N

MICROCHIP

PICkit™ 3 Debug Express
PIC18F45K20 — MPLAB® C Lessons

Note the following details of the code protection feature on Microchip devices:
. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 =

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEeLoq, KEeLoaQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,
PICKit, PICDEM, PICDEM.net, PICtail, PIC32 logo, PowerCal,
Powerlnfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Total Endurance, TSHARC, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEeL0OQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS41370C-page ii

© 2009 Microchip Technology Inc.

MICROCHIP PICkit™ 3 DEBUG EXPRESS

Table of Contents
Chapter 1. Introduction
1.1 Before Beginning the LESSONSccooiiiiiiiiiii e 7
Chapter 2. PIC18FXXXX Microcontroller Architectural Overview
2.1 Memory Organizationcccooiiiiiiiiiie e 9
2.2 Program MEMIOTYcoooiiiiieieie ettt 9
P B T = T 1Y 1= o 4T YOS 10
2.2.2 Special Function RegiSterscccvviiiiiiiiiiie e 10
2.2.3 Return Address Stackooooiiii e 10
Chapter 3. PICKit™ 3 Debug Express Lessons
3.1 Lesson 1: HEllo LED ..ot e eeans 11
3.1.1 Creating the Lesson 1 Project in the MPLAB® IDE ..o, 11
3.1.1.1 Step One: Select a deviCeccocvveeiiiiieiiiiicceeee e, 11
3.1.1.2 Step Two: Select a language toolsuiteccccooieeiiiiinennne 12
3.1.1.3 Step Three: Create a new projectcooooiiiiiiiiieeeeeeeeeiee 13
3.1.1.4 Step Four: Add existing files to your projectccccccvviiieennns 13
3.1 1.5 SUMMANY et e e e e e e 14
3.1.2 Exploring the Lesson 1 Source Codeccoccvvviiiiiiiiee e 16
3.1.3 Building and Programming the Lesson 1 Codecccccceevviiiiiiiiiieeeeeeennn. 18
3.2Lesson 2: BIINK LEDcoovmuiiii e e 21
3.2.1 Opening the Lesson 2 Project and Workspace in the MPLAB IDE 21
3.2.2 Defining Configuration Bit Settings in the Source Codecccceevvrunneenn. 21
3.2.3 Exploring the Lesson 2 Source Codecooceieeiiiiiieeeniiiieee e 23
3.2.4 Build and Program the Lesson 2 COdecocceeeiiiiiiiiii i 24
3.3 Lesson 3: Rotate LEDoouvniiiiii e 25
3.3.1 Allocating File Register MemOrycooooiiiiiiiiiiiiee e 25
3.3.2 Allocating Program MEMOIYcceiiiiiiiiiiiiiiiiiieiee e 26
3.3.3 Exploring the Lesson 3 Source Codecoooiiiiiiiiiiiiieeee e 27
3.3.4 Build and Program the Lesson 3 Codeoooiiiiiiiiiiiiiiieiiieee e 28
3.4 Lesson 4: SWiItCh INPULouviiiiiiiiieeeeeee e 29
3.4.1 Files and the #define DIreCtiveccccviiiiiiiii e 29
3.4.2 SWitch DEDOUNCINGeeiiiiiiiiiie it 30
3.4.3 Exploring the Lesson 4 Source Codeooocuiiiiiiiiiiieiniiieee e 30
3.4.3.1Variables ... 31
3.4.3.2 SWItCh INPUL «..ooiiii e 31
3.4.3.3 Rotating the LEDScoovvmiiiiieiceeeeeee e 32
3.4.4 Build and Program the Lesson 4 Codeccccccviiiiieeieeeeei e 32
3.5 Lesson 5: USiNg TIMEI0cooooiiiiiiiiiiiiiiee et 33
3.5.1 The PIC18F45K20 Timer0 Modulecccoccieiiiiei e 33
3.5.2 Exploring the Lesson 5 Source Codeooccvvviiiiiiiieecce e 35
3.5.3 Build and Program the Lesson 5 Codecccccvviiiiieeiece i, 36
3.5.4 Assigning the Timer0 PrescCaleroocvveiiiiiiiiiiiiee e 36

© 2009 Microchip Technology Inc. DS41370C-page iii

PICKit™ 3 Debug Express

3.6 Lesson 6: Using PICKit 3 Debug EXPressccccoiiiiiiiiieiiiiniiiiieeeee e 37
3.6.1 Resources Reserved by the PICkit 3 Debug Expressoccccoieeeeennn. 37

3.6.1.1 General RESOUICEScocoiiiiiiiiiiiiiee e 37

3.6.1.2 Program and Data Memory Resourcesccccccceveeeeeciincnnennnn. 37

3.6.2 Selecting PICkit 3 as a Debugger in the MPLAB IDEccccvvvvveeeennn.. 38

3.6.3 Basic Debug Operationsccooiiiiiiiiiiiiiie e 38

3.8.3.1 Halt oo 38

3.8.3.2 SEP eriiei i 39

3.6.3.3 RUN oo 39

3.6.3.4 RESEL ..o 39

3.6.4 USIiNg Breakpointscccccoiiiiiiiiie e e 40

3.6.5 Watching Variables and Special Function Registerscccccooiiiie. 43

3.7 Lesson 7: Analog-to-Digital Converter (ADC)cooviiiiiiiiieeeeiiiiiieieeeee e 45
3.7.1 PIC18F45K20 ADC BaSICS ...ecviiiiiiiiiieeiiiiiiie e eiiiiee et ee et snieee e e e 45

3.7.2 ADC Configuration and Operationccccoviiiieiiiiiiieee e 45

3.7.3 Exploring the Lesson 7 Source Codecccoviuiieiiiiiiieeiiiiiieee e 48

3.7.4 Build and Run the Lesson 7 Code with PICkit 3 Debug Express 48

3.8 Lesson 8: INterruptsccceeveeiiiie e 49
3.8.1 PIC18FXXXX Interrupt Architecture ..., 49

3.8.2 Exploring the Lesson 8 Source Codecoooviiiiiiiiiiiiiiiiieee e 50

3.8.3 Build and Run the Lesson 8 Code with PICkit 3 Debug Express 53

3.9 Lesson 9: Internal OSCIllatoroovvviviiiiee e 54
3.9.1 The Internal Oscillator BIOCKeueiiiiiiiiae e 54

3.9.2 Configuring the Internal OsCillator ..o 55

3.9.3 Exploring the Lesson 9 Source Codecccoviiiieiiiiiiieei e 57

3.9.4 Build and Run the Lesson 9 Code with PICkit 3 Debug Express 57

3.10 Lesson 10: Using Internal EEPROM ... 58
3.10.1 Reading a data byte from EEPROMcccoiiiiii e 58

3.10.2 Writing a data byte to EEPROMcooiiiiiiiiieee e 59

3.10.3 Exploring the Lesson 10 Source Codecooccvviiiieeiieeeieeecciireeeeenn. 60

3.10.4 Build and Run the Lesson 10 Code with PICkit 3 Debug Express 60

3.11 Lesson 11: Program Memory Operationsccccvueeveieiiiniiiiieieeeeeeees 61
3.11.1 Erasing and Writing Flash Program Memoryccccccoiiiiiiiiiiiiienenenn. 63

3.11.2 Protecting Program Memory in the Configuration Bits.ccccccccceeeene 65

3.11.3 Exploring the Lesson 11 Source Code with PICkit 3 Debug Express 66

3.12 Lesson 12: Using the CCP Module PWM ... 68
3121 PWM OVEIVIEW ...ttt e e e e e e e e e e e e e e e e annnneeeeeeeas 68

3.12.2 Using the CCP ModUIEcccoiiiiiiiiiiiiiee et 68

3.12.3 Exploring the Lesson 12 Source Codecooccvviiiieeiieeeee e 71

3.12.4 Build and Run the Lesson 12 Code with PICkit 3 Debug Express 72

Appendix A. Schematics

DS41370C-page iv © 2009 Microchip Technology Inc.

MICROCHIP PICkit™ 3 DEBUG EXPRESS

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
PICKit™ 3 Debug Express. Items discussed in this chapter include:

* Document Layout

» Conventions Used in this Guide

* Warranty Registration

* Recommended Reading

* The Microchip Web Site

» Development Systems Customer Change Notification Service

» Customer Support

* Document Revision History

DOCUMENT LAYOUT

This document describes how to use the PICkit™ 3 Debug Express as a development
tool to emulate and debug firmware on a target board. The manual layout is as follows:

» Chapter 1. “Introduction” — establishes the 12 PICkit 3 Debug Express Lessons
and describes the prerequisites before beginning the lessons.

* Chapter 2. “PIC18FXXXX Microcontroller Architectural Overview” —is an
overview of the PIC18FXXXX microcontroller architecture.

» Chapter 3. “PICKit™ 3 Debug Express Lessons”— describes the 12 PICkit 3
Debug Express Lessons in detail.

» Appendix A. “Schematics” — illustrates the schematic for the PICkit 3 Debug
Express 44-pin Demo Board with PIC18F45K20.

© 2009 Microchip Technology Inc. DS41370C-page 1

PICKit™ 3 Debug Express

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

| Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User'’s Guide

Emphasized text

...Is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

A tab

Click the Power tab

N‘Rnnnn

A number in verilog format,
where N is the total number of
digits, Ris the radixand n is a
digit.

4'b0010, 2'hF1

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Courier New

Sample source code

#define START

Filenames autoexec.bat

File paths c:\mccl8\h

Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New

A variable argument

file.o, where file can be
any valid filename

Square brackets []

Optional arguments

mccl8 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]|1}

Ellipses...

Replaces repeated text

var name [,
var_name...]

Represents code supplied by
user

void main (void)
{
}

DS41370C-page 2

© 2009 Microchip Technology Inc.

Preface

WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.
Sending in the Warranty Registration Card entitles users to receive new product
updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user's guide describes how to use PICkit™ 3 Debug Express. Other useful docu-
ments are listed below. The following Microchip documents are available and recom-
mended as supplemental reference resources.

Readme for PICkit™ 3 Debug Express

For the latest information on using PICkit™ 3 Debug Express, read the “Readme for
PICkit™ 3 Debug Express.txt”file (an ASCII text file) in the Readmes subdirec-
tory of the MPLAB IDE installation directory. The Readme file contains update informa-
tion and known issues that may not be included in this user’s guide.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in
the Readmes subdirectory of the MPLAB IDE installation directory. The Readme files
contain update information and known issues that may not be included in this user’s
guide.

© 2009 Microchip Technology Inc. DS41370C-page 3

PICKit™ 3 Debug Express

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

» Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

» General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

» Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers; MPASM™
and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB LIB30 object librarians.

* Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

* In-Circuit Debuggers — The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

« MPLAB® IDE — The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager
and general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® Il device programmers and the PICSTART®
Plus and PICkit™ 1 development programmers.

DS41370C-page 4 © 2009 Microchip Technology Inc.

Preface

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

+ Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)
» Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http:/support.microchip.com

DOCUMENT REVISION HISTORY
Revision A (January 2009)

* |nitial Release of this Document.

Revision B (January 2009)

» Revised document title; changed references from C18 to C compiler throughout
document.

Revision C (April 2009)
» Revised Appendix A: Schematic.

© 2009 Microchip Technology Inc. DS41370C-page 5

PICKit™ 3 Debug Express

NOTES:

DS41370C-page 6 © 2009 Microchip Technology Inc.

MICROCHIP PICkit™ 3 DEBUG EXPRESS

Chapter 1. Introduction

The following series of lessons covers the basics of developing applications for the
Microchip PIC18 series of microcontrollers. Working with the MPLAB® IDE, MPLAB®
C Compiler for the PIC18, and the PICkit™ 3 Development Programmer/Debugger is
introduced in a series of lessons that cover fundamental microcontroller operations,
from simply turning on an LED to creating Interrupt Service Routines.

All lessons can be completed with the freely available MPLAB C18 Student Edition
compiler in the freely available Microchip MPLAB Integrated Development
Environment. The lesson files may be installed from the included CDROM.

Please note that these lessons are not intended to teach the C programming language
itself, and prior familiarity with the C language is a prerequisite for these lessons.
PICkit 3 Debug Express Lessons

- Lesson 1: Hello LED (Turn on LED)

- Lesson 2: Blink LED

- Lesson 3: Rotate LED (Turn on in sequence)

- Lesson 4: Switch Input

- Lesson 5: Using TimerQ

- Lesson 6: Using PICkit 3 Debug Express

- Lesson 7: Analog-to-Digital Converter (ADC)

- Lesson 8: Interrupts

- Lesson 9: Internal Oscillator

- Lesson 10: Using Internal EEPROM

- Lesson 11: Program Memory Operations

- Lesson 12: Using the CPP Module PWM

Appendix A. “Schematics”: Schematic for PICkit 3 Debug Express 44-pin Demo
Board with PIC18F45K20.

1.1 BEFORE BEGINNING THE LESSONS
Please ensure the following files and software has been installed on your PC before
beginning:
1. MPLAB IDE version 8.20 or later.

