 °C			100	μΑ	
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 4.25 A		0.475	0.530	Ω

Table 4. On /off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	644	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	18	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0	-	2.5	-	pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 520 V, V _{GS} = 0	-	55	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$v_{\rm DS} = 0.00320$ v, $v_{\rm GS} = 0.00320$	-	17	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	5	-	Ω
Qg	Total gate charge	V _{DD} = 520 V, I _D = 4.5 A,	-	17	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	4.6	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16)	-	8.5	-	nC

1. $C_{oss eq}$ time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

2. $C_{oss eq}$ energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Мах	Unit	
t _{d (v)}	Voltage delay time	V _{DD} = 400 V, I _D = 6 A,	-	23	-	ns	
t _{r(v)}	Voltage rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$ (see <i>Figure 17</i>),	-	10	-	ns	
t _{f(i)}	Current fall time		-	13.5	-	ns	
t _{c(off)}	Crossing time	(see <i>Figure 20</i>)	-	13	-	ns	

Table 6. Switching times

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		8.5	А
I _{SDM} ⁽¹⁾ , ⁽²⁾	Source-drain current (pulsed)		-		34	А
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 8.5 A, V _{GS} = 0	-		1.5	V
t _{rr}	Reverse recovery time		-	232		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 8.5 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 17</i>)	-	2		μC
I _{RRM}	Reverse recovery current		-	17.5		А
t _{rr}	Reverse recovery time	I _{SD} = 8.5 A, di/dt = 100 A/µs	-	328		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	2.8		μC
I _{RRM}	Reverse recovery current	(see Figure 17)	-	17		А

1. Limited by maximum junction temperature

2. Pulse width limited by safe operating area

3. Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 4. Output characteristics

Figure 5. Transfer characteristics

Figure 10. Normalized gate threshold voltage vs temperature

Figure 12. Source-drain diode forward characteristics

Figure 9. Output capacitance stored energy

Figure 11. Normalized on-resistance vs temperature

Figure 13. Normalized V_{(BR)DSS} vs temperature

Figure 14. Switching losses vs gate resistance ⁽¹⁾

1. Eon including reverse recovery of a SiC diode

Test circuits 3

Figure 15. Switching times test circuit for resistive load

Figure 17. Test circuit for inductive load switching and diode recovery times

Figure 19. Unclamped inductive waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

47/

Dim.		mm		
Dini.	Min.	Тур.	Max.	
A	0.80		1.0	
A1	0.02		0.05	
A2		0.25		
b	0.30		0.50	
D		5.00		
D1	4.05		4.25	
E		5.00		
E1	0.64		0.79	
E2	2.25		2.45	
e		1.27		
L	0.45		0.75	

Table 8. PowerFLAT[™] 5x5 type S mechanical dimensions

Figure 22. PowerFLAT[™] 5x5 type S recommended footprint (dimensions are in mm)

5 Revision history

Date	Revision	Changes
09-May-2014	1	First release
29-Sep-2014	2	Updated title, features and description in cover page. Document status promoted from preliminary to production data.

Table 9. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