2. MPLAB C Compiler for the PIC18 v3.13 or later. The Student Edition may be
used.

When Installing MPLAB C Compiler, please be sure to select the following options, as
shown in Figure 1-1.

Add header file path to MCC_INCLUDE environment variable

Update MPLAB IDE to use this MPLAB C18

Place Link to documentation for this compiler in MPLAB IDE Help Topics
3. The PICkit 3 Debug Express Lessons files.

© 2009 Microchip Technology Inc. DS41370C-page 7

PICKit™ 3 Debug Express

FIGURE 1-1: MPLAB C COMPILER INSTALLATION CONFIGURATION OPTIONS

A Configuration Options

I I et Bl bl Bm el Bt bow 108 dlincond
wrraeerd winable Corfigaton ol

[T Al WFLAR 78 o FPATH sevavcriment veabis

[T A WPARY o PWTH sresanfend vt

Al heacke e path b MCE_INCLUDE errdicomet varidle

[ety PATH it WOC IRCLTIDE sasnbling bor il i

Fhpration Dplinmm

It il i bl I7et Ehpcichiomns on e discond WIPLAE
IDE comibgua won opton.

W Ugadas HPLAS IDE o vow b HPLABCTE
I Lipcnte MPLAB IDE b use fhis MPLINK Linkes
HELIE e, anwd MPS S M A

= Plnca ek i cecmend waor b Bt cotpded 0
HPLARIDE Hely Tooas

i Parferm EUAN 1D upeaien bre ol isard

© fach Hee Carenl

DS41370C-page 8

© 2009 Microchip Technology Inc.

MICROCHIP PICkit™ 3 DEBUG EXPRESS

Chapter 2. PIC18FXXXX Microcontroller Architectural
Overview

This section provides a simple overview of the PIC18FXXXX microcontroller
architecture.

2.1 MEMORY ORGANIZATION

The PIC18FXXXX microcontrollers are Harvard architecture microprocessors, mean-
ing that program memory and data memory are in separate spaces. This allows faster
execution as the program and data busses are separate and dedicated, so one bus
does not have to be used for both memory types. The return address stack also has its
own dedicated memory.

2.2 PROGRAM MEMORY

The program memory space is addressed by a 21-bit Program Counter (PC), allowing
a 2 Mb program memory space. Typically, PIC18FXXXX microcontrollers have on-chip
program memory in the range of 4K to 128 Kbytes. Some devices allow external
memory expansion.

At Reset, the PC is set to zero and the first instruction is fetched. Interrupt vectors are
at locations 0x000008 and 0x000018, so a GOTO instruction is usually placed at
address zero to jump over the interrupt vectors.

Most instructions are 16 bits, but some are double word 32-bit instructions. Instructions
cannot be executed on odd numbered bytes.

These are some important characteristics of the PIC18C architecture and MPLAB C
Compiler capabilities with reference to program memory:

MPLAB C Compiler Implementation

Refer to the “MPLAB C18 C Compiler User’s Guide” (DS51288) for more information
on these features.

* Instructions are typically stored in program memory with the section attribute
code.

» Data can be stored in program memory with the section attribute romdata in con-
junction with the rom keyword.

* MPLAB C Compiler can be configured to generate code for two memory models,
small and large. When using the small memory model, pointers to program mem-
ory use 16 bits. The large model uses 24-bit pointers.

PIC18 Architecture

In some PIC18XXXX devices, program memory or portions of program memory can be
code-protected. Code will execute properly but it cannot be read out or copied.

Program memory can be read using table read instructions, and can be written through
a special code sequence using the table write instruction.

© 2009 Microchip Technology Inc. DS41370C-page 9

PICKit™ 3 Debug Express

2.2.1 Data Memory

Data memory is called “file register” memory in the PIC18XXXX family. It consists of up
to 4096 bytes of 8-bit RAM. Upon power-up, the values in data memory are random.
Data is organized in banks of 256 bytes, requiring that a bank (the upper 4 bits of the
register address) be selected with the Bank Select Register (BSR). Special areas in
Bank 0 and in Bank 15 can be accessed directly without concern for banking. These
special data areas are called Access RAM. The high Access RAM area is where most
of the Special Function Registers are located.

When using MPLAB C Compiler, this banking is usually transparent, but the use of the
#pragma varlocate directive tells the compiler where variables are stored, resulting
in more efficient code.

Uninitialized data memory variables, arrays and structures are usually stored in
memory with the section attribute, udata. Initialized data can be defined in MPLAB C
Compiler so that variables will have correct values when the compiler initialization
executes. This means that the values are stored in program memory, then moved to
data memory on start-up. Depending upon how much initialized memory is required for
the application, the use of initialized data (rather than simply setting the data values at
run time) may adversely affect the efficient use of program memory. Since file registers
are 8 bits, when using variables consideration should be made on what is the best
datatype to define them as. For example, when a variable value is not expected to
exceed 255, defining it as a char instead of an int will result in smaller, faster code.

2.2.2 Special Function Registers

Special Function Registers (SFRs) are CPU core registers (such as the Stack Pointer,
STATUS register and Program Counter) and include the registers for the peripheral
modules on the microprocessor. The peripherals include such things as input and
output pins, timers, USARTs and registers to read and write the EEDATA areas of the
device. MPLAB C Compiler can access these registers by name, and they can be read
and written like a variable defined in the application. Use caution, though, because
some of the Special Function Registers have characteristics different from variables.
Some have only certain bits available, some are read-only and some may affect other
registers or device operation when accessed. These registers are mapped to
addresses in Bank 15 of the data memory.

2.2.3 Return Address Stack

CALL and RETURN instructions push and pop the Program Counter on the return
address stack. The return stack is a separate area of memory, allowing 31 levels of
subroutines.

The CALL/RETURN stack is distinct from the software stack maintained by MPLAB C
Compiler. The software stack is used for automatic parameters and local variables and
resides in file register memory as defined in the Linker Script.

DS41370C-page 10 © 2009 Microchip Technology Inc.

MICROCHIP PICkit™ 3 DEBUG EXPRESS

Chapter 3. PICkit™ 3 Debug Express Lessons

Connect the PICkit™ 3 Programmer/Debugger to a PC USB port, and connect the
demo board to the PICkit via header P1, labeled ICSP™.

3.1 LESSON 1: HELLO LED

This first lesson shows how to create a MPLAB C compiler project in the MPLAB® IDE
and turn on a demo board LED using the PIC18F45K20.

Key Concepts
- Use the MPLAB IDE Project Wizard to create a new project for a microcon-
troller.
- The TRISx Special Function Registers (SFRs) are used to set microcon-
troller port I/O pin directions as inputs or outputs.
- The LATx SFRs are used to set microcontroller port output pins to a high or
low state.

3.1.1 Creating the Lesson 1 Project in the MPLAB® IDE

Begin by opening the MPLAB IDE from the desktop shortcut icon:

To create project, use the MPLAB IDE Project Wizard by selecting the menu Project >
Project Wizard.... The Project Wizard “Welcome!” dialog is shown. Click Next to
continue.

3.1.1.1 STEP ONE: SELECT A DEVICE

In the Project Wizard dialog, select PIC18F45K20 as the target device in the dropdown
box, as shown in Figure 3-1, and click Next to continue.

© 2009 Microchip Technology Inc. DS41370C-page 11

PICKit™ 3 Debug Express

FIGURE 3-1: WIZARD STEP ONE: SELECT PIC18F45K20 DEVICE

Project Wizard §|

Step One: r“
Select a device

Device:

FIC18F45k.20 v

[< Back ” Mewut » l’ Canhcel]’ Help

3.1.1.2 STEP TWO: SELECT A LANGUAGE TOOLSUITE

This PIC18F microcontroller project will be in C, so select the “Microchip C18 Toolsuite”
from the “Active Toolsuite:” dropdown box, as shown in Figure 3-2. Click Next to
continue.

FIGURE 3-2: WIZARD STEP TWO: SELECT TOOLSUITE

Project Wizard

Step Two:
Select a language toolzuite

Active Toolsuite: | Microchip C18 Toolzuite w |

Toolzuite Contents

MPASM Szzembler [mpasmwin, exe] S
FPLIME. Object Linker [mplink. exe] —
MPLAE I_:'I a E Eu:ump_iler [moc1 8 exe) "
Location
|:3:"-.F'r|:u:|rarr| Filez\MicrochiphhPAS M Suitehbd PAzmitin. exe | [Browse...
[] 5tare tool locations in project
[Help! My Suite lan't Listed!] [] 5how all installed toolsuites

[¢ Back ” Meut >][Cancel][Help

DS41370C-page 12 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.1.1.3 STEP THREE: CREATE A NEW PROJECT

Create the project file in the existing directory for Lesson 1.

Browse to the directory folder C: \Lessons\PICkit 3 Debug Express
Lessons\01 Hello LED and name the project Lesson 1 LED. Save the project and
then click Next to continue, as shown below in Figure 3-3.

FIGURE 3-3: WIZARD STEP THREE: CREATE A NEW PROJECT

Project Wizard

Step Three: %
Create a new project, or reconfigure the active project? /{'@}

(%) Create Mew Project File

C:hLeszonz \PICkit 3 Debug Express Leszonz\01 Hello LEDLeszsor

(") Reconfigure Active Project

¢ Back][Meut »][Cancel][Help

3.1.1.4 STEP FOUR: ADD EXISTING FILES TO YOUR PROJECT

This dialog allows any existing source or other files to be added to the project. Note that
it is also possible to add new files to the project after it has been created. In the left
pane, select the 01 Hello LED.c file in the project directory from Step Three and
click Add. The file will now show up on the right pane of the Dialog window, as shown
in Figure 3-4. Click Next to continue.

© 2009 Microchip Technology Inc. DS41370C-page 13

PICKit™ 3 Debug Express

FIGURE 3-4: WIZARD STEP FOUR: ADD EXISTING FILES

Project Wizard

Step Four:

B
A,dd exigting files bo wour project %f.:@}

PICkit 3 Debug Express Lessons A C:h\Lezzonz\PICkit 3 Debug E=pre
1 01 Hella LED

1 Hello LED ¢
(] 02 Blink LED
(] 03 Rotate LED
1 04 Switch Input
] 05-06 Timer-Debug
[07 aDbC
] 08 Intemupts
1 09 Intemal Qscillator

(1 10 Using EEPROM

[0 11 Program Memory bt
< » £ »

< Back][Mest »]’ Cancel][Help

3.1.1.5 SUMMARY

In the final Wizard Dialog window, verify the project parameters and click Finish. To
view the Project window in the MPLAB IDE, select from the menu View>Project.

The Project window (see Figure 3-5) shows the workspace file name (Lesson 1
LED.mcw) in the title bar, and the project file (Lesson 1 LED.mcp) at the top of the
file tree view. A workspace file keeps track of what files and windows are open, where
the windows are located in the MPLAB IDE workspace, what programmer or debugger
tools are selected and how they are configured, and other information on how the
MPLAB IDE environment is set up. A project file keeps track of all the necessary files
to build a project, including source and header files, library files, Linker Scripts, and
other files.

As shown in Figure 3-5, the Lesson 1 LED project currently contains only one source
file, 01 Hello LED.c, which was added in the Project Wizard.

DS41370C-page 14 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-5: THE PROJECT WINDOW

M | esson 1 LED.mocw Bﬁlgl

= D Lesson 1 LED.mcp
.1 Source Files
01 Hello LED.c
[Header Files
Ea CObject Files
3 Library Files
[Linker acripk
(L1 other Files

.........................

(] Files @'I;‘!.’ Syrbals

To complete the project setup, we will add a Linker Script and microcontroller header
file to the project. A Linker Script is required to build the project. It is a command file for
the linker, and defines options that describe the available memories on the target
microcontroller. There are four example linker files for the microcontroller:

18f45k20.1kr Basic Linker Script file for compiling a memory image in
non-extended processor mode. (More on the Extended mode in a
later lesson.)

18f45k20_e.lkr Linker Script file for compiling using Extended mode.
18£f45k20i.1kr Linker Script file for use when debugging. These Linker Scripts

prevent application code from the using the small areas of memory
reserved for the debugger.

18£45k20i_e.lkr Linker Script file for debugging in Extended mode.

Add the Linker Script by selecting menu Project > Add files to project.... In the “Files of
type” dropdown box, select “Linker Scripts (*.1kr)” as shown in Figure 3-6. Browse
to the Linker Scripts directory c: \MCcCc18\1kr and open the 18£45k201i . 1kr file as
the debugger will be used in later lessons.

Files can also be added by right-clicking in the Project window. Right-click on the
“Header Files” folder and select Add Files... from the pop-up menu. Browse to the
MPLAB C header file directory C: \McCc18\hand open the p18£45k20.h header file.
The Project window now looks like Figure 3-7.

It is important to note that the file selected in the directory it resides in will be added to
the project, so modifying it will modify the original file. If this is not desired, open the file
and use File > Save As... to save a new copy in the current project directory and then
add the new file to the project. As a final step use File > Save Workspace to save the
project and its working environment.

© 2009 Microchip Technology Inc. DS41370C-page 15

PICKit™ 3 Debug Express

FIGURE 3-6: ADD FILES TO PROJECT
Add Files to Project \d
Look ir: | 9 ke vl Q + - @

4] 18242 Ir [14] 1@ea0ti ke [i4] 1eFediimidle 4] 18fesitoide (4]
|14 18czs2.Ikr [14] 18ca58 ke [i4] 18fz4ii0i_e ke |4]18f2si0 el [14]:
| 18442 r [1af1aks0e 9] 1efz4kende [)1Efeske0lke (4]
4] 18ca52.Ir [181 3kE0_e ke |19 18F2ake0_e ke 1] 18F2ske0_edke [1]:
|14 18801, Ikr [9] 1aFikmne 9] 1ofzekenike [)1GF2Skz0Le (4]
4] 18ce0ti ke [9] 1af14km0_e ke |9]18F24keni_edkr [19]18F25k20i_e ke [4]
|14 18ees8. Ikr |9 1afz4100ke [9)18fzsito0ke [9)1efzskzolke (4]
4] 18801, Ikr [9] 1afz4i10 e |9)18F25i0_ e ke [14]18F28k20 e ke [4]:
24))
File name: | | [Open]
Filez of type: | Linker Scriptz [".kr) w | [Cancel]
Jump to: | Project Directary “ |

[Remember this zetting

(&) Auta: Let MPLAB IDE guess

() User: File{z) were created especialy for this project, uze relative path

() System: File(z] are external to project, use abzolute path

FIGURE 3-7: NEW PROJECT FILES

M [esson 1 LED.mow

= 1 Lesson 1 LED.mcp
I:‘,' [Source Files
.[£] o1Helo LED.c
= [Header Files

- [B] piafaskzo.h

(1 Object Files
i Library Files
= [Z3 Linker Script
[1sf4ska0i ke
..[1] other Files

4 |

] Fies | % Symbols |

E

Select Project > Save Project to save the new project configuration.

3.1.2

Exploring the Lesson 1 Source Code

Double-click the 01 Hello LED.c source file name to open the lesson source code

file in an MPLAB IDE editor window.

DS41370C-page 16

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-8:

LESSON 1 “HELLO LED” SOURCE CODE

/¥* ¢ O N F I G U R A T I O N

#pragma config FOSC = INTIO67
#pragma config WDTEN = OFF, LVP = OFF

i

e ok ok ok ok ok ok ok ok ok ok ok Sk ok ok sk ok ok ok ok ko ko k ko k ok k ko kk ok ok ok k ok k ok kK /

ek ok ok ok ok ok ok ok ok ok ok ok Sk ko k ok ok ko k k ok ok ok k ok kk ok k ok ok ok k ok ok k ok /

to output (0); Dbits 6:0 are
register bit 7 to

/¥* I N C L U D E 8

#include "p18f45K20.h"

/¥* D E C L A R A T I O N s

void main (void)

{
TRISD = 0b01111111;// PORTD bit 7
LATDbits.LATD7 = 1;// Set LAT
while (1)

B I T S

ok k[

inputs (1)
turn on LED

When this code is built, programmed into the PIC18F45K20 microcontroller and
executed, it will turn on the LED connected to I/O pin RD7 by driving the pin high. Let’s
discuss the elements of the code that makes this happen:

#pragma config

#include

TRISD

LATDbits.LATD7

while (1)

Pragma is a directive that has meaning for a specific compiler.
It is used in MPLAB C with attributes to convey
implementation-dependent information to the compiler. Here it
is used with the conf ig directive, which defines the states of
the PIC18FXXXX Configuration bits. This will be discussed in
more detail in Lesson 2.

The p18£45k20.h file is included as this device-specific
header file contains definitions for the variables used to
access the Special Function Registers (SFRs) of the
microcontroller. Some useful macros such as Nop () and
ClrWdt () are also defined in this header.

This variable is used to access the SFR of the same name,
and is defined in the included microcontroller header file
pl8£f45k20.h. The TRIS (tri-state) registers are used to set
the directions of the pins in the associated I/O port, in this
case pins RDO to RD7. A TRISD bit value of ‘0’ sets the pin to
an output. A value of ‘1’ sets a pin to be an input. With the
binary value of 0b01111111 we set RD7 to an output and
RD6-RDO to inputs.

The LATDbits struct is also defined in p18£45k20.h and
gives access to the individual bits in the LATD SFR. (There is
also a TRISDbits struct for accessing bits of TRISD, and a
LATD variable defined to access the entire byte-wide register.)
The LATD (latch) register is used to set the output state of the
RD7-RDO pins. A bit value of ‘1’ sets an output pin to a high
state. Bits for pins defined in the TRIS register as inputs do not
have an effect. Setting LATDbits.LATD7 = 1 will outputa
high level on RD7, turning on LED 7 on the demo board.

In this case of code running on an embedded microcontroller,
there is no operating system to return to when the code
finished executing. Therefore, an infinite C while loop is
used to keep the microcontroller running and prevent it from
exiting main () and trying to execute undefined memory
locations.

© 2009 Microchip Technology Inc.

DS41370C-page 17

PICKit™ 3 Debug Express

FIGURE 3-9:

3.1.3 Building and Programming the Lesson 1 Code

Build the lesson code in an executable memory image by selecting Project > Build All
in the MPLAB IDE. The memory image is stored in a .hex file in the project directory.

The results of the build will be shown in the Output window in the MPLAB IDE
workspace under the Build tab. The calls to the MCC18 compiler and Linker are
shown, along with any errors that may occur. If the build is successful, the Output
window will show BUILD SUCCEEDED, as in Figure 3-9.

MPLAB IDE OUTPUT WINDOW BUILD RESULTS

Thu Jan 15 100052 2009

Clean Dong

Execufing
HELINE 4 Linkesr

Figlrese build of project ' CiLessons\FICk 1 Debug Express Lessanail Hollo LECALesson | LED mcp” startid

Clrman Dinletrg imermadiany and oufput fles

Clean Deleled He "Chllessons\FICka J Detneg Express Lessonsil Hello LECVIN Hello LED .o®
Clean: Delgted #e "ChiLossons\PICkR 1 Debug Evpress Lesconeill] Hello LECALesson 1 LED cof®
Clean Deleted He "ClLessons\FICEA J Debweg Express Lessons\lll Hello LEDWL.esson 1 LED hes®

Exvacusing: "CAMOCT Mbinimec B ewa® -ps1AF45E20 %01 Mallo LED c* £0s*01 Helo LED o <0w--Cie =0 ke -0 p=-0r= -0d--0pa-
SCAWICET Bbntrnplinl. oo ® ACWCTTE R * 4 4 irnce T RBATESE0 B °01 Hello LED 0" fr__MFLAB_BURL D=1 /o*Lesson 1 LED.col® M°Lesson 1 LEDmap™ /W

Buakd | Visiaon Cavinal | Fisdin Pt | PICKE 2

Thu Jan 15 THAO854 2009

Copyright {c) EDST-H:::a:h:p Technology Inc

Errore]

HPZHEK 4.13. COFF o HEX File Converter

Coperight (e} 07 Hicrochip Technology T

Errors]

Londed CilessaniPICk 3 Cabug Evprasa Lessans\01 Halls LECALesson T LED el

Felesce build of poject "L escons\FICke 1 Debug Express Lessansiiil Mallo LEDALssson | LED mop® succeaded

HUILD SUCCEEDED

Note: If an error that the include file p18f45k20.h cannot be found is generated,
this usually means that MPLAB C was installed without checking the Add
header file path to MCC_INCLUDE environment variable option during
setup. It is recommended to re-install MPLAB C with this option checked.

To program the code into the PIC18F45K20 microcontroller, the PICkit 3
Programmer/Debugger is used. Select the PICkit 3 as a programmer in the MPLAB IDE
with Programmer > Select Programmer > 4 PICKit 3.

This will create a new tab in the Output window for the PICkit 3 programmer, where
messages from the programmer are displayed. The PICkit 3 will be initialized and
should report finding the PIC18F45K20 microcontroller on the demo board as shown
in Figure 3-10A.

The PICkit 3 must be configured to supply power to the demo board, if not, the PICkit
3 will not see the target (as evidenced by the error message in Figure 3-10A). Use
Programmer > Settings... to display the window appearing shown in Figure 3-10B.
Navigate to the Power tab and use the slider bar to set the output voltage to 3.25V,
check the box labeled “Power target circuit from PICkit 3” and press the OK button.
Once power to the target is enabled, the device ID of the PIC18F45K20 will be
displayed (last line in Figure 3-10A).

DS41370C-page 18

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-10A: OUTPUT WINDOW PICKit 3 PROGRAMMER

o=1E3

Build || Wersion Contral | Find in Files | PICKit 3

FICkit 3 detected

Connecting to FICkit 3...

Firrmware Suite Wersion...... 01.22.13

Firmware type FIC18F

FICkit 3 Connected.

FEIEQ045: You must connect to a target device to use PICKIt
3

Dewvice ID Rewision = 00000011

FIGURE 3-10B: PICkit 3 PROGRAMMER POWER SUPPLY

Ik 3 San 21%|

Progeam Memory | Conbguiston | Slatus | Power

[+] Piowrest Ranget: cincust Froem PICKE 3

Vikage

3%

[o][concn |

Program the built code into the PIC® microcontroller by selecting menu Programmer >
Program. The results of the programming operation will appear in the Output window
as shown in Figure 3-11.

Congratulations! You have created, built, programmed, and executed your first
Microchip PIC18F project!

© 2009 Microchip Technology Inc. DS41370C-page 19

PICKit™ 3 Debug Express

FIGURE 3-11: OUTPUT WINDOW PICKit 3 PROGRAMMING RESULTS

B Output

Build || Wersion Contral | Find in Files | PICKit 3

FICkit 3 detected

Connecting to FICkit 3.

Firrrvware Suite Yersion.. 01,2213
Firrmwrare type.. FICT18F
FICkit 3 Connected.

3.
Dewvice ID Bevision = 00000011

Frogramrming...
Frogramming/erify complete

FEIEQ045: You must connect to a target device to use PICKt

Note: If an error occurs during programming, consult the PICkit 3 help file in the
MPLAB IDE. Select Help > Topics... then under the “Programmers” head-
ing select “PICki t 3 Programmer” and click OK. On the Contents tab,
select the “Troubleshooting” section for information.

DS41370C-page 20

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.2 LESSON 2: BLINK LED

This lesson discusses the Configuration bits of the PIC18FXXXX microcontrollers and
how to setthem in an MPLAB C source file. It also presents using a library function and
shows how delays can be used to blink an LED on the demo board.

Key Concepts
- Open existing project work spaces by selecting File > Open Workspace...
in the MPLAB IDE.

- Configuration bits are special purpose fuse bits that set PIC microcontroller
modes of operation and enable or disable microcontroller features.

- A number of libraries are included with the MPLAB C compiler with
predefined and compiled functions. The “MPLAB C18 C Compiler Libraries”
document (DS51297) provides detailed information on all included libraries.

- Delays can be created to time events by using software loops.

3.21 Opening the Lesson 2 Project and Workspace in the MPLAB
IDE

This and the remaining lessons already have a project and workspace defined. To open
the workspace for Lesson 2, select menu File > Open Workspace... in the MPLAB IDE.
Browse to the directory C:\Lessons\PICkit 3 Debug Express Lessons\02
Blink LED and openthe 02 Blink LED.mcw file.

Before opening the new workspace, the MPLAB IDE will prompt you to save the current
workspace. It is generally a good idea to click Yes. Afterwards, the new workspace and
project for Lesson 2 will open.

3.2.2 Defining Configuration Bit Settings in the Source Code

Configuration bits are fuses in the PIC18FXXXX microcontrollers that are programmed
along with the application code to set up or “configure” different microcontroller
operating modes and enable or disable certain microcontroller features. For example,
in the PIC18F45K20 the Configuration bits select such features as which oscillator
option to use, whether the processor runs in Traditional or Extended mode; whether to
use the Brown-out Reset circuit and which voltage to trip at; whether the Watchdog
Timer is enabled or disabled and which options to use, and if the Flash memory
code-protect feature is enabled, among many other options.

Note that some features, such as the Watchdog Timer, can be configured so that it may
be enabled or disabled by software in the Special Function Registers while the
application code is executing. For detailed descriptions and information on the
PIC18F45K20 Configuration bits, see Section 23.1 “Configuration Bits” in the data
sheet, under the section heading 23.0 “Special Features of the CPU".

In the Lesson 2 source code, all Configuration bits are defined at the top of the 02
Blink LED. c file, as shown in Figure 3-12.

© 2009 Microchip Technology Inc. DS41370C-page 21

PICKit™ 3 Debug Express

FIGURE 3-12:

LESSON 2 “BLINK LED” CONFIGURATION BIT DEFINITIONS

/** C ON F I

G U R AT I O N B I T s

ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Sk ok ok ok ok ok ok ok ok ok /

#pragma config FOSC = INTIO67, FCMEN = OFF, IESO = OFF // CONFIGLlH
#pragma config PWRT = OFF, BOREN = SBORDIS, BORV = 30 // CONFIG2L
#pragma config WDTEN = OFF, WDTPS = 32768 // CONFIG2H
#pragma config MCLRE = OFF,LPT10SC = OFF, PBADEN = ON, CCP2MX PORTC // CONFIG3H
#pragma config STVREN = ON, LVP = OFF, XINST = OFF // CONFIG4L
#pragma config CPO = OFF, CP1 = OFF, CP2 = OFF, CP3 = OFF // CONFIG5L
#pragma config CPB = OFF, CPD = OFF // CONFIGS5H
#pragma config WRTO = OFF, WRT1 = OFF, WRT2 = OFF, WRT3 // CONFIG6L
#pragma config WRTB = OFF, WRTC = OFF, WRTD = OFF // CONFIG6H
#pragma config EBTRO = OFF, EBTR1 = OFF, EBTR2 = OFF, EBTR3 OFF // CONFIG7L
#pragma config EBTRB = OFF // CONFIG7H
The Configuration bits are defined using the #pragma config directive for each
Configuration Word. The MPLAB C attributes used to reference each bit or bit field
setting (i.e., “0SC = INTIO67”) may differ from one PIC18FXXXX microcontroller to
another, depending on the features supported by a particular microcontroller. All the
attributes available for a particular microcontroller may be found in the MPLAB IDE
help. Let’s find the attributes for the PIC18F45K20:
1. Select MPLAB IDE menu Help > Topics...
In the “MPLAB Help Topics” dialog, find the “Language Tools” category and select the
2. “PIC18 Config Settings” topic as shown in Figure . Click OK.
3. When the Help window opens, select the Contents tab, and expand the
“Configuration Settings” section.
4. Select the PIC18F45K20 microcontroller to display all the Configuration bit set-
ting attributes that can be used with the #pragma config directive, as shown
in Figure .
FIGURE 3-13: MPLAB HELP TOPICS FIGURE 3-14: PIC18F45K20 CONFIGURATION

X)

System ~
MPLAR IDE
MPLAB Editor
Language Tools
MPASH Azzembler
MFLIME, Object Linker
MPLAR A5k 30
MPLAR LIMK30

MPLAB Help Topics

PIC18 Config Settingz
COFF File Format

FIC32M Canfig Settings
Debuggers Z

< >

] l [Cancel

FIC1EFA5KI

ik batas b
B 5

P bty Tk Wamaer Erabiy bt
M - 0T | P

o ral T el Ded e beSteand B

Possrap Tmer Eranm pe

DS41370C-page 22

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-15:

The Configuration bit settings that are important for this lesson project and are different
from the default values are:

FOSC = INTIO67 This sets the PIC18F45K20 to run using the internal oscillator, so
no crystal or external oscillator is needed. The default frequency is
1 MHz. The oscillator is covered in more detail in Lesson 9. It also
sets OSC1 and OSC2 pins to be used as the RA6 and RA7 1/O
port pins as the OSC pin functions are not needed.

WDTEN = OFF This turns off the Watchdog Timer, as it is not used in this lesson.
When the Watchdog Timer is enabled, it must be cleared periodi-
cally in the code or it will reset the microcontroller.

LVP = OFF This turns off Low-Voltage-Programming, and frees the PGM pin to
be used as the RB5 1/O port pin. (LVP mode is not used by the
PICkit 3 programmer.)

Even though all other bit settings are left as default, it is strongly recommended to
define them all in the source as is done in the Lesson 2 source code. This ensures that
the program memory image in the .hex file built by the compiler contains all the
configuration settings intended for the target application. The one exception is the
DEBUG bit, as this is defined by the MPLAB IDE environment depending on whether
the target microcontroller is running in Debug mode or not.

3.2.3 Exploring the Lesson 2 Source Code

Open the Lesson 2 source code file 02 Blink LED.c inan MPLAB IDE editor window
if it is not open already.

LESSON 2 “BLINK LED” SOURCE CODE

void main

{
TRISD

while

{

/** I N C L U D E S **/
#include "pl18f45k20.h"
#include "delays.h"

/** D E C L A R A T I O N S kkkkkkkkkkkkkkkkkhhkokhhkkhkkkhkkhkkkkkkkkkkkkkkk /

(void)

0b01111111;// PORTD bit 7 to output (0) ; bits 6:0 are inputs (1)
(1)
LATDbits.LATD7 = ~LATDbits.LATD7; // toggle LATD
DelaylKTCYx(50);// Delay 50 x 1000 = 50,000 cycles; 200ms @ 1MHz

This source code contains a couple of new lines of interest. The first is a new include
file:

#include "delays.h"

This is the header file for the MCC18 “delays” library, which provides functions used to
create program delays of a certain number of processor cycles. The MPLAB C compiler
comes with a number of useful libraries. These include the standard C libraries stdio
and stdlib, and function libraries such as ctype, delays, math, and string.
There are also libraries for using hardware peripheral functions such as adc, i2¢, pwm,
spi,usart, and timers as well as for software emulation of peripherals like sw_i2c,
sw_uart, and sw_spi.

© 2009 Microchip Technology Inc. DS41370C-page 23

PICKit™ 3 Debug Express

Headers for the libraries can be found in the MCC18 header directory C: \MCC18\h.
The source code for most of the libraries can be found in ¢:\MCCc18\src, and the
libraries themselves are in C:\MCc18\1ib. For more detailed information on the
included library functions see the “MPLAB C18 C Compiler Libraries” document
(DS51297).

The other new line of special interest is a function call to a function in the delays library:
DelaylKTCYx (50) ;

This function creates a time delay with a software of 1000 (1k) instruction cycles (TCY)
times the argument value. In this case, the argument is 50 so this function will delay for
50 x 1,000 = 50,000 instruction cycles. The instruction rate on PIC18FXXXX

microcontrollers is equal to 1/4' the oscillator clock; in other words, it takes 4 clocks to
execute an instruction. In this case the clock is the internal oscillator at 1 MHz, so the
instruction rate is 250 kHz, or TCY = 4us per instruction. The total delay is 50,000 x 4us
= 200 ms, which is slow enough for the human eye to see the LED turning on and off.

The Lesson 2 program runs this delay inside an indefinite while loop, which sets the
RD7 1/0O pin to the complement of its current value (the effect is to switch it back and
forth between high and low) with a 200 ms delay in between each RD7 output level
change. This blinks the demo board LED 7.

3.24 Build and Program the Lesson 2 Code

Select MPLAB IDE menu, build the Lesson 2 project and program the code into the
demo board PIC18F45K20 using the PICkit 3 Programmer as we did in Lesson 1.

The demo board LED 7 will blink continuously at 200 ms on and 200 ms off.

DS41370C-page 24 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.3 LESSON 3: ROTATE LED

This lesson builds on the previous two lessons to introduce defining global variables
and code sections, and to add rotation to the LED display. It will light up LED 0, then
shift it to LED 1, then to LED 2 and on up to LED 7, and back to LED 0.

In this and following lessons, please open the lesson workspace in the MPLAB IDE
upon starting the lesson.

Key Concepts

- The directives #pragma udata and #pragma idata are used to allocate
memory for static variables in the file registers.

- The directive #pragma code is used to indicate a section of instructions to
be compiled into the program memory of the PIC18FXXXX.

- The directive #pragma romdata is used for constant (read-only) data
stored in the program memory. This is used with the keyword rom.

- Constant data can be stored in program memory so as not to use up file
register RAM.

3.3.1 Allocating File Register Memory

In the source code file 03 Rotate LED.c for Lesson 3 the global variable,
LED_ Number, is declared as in Figure 3-16.

FIGURE 3-16: LESSON 3 GLOBAL VARIABLE DECLARATION

/** V A R I A B L E S ckkkkkkkkkkkokkkkkkkhkhkokhkkhkkkhkkkkkkkkkkkkkkkkkkkhkkk /

#pragma udata // declare statically allocated uninitialized variables
unsigned char LED Number; // 8-bit variable

The directive #pragma udata is used prior to declaring the variable LED_ Number to
indicate to the compiler that the following declarations are data variables that should be
placed in the PIC18FXXXX file registers. This differs from PC compilers where
instructions and variables share the same memory space due to the Harvard
architecture of the PIC18FXXXX as discussed in Section 2.1 of this document.

There are two directives for use with #pragma when defining variables:

udata Uninitialized data. The following data is stored uninitialized in the file register
space.

idata Initialized data. The following data is stored in the file register space. The initial-
ization values are stored in program memory, and then moved by the start-up
initialization code into file registers before program execution begins.

Data declarations can also be given a section name. The section name may be used
with a Linker Script SECTION entry to place it in a particular area of memory. See
Section 2.9 of the “MPLAB C18 C Compiler User’s Guide” (DS51288) for more
information on using sections with Linker Scripts. Even without a Linker Script section,
the #pragma udata directive may be used to specify the starting address of the data
in the file registers. For example, to place LED Number at the start of file register Bank
3 declare the udata section as:

#pragma udata mysection = 0x300 unsigned char

LED Number; // 8-bit variable unsigned int

AnotherVariable;
Other variables declared in a udata or idata section will be placed at subsequent

addresses. For instance, the 16-bit integer Anothervariable above would occupy
address 0x301 and 0x302.

Note that function local variables will be placed on the software stack.

© 2009 Microchip Technology Inc. DS41370C-page 25

PICKit™ 3 Debug Express

For a list of data types supported by MPLAB C, their sizes and limits, see Section 2.1
of the “MPLAB C18 C Compiler User’s Guide” (DS51288).

3.3.2 Allocating Program Memory

Program memory will most often be used for program instructions and constant data.
The source code for Lesson 3 includes examples of both, as shown in Figure 3-17.

FIGURE 3-17: LESSON 3 CONSTANT DATA AND PROGRAM CODE

/** D E C L A R A T I O N S kkkkkkkkkkkkkkkkkkhkokhhkkkkkkkhkkkkkkkkkkkkkkk /

// declare constant data in program memory starting at address 0x180

#pragma romdata Lesson3_Table = 0x180

const rom unsigned char LED_LookupTable[8] = {OxOl, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80};

#pragma code// declare executable instructions

void main (void)

{

There are two basic directives for defining program memory sections:

code Program memory Instructions. Compiles all subsequent instructions
into the program memory space of the target PIC18FXXXX.

romdata Data stored in program memory. Used in conjunction with the rom
keyword, the following constant data is compiled into the program
memory space.

In this lesson, we use a constant array LED_LookupTable to convert a number
representing LEDs 0-7 to a bit pattern for setting the appropriate PORTD pin to turn on
the corresponding LED. This constant is declared in a romdata section and uses the
rom keyword so it will be placed in program memory. As the program never needs to
change these array values, this saves file registers to be used for true variables.

Note that the romdata section was also declared with a section name and absolute
address:

#pragma romdata Lesson3 Table = 0x180

These optional attributes will force the compiler to place the 8 — byte char array at
program memory address 0x0180. If an address is not specified, the code or romdata
section may not always be placed at a deterministic address by the linker.

Select MPLAB IDE menu Project > Build All to build the Lesson 3 code, then select
View > Program Memory to display the compiled contents of program memory. The
instructions to execute the lesson program code are contained within addresses
0x0000 and 0x0146. Note that the array values have been compiled to program
memory starting at the specified address of 0x180 through address 0x186 as shown in
Figure 3-18.

DS41370C-page 26

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-18:

PROGRAM MEMORY “LED_LOOKUPTABLE” ARRAY VALUES

M Program Memory

hddress | oo | oz | o4 | o6 | o8 | ox | oc | oE | ASCII | &
0000 EFSE FOOO 001z FFFF FFFF FFFF FFFF FFFF cevuinivee snnnnons
0010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF .ovintetr cnnnnnnn
0020 FFFF FFFF FFFF FFFF FFFF 0000 OE2X GEF6 %, .n
0030 OEDOD GEF7 OEO0 6EFE 0100 0009 SOFS G6F6S M I Pea
0040 0009 SOFS 6F66 E103 6765 DOO1 DO3D 0009 JPfo.. eg..=..
D050 50F5 6F80 0009 S50F5 6F61 0009 S50F5 6F62 P o...P ao...Pho
D080 0009 0009 SOFS GEES 0009 50FS 6EEA 0009 P.n ...P.m.
0070 0009 0009 SOFS 6F63 0009 50FS 6F64 0009 Pco ... Pda.
D080 0009 CFF6 FOs7 CFF7 FO68 CFFS FOSS COsS0 B gy
oO0sS0 FFF6 cO61 FFF7? 062 FFFS 0100 5363 E102 ..a...h.cS.
DOXD 5364 EO07 0009 S50FS 6EEE 0763 EZFS 0762 dS..... P .nc...d
O0BO D7FY cOs87 FFF6 ©CO68 FFF? CO69 FFFS 0100 ..g...h. ..de....
DO0c0 0765 0OEO0 S5Bs6 D7BF 0012 0100 6BSA 6A95 e...f[..jk.3
OO0DO0 0100 5164 6AF7 OFB0 6EF6 0E0L 22F7 0008 300300 W
OOED S50F5 6ESC 2BsA OEDS SDEA E101 6B6A OE3Z .P.ni+.. 31..3k2.
DOFO SEE6 EC7E FOOO0 52E5 D7EB 0012 OEFF S0E3 .;e....B .uunn.. P
0100 §E0Z 0E48 DOOL OE4C 6EE7 2EE7 D7FE 6LE7 .nH...L. .n..... 3
0110 2EE7 D7FE 2EO0zZ D7F7 0000 0012 EE14 FOOOD .evunree snnnnsns
0120 EEZ4 FOOO 6AFS 9C01 EC16 FOOD ECAS FOOD $uvuedes suvunnns
D130 EC65 FOOO D7FE 0012 EEOO FOOD OEOF 6AEE E.vun.er wunnn.. 3
D140 §2EA D7FD 0012 0012 FFFF FFFF FFFF FFFF .Huuuies sannnsnns
0150 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF c0vninivinr snnnnnen
D160 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF . .unnnier nnnnnnn
0170 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF . .vunnienr cnnnnnnn
D180 R E Ll FFFF FFFF FFFF FFFF By RO
0190 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF cvvnininier annnnnnn
D140 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF . .vinnienr cnnnnnnn
O1R0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ¥
Opcode Hex | Machine | Symbolic

The directive #pragma code is then used to specify the following section, beginning
with the main () declaration, will be executable instructions to place in program
memory. Since an optional section name and address are not specified, the code
instructions will be placed at the first available address by the linker. As with data
directives, a section name may be used with a SECTION entry in the Linker Script to
allocate a range of program memory for a section.

3.3.3 Exploring the Lesson 3 Source Code

Open the lesson source code file 03 Rotate LED.c in an editor window if it is not

open already.

© 2009 Microchip Technology Inc.

DS41370C-page 27

PICKit™ 3 Debug Express

FIGURE 3-19: LESSON 3 “ROTATE LED” SOURCE CODE

/** V A R I A B L E S ***/
#pragma udata // declare statically allocated uninitialized variables

unsigned char LED Number; // 8-bit variable

/*-k D E C L A R A T I 0] N S *-k*-k*-k*-k*-k**-k-k-k-k-k-k-k-k-k-k*********************/
// declare constant data in program memory starting at address 0x180
#pragma romdata Lesson3_Table = 0x180
const rom unsigned char LED_LookupTable[8] = {OxOl, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80};

#pragma code// declare executable instructions

void main (void)

{

LED Number = 0;// initialize
TRISD = 0b00000000;// PORTD bits 7:0 are all outputs (0)
while (1)

{

// use lookup table to output one LED on based on LED Number value
LATD = LED_LookupTable [LED_Number] ;

LED Number++;// rotate display by 1

if (LED_Number == 8)
LED Number = 0;// go back to LED O.
DelaylKTCYx(50);// Delay 50 x 1000 = 50,000 cycles; 200ms @ 1MHz

Here is the basic flow of our Rotate LED program:

Initialize Variables and 1/O Port
The global variable LED Number, which holds the number of the LED we cur-
rently want on, is set to ‘0’ for the first LED.
The TRISD register bits are all set to ‘0, so that all 8 port D pins RD0-RD7 are
outputs.
Loop Forever with the while (1) statement:
Set the /0O Port to turn on an LED.
The number of the LED to turn on, LED_Number, is used an index
to the array LED_LookupTable which returns a value with a bit set
corresponding to the LED to be turned on. This value is written to
the LATD register to turn on the one LED.
Rotate the LED number
The LED number is incremented to the next LED. The i £ state-

ment checks to see if it has been incremented past the last LED. If
so, it is reset to the first LED, number 0.

Delay As in Lesson 2, a “delays” library function is used to create a time
200ms delay.
(Loop End)

3.34 Build and Program the Lesson 3 Code

In the MPLAB IDE, build the Lesson 3 project and program the code into the demo
board using the PICkit 3 Programmer.

The demo board LEDs will rotate from LED 0 up to LED 7 and then back to LED 0.

DS41370C-page 28 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.4 LESSON 4: SWITCH INPUT

The demo board switch is used in the lesson to rotate the LEDs once on each press.

Key Concepts

- The directive #define can be used to give SFR registers and bits more
meaningful names.

- 1/O pins that share an analog input channel must be configured as digital
pins if used as digital inputs using SFR ADCON1, or they will always read
‘0’

- The PORTx SFRs are used to read the logic state on an input port pin.

- Mechanical switch debouncing can be handled in software to eliminate
external components that may be otherwise required.

34.1 Files and the #define Directive

This lesson has added a header file to the project named 04 Switch Input.h
as shown in Figure 3-20.

FIGURE 3-20: HEADER FILE

M 04 Switch Input.mcw E@@

5 (£ 04 Switch Input.mcp
=11 Source Files
04 Switch Input.c
=.[0 Header Files
04 Switch Input.h
delays.h
p1EF45kz0.h
(23 object Files
@ Library Files
2120 Linker Scripk
[2 18Faskenilke
(L3 other Files

[C7 Files # Symbols

While it is assumed that the reader is familiar with C language header files, we’ll note
thatinthe 04 Switch Input.h header file the #define directive has been used to
give more meaningful names to the switch I/O pin variable and a constant value.

#define Switch Pin PORTBbits.RBO
#define DetectsInARow 5

As with other C compilers use of #define, MPLAB C will replace all instances of the
text “Switch_Pin” with the text “PORTBbits.RB0” at compile time. Remember, for the
compiler to know about the #def ine definitions, the header file must be included in
the C file, as is done in 04 Switch Input.c:

#include "04 Switch Input.h" // header file

© 2009 Microchip Technology Inc. DS41370C-page 29

PICKit™ 3 Debug Express

3.4.2 Switch Debouncing

Mechanical switches are frequently encountered in embedded processor applications,
and are inexpensive, simple and reliable. However, such switches are also often very
electrically noisy. This noise is known as switch bounce, whereby the connection
between the switch contacts makes and breaks several, perhaps even hundreds, of
times before settling to the final switch state. This can cause a single switch push to be
detected as several distinct switch pushes by a fast device, especially with an edge-
sensitive input. Think of advancing the TV channel, but instead of getting the next
channel, the selection skips ahead two or three.

Classic solutions to switch bounce involved filtering out the fast switch bounce
transitions with a resistor-capacitor circuit, or using re-settable logic shift registers.
While effective, these methods add additional cost and increase circuit board real
estate. Debouncing a switch in software eliminates these issues.

A simple way to debounce a switch is to sample the switch until the signal is stable.
How long to sample requires some investigation of the switch characteristics, but
usually 5ms is sufficiently long.

This lesson code demonstrates sampling the switch input every 1mS, waiting for 5
consecutive samples of the same value before determining that the switch was
pressed. Note that the switch on the 44-Pin Demo Board doesn’t bounce much, but it
is good practice to debounce all system switches.

FIGURE 3-21: SWITCH DEBOUNCING PROGRAM FLOW

Swilch in
pressed slale?

Mo

Increment Counler Clear Counter |

Counter = 57

Mo

Swilch Pressed!

3.4.3 Exploring the Lesson 4 Source Code

Open the lesson source code file 04 Switch Input.c in an editor window if it is not
open already.

DS41370C-page 30

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-22: LESSON 4 “SWITCH INPUT” SOURCE CODE

/¥* V¥ A R I A B L E S kkkkkkkokkok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok /

#pragma udata // declare statically allocated uinitialized variables
unsigned char LED Display; // 8-bit variable

/** D E C L A R A T I O N 8 ok ok ok ok ok ok ok ok ok ok ok ok k ko k ok ok ok kk ok k ok ok kk ok kkkk ok ok ok ok ok /

#pragma code// declare executable instructions

void main (void)

{

unsigned char Switch Count = 0;
LED Display = 1; // initialize
TRISD = 0b00000000; // PORTD Dbits 7:0 are all outputs (0)
INTCON2bits.RBPU = 0; // enable PORTB internal pullups
WPUBbits.WPUBO = 1; // enable pull up on RBO
ANSELH = 0x00; // AN8-12 are digital inputs (AN12 on RBO
TRISBbits.TRISBO = 1; // PORTB bit 0 (connected to switch) is input (1)
while (1)
{
LATD = LED_Display; // ~output LED Display value to PORTD LEDs
LED Display <<= 1; // rotate display by 1
if (LED_Display == 0) // rotated bit out, so set bit 0
LED_Display = 1;

while (Switch_Pin 1);// wait for switch to be released
Switch_Count = 5;

do
{ // monitor switch input for 5 lows in a row to debounce if

(Switch_Pin == 0)
{ // pressed state detected

Switch Count++;

else

{

Switch Count = 0;
Delayl0TCYx(25); // delay 250 cycles or 1lms. }

while (Switch_Count < DetectsInARow) ;

3.43.1 VARIABLES

This program has 2 declared variables, the global variable LED Display and the local
variable switch Count. A global variable will be placed in a dedicated location in the
file register space as discussed in Lesson 3. A local variable is placed on the software
stack, and is created when a function is entered, and destroyed (removed from the
stack) when the function exits.

3432 SWITCH INPUT

The demo board switch is connected to I/0 pin RBO, which is normally pulled up to VDD
internally. When the switch is pressed, it pulls RBO to ground (low state).

The PORTXx Special Function Registers are used to read the state of an input pin.
Therefore, reading PORTBbits.RBO will give the value of the signal on the RBO pin.
Don’t forget — in the header file, this was defined as Switch Pin, which is what the
code uses to read the pin value:

#define Switch Pin PORTBbits.RBO

© 2009 Microchip Technology Inc. DS41370C-page 31

PICKit™ 3 Debug Express

In the PIC18F45K20, the RBO pin is shared with analog input AN12. Such pins must
be configured as either digital or analog inputs. This is important because RBO will be
used as a digital input pin to read the state of the switch in register PORTB. If RBO is
configured as an analog input, it will always read ‘0’ and not the actual state of the
switch. Pins are configured as analog or digital in the SFRs ANSEL and ANSELH.

FIGURE 3-23: ANSELH: ANALOG REGISTER 1
u-o u-o u-0 RwW-1(1 RAW-1L1) RAW-11T) Riw-11 R
= = [= | ANs12 | ANST ANS10 ANSS ANSS8
kit 7 bit 0
Legend:
R = Readable bit vV = Writable bit U = Unimplemented bit, read as '0’
-1 = \Value at POR 1'= Bit is set ' =Bit is cleared ¥ = Bit is unknown
kit 7-5 Unimplemented: Read as '0'
Git 4 ANS12: REO Analog Select Control bit
¢ = Digital input buffer of RBO is disabled
2 = Digifal inpul buffer of RBO is enabled
bit 3 ANS511: RB4 Analog Select Control bit
L = Digital input buffer of RE4 is disabled
2 = Digital input buffer of RB4 is enabled
bit 2 ANS10: RB1 Analeg Select Control bit
L = Digital inpul buffer of RB1 is disabled
1 = Digital input buffer of RB1 is enabled
kit 1 ANS9: RBE3 Analog Select Control bit
L = Digital input buffer of RE3 is disabled
3 = Digital inpul buffer of RB3 is enabled
bit © ANS8: RB2 Analog Select Control bit

L = Digital input buffer of RB2 is disabled
1 = Digital input buffer of RB2 is enabled

Note 1: Default siale is determined by the PEADEN bit of CONFIG3H. The default state is 2" When
PBADEN = '3’

We clear ANSELH to set all pins to digital functionality: ANSELH = 0x00;

Now we can use RBO as a digital input, so the TRISB bit is set to configure it as an
input: TRISBbits.TRISBO = 1;

3.4.3.3 ROTATING THE LEDS

This program uses a simpler method of rotating the LEDs than Lesson 3, which used
the look-up table for demonstration purposes. 04 Switch Input.c uses asingle set
bit in the LED_Display variable which is written to LATD and shifted each time the
display is updated. The bit will eventually be shifted out of the Most Significant bit of
LED_Display, so the code checks for this, and sets LED_Display to ‘1’ again.

For more information on 1/O port pins, see Section 10 “I/O Ports” of the PIC18F45K20
Data Sheet (DS41303).

344 Build and Program the Lesson 4 Code
Build the Lesson 4 project and program the code into the demo board using the PICkit
3 Programmer.

Press the Demo Board Switch button to rotate the LEDs. The LEDs will advance once
for each button press.

DS41370C-page 32

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.5 LESSON 5: USING TIMERO

Timer0 is used to time delays while rotating the demo board LEDs, instead of using
program loop delays. The demo board switch reverses the direction of the rotation.

Key Concepts

- Timer0 is hardware counter implemented in the microcontroller that can
count clock cycles or external events.

- Using a timer instead of processor delay loops frees up the processor to do
useful work instead of counting cycles.

- A timer “prescaler” sets the number of clock cycles or events required to
increment the timer by 1, allowing it to be run faster or slower off the same
frequency clock.

3.5.1 The PIC18F45K20 TimerO Module

The Timer0 module is the timer/counter peripheral of the PIC18FXXXX microcontroller
that may be used to count oscillator clock cycles or external events on the TOCKI pin.
It can be configured as an 8-bit or 16-bit timer, which means it can count from 0 to 255
or 0 to 65535. A bit flag is set when the counter rolls over from the maximum value back
to zero.

The Timer0O module also includes an optional prescaler, which may be configured to
divide the timer clock source before it reaches the timer/counter itself. For example,
with a 1:1 prescaler, the timer would increment once every instruction clock cycle.
(Remember that the instruction clock cycle TCY is the Fosc oscillator clock/4.) With a
1:8 prescaler, the timer would increment once every eight clock cycles. The prescaler
is cleared on every write to the timer.

FIGURE 3-24: SIMPLIFIED 16-BIT TIMERO BLOCK DIAGRAM
TCY (Fosc/4) TMRO INTCON
s > . > .
or TOCKI Pin Prescaler TMROL High Byte TMROIF Bit
! Flag bit set when TMRO
Prescaler may be set to overflows, and must be
divide by 2, 4, 8, 16, 32, cleared in software.
64, 128, or 256. TMROH
Timer high byte is buffered into TMROH on a read of TMROL.
TMROH is written to timer high byte on TMROL write.

When Timer0 is configured as a 16-bit timer, care must be taken when reading and
writing the timer value. The lower byte of the timer is directly readable and writable as
the SFR TMROL. However, the high byte is not directly accessible. Instead, it is
buffered through the SFR TMROH. TMROH is updated with the value of timer high byte
when TMROL is read. A write of TMROL also writes the contents of TMROH to the
TimerO high byte. This allows the entire 16-bit timer to be read or written at once.

Therefore, to read the timer, always read TMROL first, then TMROH. To write the timer,
always write TMROH first then TMROL.

TimerO operation is controlled by the TOCON SFR, shown in Figure 3-24.

© 2009 Microchip Technology Inc. DS41370C-page 33

PICKit™ 3 Debug Express

FIGURE 3-25: TOCON: TIMERO CONTROL REGISTER
RAW-1 RAW-1 RAW-1 RW-1 RW-1 RAW-1 RAW-1 RAY-1
TMROON | Toseir | Tocs | TosE | Psa | Toes2 TOPS1 TOPSO
hit 7 hit 0
Legend:
R = Readable hit W = Wiitable bit U = Unimplemented bit, read as ‘0"
-n = Value at POR ‘1' = Bit is set ‘0" = Bit is cleared ¥ = Bit i5 unknown
bit 7 TMROON: Timerd OnfOff Control bit

1 = Enables Timer0
0 = Stops Timer(
hit & TOBBIT: Timer(8-Bit"6-Bit Contral bit
1 = Timer0 is configured as an B-hit timer'counter
0 = TimerD is configured as a 16-hit imerfcounter
bit 5 TOCS: TimerQ Clock Source Select bit
1 = Transition on TOCKI pin
0 = Intemal instruction cycle clock (CLKQ)
bit 4 TOSE: TimerD Source Edge Select bit
1 = Increment on high-to-low transition on TOCKI pin
0 = Increment on low-to-high transition on TOCKI pin
hit 3 PSA: Timer(Prescaler Assignment bit
1 = Timer(prescaler is not assigned. TimerD clock input bypasses prescaler.
0 = Timer(prescaler is assigned. Timer(clock input comes from prescaler output
bit 2-0 TOPSZ2:TOPS0: TimerD Prescaler Select bits
111 = 1:256 Prescale value
117 = 1:128 Prescale value

=
101 = 1:684 Prescale value
100 =1:32 Prescale value
011 =1:16 Prescale value
013 =18 Prescale value
001 =14 Prescale value
000 =12 Prescale value

To use TimerO0 to replace the software delay Delayl1KTCYx (50), it should be set up
so it overflows about every 200 to 300 ms. Let's go over the TOCON bit settings to make
this happen:
TO8BIT =0
TimerO0 is configured as a 16-bit timer/counter to illustrate the buffering of TMROH.
TOCS =0
TimerO0 runs off the internal instruction clock. At Fosc = 1MHz, the instruction clock
is 250kHz.
TOSE =0
If TimerO was running off the TOCKI pin, this bit would determine whether it incre-
mented on the falling edge or rising edge of the TOCKI pin signal. Since we are
running off the instruction clock, this bit is a “don’t care.” This means operation is
not affected by either setting of this bit.
PSA=1
The timer will overflow in 65536 counts. At the instruction clock rate of 250 kHz,
the timer overflow will occur every 65536 x (1 /250,000) = 262ms. This is a time in
the range we want, so the prescaler is not assigned to Timer0. It runs directly off
the instruction clock.

DS41370C-page 34 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

TOPS2:TOPS0O =000

Since the prescaler is not assigned, these bits are “don’t care.”
And finally:
TMROON =0

This bit turns the timer on and off. It's set to zero now as the timer will be turned on
once it is has been set up.

To configure Timer0 with these settings, the binary value 0b0000100 is written to
TOCON.

The PIC18F45K20 has 3 other configurable timers: Timer1, Timer2 and Timer3. More
information on all four timer modules can be found in the PIC18F45K20 Data Sheet
(DS41303), Sections 11 through 14.

3.5.2 Exploring the Lesson 5 Source Code

Open the lesson source code file 05 Timer.c and header file 05 Timer.h in editor
windows if they are not open already.

Note thatin 05 Timer.h two custom enumerated variable types have been defined:
typedef enum { LEFT2RIGHT, RIGHT2LEFT}

LEDDirections;
typedef enum {FALSE, TRUE} BOOL;
This allows us to declare variables using these types and initialize them in main () :
LEDDirections Direction = LEFT2RIGHT;
BOOL SwitchPressed = FALSE;

The Direction variable keeps track of which direction the LEDs are rotating in, and
SwitchPressed remembers if the switch has been pressed or not, as the LED
rotation direction should only be changed once when it is pressed.

The following code before the while (1) loop sets up the TimerO module as discussed

previously.

// Init Timer

INTCONbits.TMROIF = O0; // line 1

TOCON = 0b00001000; // line 2

// TOCON = 0b00000001; (ignore commented line for now)
TMROH = 0; // line 3

TMROL = 0; // line 4

TOCONbits.TMROON = 1; // line &5

Using the line numbers in the comments as references, let’s discuss the function of
each line in setting up the timer.

Line 1 clears the TMROIF flag in the INTCON SFR. This bit flag is set whenever the
timer overflows (rolls over), so the program will poll it to know when the LED rotation
delay is up. However, the flag will not reset by hardware, it must be reset in software
so the program makes sure it is clear before starting the timer.

Line 2 loads the settings into TOCON to configure the timer as discuss previously in this
lesson.

Line 3 clears the TMROH buffer. Remember that TMROH only buffers the high byte of
the timer. The ‘0’ value will not actually be written to the timer upper byte until TMROL
is written.

Line 4 clears TMROL, which also causes TMROH to be written to the high byte of the
timer. Thus, the entire 16-bit timer is loaded with the hex value 0x0000.

© 2009 Microchip Technology Inc. DS41370C-page 35

PICKit™ 3 Debug Express

Line 5 sets bit 7, TMROON, of the TOCON register to turn on the timer so it begins
incrementing. Using one of the SFR unions to access bits, like TOCONbits.TMROON,
can change bits without affecting the other bits.

Note: Be aware that some cases using an SFR union to access a bit may affect
other bits. What actually happens during this instruction execution is the
register is read, the bit is modified, and the entire register is re-written. This
operation is called Read-Modify-Write. If a bit reads a different value than
what it was last set as, this operation may affect register bits other than the
intended one. Check the SFR bit definitions carefully. In the case of
TOCON, all bits are Read/Write and all are set by software only; the hard-
ware will not affect any bit setting.

Inthewhile (1) loop, the LED Display global variable is updated to rotate the ‘1’ bit
based on the Direction variable value, and then LATD is updated.

The do{...}while () loop then polls the switch looking for a switch press while it waits
for the timer to overflow and set the TMROIF flag bit. This is a simplistic example of how
using a timer allows the microcontroller to do work while waiting on a time delay,
instead of wasting processing time counting cycles in an instruction loop.

Once the switch it pressed, the Direction variable value is reversed. Follow the

if - else if logic flow inthe do{..}while () loop to see how once the switch is
pressed, the direction is reversed only once until it is released and pressed again.
Lastly, once Timer0 overflows and sets the TMROIF flag the do{...}while () loop is
exited. TMROIF is then cleared in the software program so the next timer overflow can
be detected.

3.5.3 Build and Program the Lesson 5 Code

Build and program the Lesson 5 project. The LEDs will rotate, and pressing the Demo
Board button will reverse them.

354 Assigning the TimerO Prescaler

Now we’ll go back to that commented-out line of code in the Timer0 setup statements.
Comment out the TOCON assignment statement, and un-comment the other statement
so the Timer0 setup code looks like this:

INTCONbits.TMROIF = O;

//TOCON = 0b00001000;
TOCON = 0b00000001;
TMROH = 0;

TMROL = O0;
TOCONbits.TMROON = 1;
Take a look at what this changes:
PSA=0

The prescaler is now assigned to Timer0, and the values of TOPSx will set the
prescaler clock divider ratio.

TOPS2:TOPSO = 001

This value sets the prescale value to 1:4, which means TimerQ will now increment
once every 4 instruction cycles instead of once every instruction cycle. It now takes
4 times as long for it to count up to 65536 — just over 1 second!

Rebuild and reprogram the Lesson 5 project with change in the source code. The LEDs
will rotate more slowly, 4 times slower to be exact, than before.

DS41370C-page 36

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.6 LESSON 6: USING PICkit 3 DEBUG EXPRESS

FIGURE 3-26:

This lesson covers using the PICKkit 3 as an In-Circuit-Debugger (ICD). It uses the same
MPLAB IDE workspace and project as Lesson 5. Set TOCON assignment back to the
“no prescale” statement if it was changed in the last lesson.

Key Concepts

- An In-Circuit-Debugger like PICkit 3 uses some on-chip resources to enable
debugging. These reserved file registers and program memory locations are
marked ‘R’ in the MPLAB IDE views, and are not available for use by the
user application.

- Debugging also reserves one level of the hardware return address stack and
two I/O pins.

- Debugging allows the program to be run, halted, stepped-through statement
by statement, and for breakpoints to be set on program statements.

- The number of available breakpoints depends on the PIC microcontroller
being used.

Note: Thislesson uses the project and source code from Lesson 5: Using TimerO.

3.6.1 Resources Reserved by the PICkit 3 Debug Express

The PICkit 3 Debug Express uses some on-chip resources to enable debugging. The
resources are not available to the user application code.

3.6.1.1 GENERAL RESOURCES

* MCLR pin reserved for debugging; this pin cannot be used as digital 1/0 while
debugging.

» The PGD and PGC port pins are reserved for programming and in-circuit debug-
ging. Therefore, other functions multiplexed on these pins will not be available
during debug.

» One stack level is used by the debugger and not available.

3.6.1.2 PROGRAM AND DATA MEMORY RESOURCES

The PICkit™ 3 Debug Express uses program memory and file register locations in the
target device during debugging. These locations are not available for use by user code.
In the MPLAB IDE, registers marked with an “R” in register displays represent reserved
registers, as shown in Figure 3-26.

RESERVED ICD FILE REGISTER LOCATIONS IN THE PIC18F45K20

M File Registers

D.P.lEIBlEIC DﬂFl ASCIT | a

[Address [00] 01|02 03| 04] 05| 06] 07] 08]

SBO OO0 OO DD OO OO0 OO OO OO OO0 OD OO0 OO0 OO0 OO0 DO DD cosaeeas sasssans
5CO o0 OO D0 OO OO OD 0D OO OD OD OO0 OO OD OO0 DO OD ..oaseaas ammadans
500 D0 O0D DD OD OO0 OO0 OO OO OD OD OO0 OD OD OO DO OD .c.oeseses amainsens
SED 00 DD OO OO OO OO0 0D OD OD OD OO0 OO0 OO0 OO0 DO 0D .oeneess srenness
SFO 00 OO0 O0 OO RE FER RFR ERR RER FR FR FR RR RR RR RRRFEE RREFRRRE
600 == == == == == == == == == == == == == == == == e e
10 == == == == == == == == == == e mm m= == == e mmmmee e
620 _—— mm mm - —m mm mm mm mm e mm mE e mm e e ——— o ——————
630 == == == == mm mm oo o mm mm mm M oo mm mm mm s o v
| Hex | Symbobc

© 2009 Microchip Technology Inc. DS41370C-page 37

PICKit™ 3 Debug Express

FIGURE 3-27:

Note: AnICD ‘i’ Linker Script must be used when debugging, as discussed in
Section 3.1.1 of this document. The lesson projects already use the correct
Linker Script, 18f45k20 i.lkr.
3.6.2 Selecting PICKit 3 as a Debugger in the MPLAB IDE

The PICKit 3 cannot be used as a programmer and debugger at the same time, so if
PICKit 3 is currently selected as a programmer, selecting it as a debugger will cause it
to be disabled as a programmer.

To enable the PICKkit 3 as a debugger in the MPLAB IDE select Debugger > Select Tool
> 2 PICKit 3. The Output window will display the connection to the target microcontroller
as in Figure 3-10A.

To Begin Debugging

* In the MPLAD IDE toolbar, change the project configuration from “Rlease” to
“Debug”.

+ Build the project: Project > Build All

* Program the target microcontroller;: Debugger > Program

» Select Debugger > Run to begin program execution.

The Lesson 5 code is now running in Debug mode. The LEDs will rotate and the button
may be pressed to reverse them, as the target microcontroller will operate in Debug
mode just as it normally would.

3.6.3 Basic Debug Operations

3.6.3.1 HALT

The PIC18F45K20 on the demo board is now running the lesson program code. Code
execution can be halted (stopped) at any time by selecting Debugger > Halt <F5>. A
green arrow on the left margin of the MPLAB IDE editor window will show the next
statement to be executed. Your code will probably have stopped in a different place
than that shown in Figure 3-27.

GREEN ARROW POINTS TO NEXT STATEMENT TO EXECUTE

B C_ADS Timer.c _ (O] x|

39

100
101
102
103 =
104
105 B
106

108
109 =
110
111
112
113
114

107 ||

LATD LED_Display
do
poll the witch while waiting for the timer f roll
if (Swicch Pin
look r_: witch relass
FALSE

SwitchPressad
else if (SwitchPressed FALSE (Switch Pin .
switeh war just proessad
SwicchPressed TRUE
= ATIOE o ol Ty o B} s
if (Direction LEFTZRICGHT
Direction RIGHTZLEFT

DS41370C-page 38

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.6.3.2 STEP
Stepping, also known as single-stepping, allows the code to be executed one
statement at a time. There are three step options:

Step Into

This will step through statements one at a time until a function call is reached.
When Step Into is selected on a function call, the debugger will step to the first
statement in the called function. Shortcut key is <F7>.

FIGURE 3-28: STEP INTO
[
E o= 3Z
Befare Step Into r__ X = squara(r);
ares = 3.14 * x:
I
int square(int =)
i
Ajfter Kiep B e return FeE;
1
Step Over

This will step through statements one at a time. When a statement includes a
function call, the entire function will execute and the debugger will step to the next
statement after the function call. It will not step into the function. Shortcut key is

<F8>.
FIGURE 3-29: STEP OVER
i
r=2;
Refare Step Cher x = square(r) ;
Ifier Skcp Over T area = 3.14 * x;
1
int square{int r)
{
return r*r;
1
Step Out

This completes execution of the current function and steps to the next statement
after the function call.

You can step through lesson code by using the shortcut key for Debugger > Step Over,
<F8>.

3.6.3.3 RUN

Debugger > Run <F9> will begin code execution until it is halted by the user or
encounters a breakpoint.

3.6.3.4 RESET

Debugger > Reset > Processor Reset will perform a full reset of the target
microcontroller, so execution can begin again from the start of the program code. This
is only available when the target is halted.

Halt the demo board PIC18F45K20 if it is currently running, and select Debugger >
Reset > Processor Reset <F6> This will open up a new file in the MPLAB IDE called
c018i.c. This is the start-up code, part of the MPLAB C library. This library code
initializes the C software stack, assigns appropriate data values to any initialized data
variables, and jumps to the start of the application function main ().

© 2009 Microchip Technology Inc. DS41370C-page 39

PICKit™ 3 Debug Express

FIGURE 3-30:

C018 START-UP LIBRARY CODE

W CAMOCCT BsreMraditionalistartup\c01 Bi.c

i

o sxzarnal refarence te _inde dunceion */
I!B antern void indie (wodd

9 f* external refarence to the ufec's maan routine *
10 axtarn wvoid nsin | wodd

11 * prototyps for the startup function ™

Nz void _entry (veid
"1-3 wold _szareup wndd

14 * mraracyrs for mhe inieialized da=s serup *
“.1.5 wvoid _do_cinic (woid

18

17 extern volatile near unsigned long short TELFTR:
18 axtern near unsigned FSRO

19 extern ncar cohar FPFFLAGE

20 gdefine DND &
It. Fprasma code _entry_son=0=000000

23 ol

L] _MEErY
=2 |
28 l:> _asm goto _startup _endasm

woid

3.6.4 Using Breakpoints

When debugging code, a “breakpoint” can be added to a program statement. When
running the program, the debugger will halt the target upon reaching the breakpoint
statement.

In the MPLAB IDE 05 Timer.c source code, place the editor cursor on line 111,
SwitchPressed = TRUE;, and right-click to open the contextual menu. Select Set
Breakpoint as shown in Figure 3-31. A red octagon with the letter ‘B’ will appear in the
editor margin to indicate a breakpoint has been set on that line.

DS41370C-page 40

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-31:

SET BREAKPOINT ON LINE 111

B C:5\._\D5 Timer.c

=] E3
4& (Switch Pin == (
f/ =switch was just pressad
SvitchPressed = Tib=-
!/ change directi Close
if (DMirection == [
Directicon = RI

Set Breakpoint

else
Direction LE

Fun To Cursar
Set PC at Cursor

I while (INTCONbits. THROLE GalTa..

(36T LOEat

Timer expired
INTCONbits. THROLF 0; B her flag
Eleiey!
Paste
Delste
FIGURE 3-32: BREAKPOINT SET

B C:-% . ADS Timer.c

f/ poll the switch vhile waiting for the t
105 = if (Switch_Pin == 1)

106 { 7/ look for switch released
107 gwitchPressed FALSE:

Log - I

109 &= elee if (SvitchPreszszed == FALSE) Jf/ &4
110 { 7/ swicvch was jusc prassed
111 SwitchPressed = TOUE:

112 /{ change direction

1113 if (Direction == LEFTZRICGHT)
114 Direction = BRIGHTZLEET
115 elsa

116 Direccion LEFTZRIGHT:
117 I

1le -

The statement we’ve placed the breakpoint on will be executed when the Demo Board
Switch button is pressed. Select Debugger > Run to begin program execution. The
demo board LEDs will rotate as the code runs since the breakpoint statement has not
been executed yet.

Press the Demo Board Switch button. The program will halt on the breakpoint
statement, as shown in Figure 3-33. <F8> can now be used to step through the code.

© 2009 Microchip Technology Inc.

DS41370C-page 41

PICKit™ 3 Debug Express

FIGURE 3-33: BREAKPOINT HALT

D4 { /f poll the switch while waiting for tha q
o5 = if (Switch Pin == :
ul { // look for switch released. !
a7 EwitchPreszed = TFALSE: !
08 - } ;
pa = elose if (SwitchPrassed == FALSE) // &4 d
10 { /F switch was just pressed +
u @ SwitchPressed = TRUE: ;
12 F7 change dirsccion :
13 if (Direcrion == LEFTZ2RIGHT) :
1% Direction RIGHTZLEFT: |
15 aloe :
16 Directiconn = LEFTZRICHT: :
17 } :
18 - !

The number of breakpoints that can be set at once in a program depends on the
PIC18FXXXX device being debugged. Select menu Debugger > Breakpoints... This
will open a dialogue box to show the currently set breakpoints. The Silicon Debug
Resource Toolbar provides information on the total number of breakpoints available for
the selected device (“HW BP”) and the number of used breakpoints (“Used”). The
PIC18F45K20 can have up to 3 breakpoints set at once, and has 2 currently available

since one is already set on line 111 of 05 Timer.c.

FIGURE 3-34: BREAKPOINTS DIALOGUE

B Breakpoints

the enabled column to enable/disable it.

Right dick a breakpoint from the list below, to remove or editit, or chedc

[BEE

Breakpoint Type Address

Program Memory 00010z 05 Timer.c # 111

File Line #/Symbal Name

Enabled

Event Breakpoints I [

Add Breakpoint

DS41370C-page 42

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

Note: The number of active breakpoints can affect using the Step Into and Step
Over functions. When these functions are used, a breakpoint is set at the
next statement to step to. If all breakpoints are currently used and none are
available, the MPLAB IDE is not able to set a breakpoint on the next C
statement. Instead, it must step through each assembly instruction until the
next statement is reached. If using Step Over, it may take some time to step
over all the assembly functions in the compiled function. Free up a
breakpoint to avoid this issue.

3.6.5 Watching Variables and Special Function Registers

All the values in the file registers can be seen by opening View > File Registers, and
the values in the Special Function Registers can be seen by opening View > Special
Function Registers. However, keeping these windows open is not recommended. This
is because the entire file memory and all SFRs must be read from the target device
whenever it is Run, Halted, and on each Step. Reading all of this data over the ICD bus
can take a significant amount of time. The actual time it takes depends on how much
memory the target PIC18FXXXX has, and how fast the target oscillator is. The slower
the target oscillator, the longer it will take as the oscillator speed directly affects the ICD
bus speed.

If you have opened either of these windows, please close them now.

The best way to watch variables and SFRs is to use a Watch window. This way, only
the variables and registers that are of interest are updated. To open a Watch window,
select View > Watch.

FIGURE 3-35: WATCH WINDOW

B Watch

ADCONO | [Add Symbal] |_confia_ +|

Address

Watch T | watch2 | wWateh 3] watch 4

SFRs may be added to the Watch window by selecting them in the dropdown box on
the upper left, and clicking the Add SFR button. Go ahead and add PORTB, which is
used to read the switch state, and LATD, which our program uses to set the LEDs.

User variables are added using the dropdown on the upper right, and clicking the Add
Symbol button.

Add the LED Display, SwitchPressed, and Direction variables now.

© 2009 Microchip Technology Inc. DS41370C-page 43

PICKit™ 3 Debug Express

FIGURE 3-36: WATCH VARIABLES

Svmbol HName Value

FG1 PORTE OxEF
F3C LATD Oxz20
0SS LED Display Oxz20
402 SwitchPressed Ox00
401 Direction 0x01

Note: The “Value” fields in the Watch window, File Register window, and Special
Function Register windows may not be valid immediately after first being
opened. Step the code once to update the values.

For each watch variable, the Watch window displays the File Register Address, the
Symbol Name (variable name), and current Value. The value display format can be
changed by right-clicking on a value and selecting Properties from the pop-up menu.
Note that our two enumerated type variables, SwitchPressed and Direction will display
the enumeration value, and not the mnemonic.

The Watch window can also be used to edit variable values. Select the LATD value by
clicking on it, and type in the hex value ‘AA’. Press enter to set the value. Look at the
demo board; note that every other LED is now turned on. This is because through the
Watch window, we just directly wrote to the LATD register the value 0xaa, which is
binary 0b10101010!

Select the PORTB symbol, right-click and select Properties. In the properties dialogue,
go to the dropdown box for “Format:” and select “Binary”. Click OK to close the
dialogue. The PORTB value is now displayed in a binary format, with bit 7 on the left.

Step through the code once using <F8>. Note the value for PORTB bit 0, which is pin
RBO and connected to the demo board switch. The bit value should now be set (‘1’).
While pressing down the Demo Board button, step again with <F8>. Note that PORTB
bit 0 is now low since the switch is pressed!

Take some time to play with the lesson code, stepping through it and watching
variables and the demo board LEDs. You can also press the button and step through
the switch detection statements. Set different breakpoints to experiment using them.
Add TMROL and TMROH SFRs to the Watch window, and observe them counting while
you step through the code. Note that they don’t increment once per step, as each C
statement may be compiled into more than one assembly instruction and TimerOQ is
incremented once per assembly (machine) instruction.

DS41370C-page 44

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.7 LESSON 7: ANALOG-TO-DIGITAL CONVERTER (ADC)

Lesson 7 builds on the previous lesson by using the on-chip ADC to read the demo
board potentiometer voltage. The result is used to vary the LED rotation time delay so
that the potentiometer controls the LED rotation speed.

Key Concepts
- An Analog-to-Digital Converter is used to convert an analog voltage level
into a digital number representing the voltage.

- The ANSEL, ANSELH, ADCONO, ADCON1, and ADCON2 SRFs configure
and control the on-chip ADC.

- Atimer register can be written to a value that will cause a timer overflow at a
specific time interval required by the application.

3.7.1 PIC18F45K20 ADC Basics

Simply put, an ADC takes the ratio of an input voltage to a reference voltage and
represents it as a number. This number is dependent on the bits of resolution of the
ADC. For example, the 10-bit resolution of the PIC18F45K20 ADC means that 1024
numbers from 0-1023 are available to represent the voltage ratio. In mathematical
terms,

ADC Value = (VIN/VREF) * 1023

If VIN = 2.5Volts, and VREF = 5.0Volts, then the ADC Value is (2.5/5)*1023 = 511. This
makes sense in that VIN is half of VREF, so the ADC value is half of 1023.

Knowing the reference voltage and solving the equation for VIN allows the ADC Value
to be converted back into a voltage:
VIN = (ADC Value/1023) * VREF

The PIC18F45K20 ADC may be referenced to the device VDD voltage or an external
voltage reference. In this lesson, the ADC is referenced to the PIC18F45K20 Starter Kit
Demo Board VDD, which is supplied by PICkit 3. This voltage is typically around 3.3V
for this device.

The ADC can convert the voltage from any one of 13 channels on the PIC18F45K20.
These analog input channels, numbered ANO up to AN12, are shared with digital
microcontroller pins and must be configured as analog inputs to be used with the ADC.

The ADC is configured and controlled by 5 Special Function Registers: ANSEL,
ANSELH, ADCONO, ADCON1 and ADCON2. These are covered in detail in the next
section.

3.7.2 ADC Configuration and Operation

Looking at the schematic of the 44-Pin Demo Board in the Appendix, the potentiometer
(RP1) output is connected to the RAO/ANO pin of the PIC18F45K20.

The basic steps needed to convert the ADC voltage on this pin are:

1. Configure the RAO/ANO pin as an analog input in ANSEL.

2. Set the ADC voltage references in ADCON1.

3. Set the result justification, ADC clock source, and acquisition time in ADCONZ2.

4. Select the channel and turn on the ADC in ADCONO.

5. Start the conversion in ADCONO.

#1: To use a pin as an analog input, it must not be used by other peripheral functions
multiplexed on the same pin. The pin TRIS bit must be setto ‘1’ (input) and the ANSEL
bit associated with RAO should be set to ‘1’ (analog input). However, we still want

RBO0/AN12 configured as a Digital input to for the switch. Therefore, we will clear ‘0’ the
AN12 bit in ANSELH.

© 2009 Microchip Technology Inc. DS41370C-page 45

PICKit™ 3 Debug Express

#2: The VCFGx bits in ADCON1 can select the ADC voltage references to use the AN2
and AN3 pins, VDD and Vss, or some combination. Since the demo board does not
have voltage references connected to AN2 and AN3, the ADC will be referenced to VDD
and Vss. This means an ADC result of ‘0’ corresponds to 0 Volts, or Vss. A result of
1023’ corresponds to about 3.3 Volts, or VDD. Including the values from #1, the
ADCONT1 setting for this lesson is

ADCON1 = 0;
FIGURE 3-37: ADCON2: A/D CONTROL REGISTER 2
R0 U0 R0 RAY-0 R0 RW-0 RAN-0 RAY-0D
ADFM | — | aAcar2 | acatt | Acato | Apcs2 | ADCS1 | ADCSO
bit 7) : '))) k bit 0
Legend:
R = Raadabla hit W = Writable bit U = Unimplamantad bit, read as O
-n = Value at POR 1" = Bilis set '0" = Bil is cleared x = Bit is unknown
bit 7 ADFM: A/ID Result Format Select bit
1 = Right justified
0 = Left justified
bit & Unimplemented: Read as '’
bit 53 ACQT2:ACQTO: AD Acguisition Time Select bits
111 =20 TAD
115 =16 Tap
101 = 12 Tap
100 =8 Tap
0lL=6TaDp
010 =4 Tap
001 =2 Tan
909 = 0 Taptl
bit 2-0 ADCS2:ADCS0: AD Conversion Clock Select bits
111 = Fre (clock derived from A/D RC osciltator)t!}
117 = Foscigd
101 = FoscMG
100 = Fosc/d
011 = Fre (clock derived from A/D RC oscillator)V
010 = Fosc/a2
001 = Fosc/8
000 = Foscf2
Note 1: Ifthe A'D FRC cock source is selected. a delay of one TCY (instruction cycle) is added before the AD

clock starts. This allows the SLEZP instruction to be executed before starting a conversion

#3: The ADC clock should be set as short as possible but still greater than the minimum
period “TAD” time, data sheet parameter 130. The minimum TAD time for the
PIC18F45K20 (as of this writing) is

1.4us. At a 1 MHz oscillator Fosc, selecting bits ADCS = Fosc/2 gives a 500 kHz ADC
clock. One clock period 1/500kHz = 2us, which is greater than the minimum TAD =
1.4us. Thus ADCSx = ‘000"

DS41370C-page 46

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

The ACTQx bits determine the acquisition time, and should take into account the
internal acquisition time Tacq of the ADC, data sheet parameter 132, and the settling
time of the application circuit connected to the ADC pin. From the data sheet, the
internal acquisition time Tacq = 1.4us over temperature. The application circuitis an RC
network formed by the potentiometer and capacitor C3, which has a very long settling
time. For this demo lesson, we’ll simply set ACQTx to the largest value, 20TAD or ‘111’.
20 TAD is 20 times the ADC Clock period, or 20 * 2us = 40us.

For result justification, we choose bit ADFM = 0 to the result is left-justified. This makes
it easy to get the 8 Most Significant bits of the result from ADRESH. Thus the ADCON2
configuration value is:

ADCON2 = 0b00111000

#4: The demo board potentiometer is connected to ANO, so Channel 0 is selected in
ADCONO. Bit ADON is set to ‘1’ to turn on the ADC peripheral. The GO/DONE bit is left
clear as we don’t wish to start a conversion yet.

ADCONO = 0b00000001

FIGURE 3-38: ADCONO: A/D CONTROL REGISTER O
REGISTER 19-1: ADCONO: A/D CONTROL REGISTER 0
U-0 u-o R/AN-0 RAWN-0 RWV-0 RAN-0 RAN-0 RAN-0
— | = CHS3 cHsz | cHs1 CHSO | GO/DONE | ADON
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1"=Bit is set ‘0" = Bit is cleared ¥ = Bit is unknown

bit 7-6
bit 5-2

bit 1

bit 0

Note 1:
=

Unimplemented: Read as '0'
CHS«<3:0>: Analog Channel Select bits

1101 = Reserved
1110 = Reserved
1111 = FVR (1.2 Volt Fixed Voltage Reference)(?)
GO/DONE: A/D Conversion Status bit
1 = A/D conversion cycle in progress. Setling this bit starts an A/D conversion cycle.
This bit is automatically cleared by hardware when the A/D conversion has completed
2 = A/D conversion completed/not in progress
ADON: ADC Enable bit
1 = ADC is enabled
¢ = ADC is disabled and consumes no cperating current

These channels are not implemented on PIC18F2XK20 devices
Allow greater than 15 ps acquisition time when measuring the Fixed Voltage Reference.

© 2009 Microchip Technology Inc.

DS41370C-page 47

PICKit™ 3 Debug Express

#5: To begin an ADC conversion, set bit 1 of ADCONQO, the GO/DONE bit. When the
conversion is done the hardware will clear that bit, so the GO/DONE may then be polled
to wait for the conversion to complete. Once the conversion is complete and GO/DONE
= 0, the ADC conversion result may be read from ADRESH and ADRESL.

3.7.3 Exploring the Lesson 7 Source Code

Open the lesson source files 07 ADC.cand 07 ADC.h in an MPLAB editor window if
they are not already open.

Of note is that the Timer0 setup code has been moved into a function and replaced with
a function call. Two new functions were added to support the ADC.

void Timer0 Init (void)

void ADC Init (void) unsigned char

ADC Convert (void)

The function prototypes have also been added to the header file, 07 ADC.h.

Inmain () before gettingtothe while (1) loop, the program makes two function calls
to set up the Timer0 and ADC peripherals using Timer0 Init () and ADC Init (),
respectively.

To change the LED rotation speed based on the potentiometer, the ADC conversion
value is used to set TimerO just after it overflows. The higher the value written to Timer0,
the less time it takes to overflow again, as the timer counts up from the written value.
This is accomplished with two new statements at the bottom of the while (1) loop:

TMROH
TMROL

ADC_Convert () ; // MSB from ADC
0; // LSB =0

The TMROH buffer is written with the 8 Most Significant bits of the ADC conversion, and
then is written with TimerO with a ‘0’ in the low byte on the TMROL assignment
statement. Recall from Lesson 5 that since TMROH is actually a buffer and not the
upper byte of the timer, and is written to the timer when TMROL is written. Thus, it must
be written first as it is here.

We can calculate the amount of delay for a given ADC value, knowing that

Timer0 Init () sets the TMRO prescaler to 1:4, and our oscillator is 1MHz. Timer0
will count at 4 * the instruction rate, or 4 * 1/(Fosc/4) =4 * 1/(1MHz/4) = 4 * 1/250kHz
= 16 us. The number of counts until overflow occurs is 0x10000 — (start count) where
(start count) is the value written to TMRO — The ADC result in the upper byte and 0x00
in the lower. The total delay is then the number of counts times the count rate. For an
ADC result of 0x81, the delay is (0x10000 — 0x8100) * 16 us = 0x7F00 * 16 us = 32512
* 16 us = 0.52 seconds.

3.74 Build and Run the Lesson 7 Code with PICkit 3 Debug Express

Build and program the Lesson 7 project, then Run the application in the debugger.
Turning the demo board potentiometer will affect the rotation speed of the LEDs. The
switch may be pressed to reverse the rotation.

Halt the Lesson 7 program. Note that several SFRs and variables have already been
added to a Watch window. Use Breakpoints and Step commands to explore the code.
Observe how the ADC result in ADRESH is affected by the potentiometer voltage, and
how this result is copied into TMRO.

DS41370C-page 48

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

See Section 19.0 “10-Bit Analog-to-Digital Converter (A/D) Module” in the
PIC18F45K20 Data Sheet (DS41303) for more information on the ADC peripheral.

Note: If TMROL is added to the Watch window, it will cause incorrect operation
when stepping through the following 2 lines of code:

TMROH = ADC Convert () ;

TMROL = O;
This is caused by the buffered nature of TMROH. When “Stepping Over” the
TMROH assignment statement, the MPLAB IDE will read the TMROL
register to update the value in the Watch window. When TMROL is read, the

upper byte of TMRO is loaded into the TMROH buffer, wiping out the value
written in the previous TMROH assignment statement.

One workaround to be able to add TMROL to the Watch window is to make
sure not to step from the TMROH to the TMROL statement. Set a breakpoint
on the TMROL assignment statement, and Run from the TMROH
assignment statement.

3.8 LESSON 8: INTERRUPTS

This lesson changes the Lesson 7 code to use interrupts to act on the switch press and
Timer0 events instead of polling them. The switch uses the RBO/INTO external interrupt
capability.

Key Concepts

- An interrupt is a hardware-based event that “interrupts” the program code to
execute a special function. When the interrupt function exits, program exe-
cution returns to where it left off.

- The PIC18FXXXX supports a single interrupt priority or two levels of inter-
rupt priority.

- A Low Priority interrupt can interrupt the main program. A High Priority inter-
rupt can interrupt the main program or a low priority interrupt.

- The directives #pragma interruptlow and #pragma interrupt are
used to define the interrupt functions.

3.8.1 PIC18FXXXX Interrupt Architecture

When a peripheral requires attention or an event occurs, it sets an interrupt flag. Each
flag has an interrupt enable bit that determines whether it will generate an interrupt to
the microcontroller or not. In the previous lessons, interrupt flags such as TMROIF were
polled, but did not create an interrupt as the enable bit was not set. The enable bits
allow only selected events to cause in interrupt. All interrupts are ORed together, and
then ANDed with a global interrupt enable.

FIGURE 3-39: SIMPLIFIED INTERRUPT LOGIC
Interrupt Fla -,
Interrupt Enable) E —
E =] i " Master Interrupt

A

Global Interrupt Enable

Other Interrupt Sources

© 2009 Microchip Technology Inc. DS41370C-page 49

PICKit™ 3 Debug Express

When an interrupt occurs and the Master Interrupt signal is asserted, the PIC
microcontroller finishes executing the current instruction, stores the next address on
the Return Address Stack, and then jumps to an interrupt vector. At the interrupt vector
it begins executing a function designated as the Interrupt Service Routine. When this
function exits, program execution returns to the address stored on the Return Address
Stack.

Interrupts allow hardware events to be acted upon very quickly and regardless of the
state of the main program because they cause the immediate execution of dedicated
code.

The PIC18FXXXX architecture supports up to two levels of interrupt priority, each of
which have a logic structure like that in Figure 3-37. Most interrupts have a Priority bit
associated with the interrupt flag and enable that assigns it to one of the two priority
levels. Using priority levels is optional, and the PIC18FXXXX may be configured to use
only one level priority.

When two levels of interrupt priority are used, an interrupt of either priority level may
interrupt the main program. However, only a high priority interrupt may interrupt a low
priority interrupt, and nothing may interrupt a high priority interrupt. As shown in Figure
3-38, when a low priority interrupt event occurs during execution of statement3 in the
main code, the program jumps to begin executing the low priority interrupt function.
During execution of the 1o statement?2, a high priority interrupt event occurs,
causing program execution to jump to the High Priority Interrupt function. When the
high priority function completes and exits, execution is returned to where it left off in the
low priority function. Similarly, when the low priority function completes and exits,
program execution returns to where it left off in the main code, at statement4.

FIGURE 3-40: PRIORITY INTERRUPT EXECUTION FLOW
{ ff main oode { /flow interrupt O0x18 { /f/high interrupt Ox08

statementl; lo_statementl; '_’l/-/" hi_statementl;
statement; lo_statement; hi_ statement;
statemantd; lo statement3; hi statement3;
statemantd; ww.__ lo_statemantd; hi_statemantd;
statement3; e 0 lo_statementd; hi_ statement3;
statementé; T 1 hi =tatemanté;
statemantT;)

statementB;

The high priority interrupt vector is at program memory address 0x0008. The low
priority interrupt vector is at program memory address 0x0018. If interrupt priorities are
not used, all interrupts jump to the high priority vector at 0x0008.

3.8.2 Exploring the Lesson 8 Source Code

The first thing to note is that the Directions variable is now global, so it may be
accessed in the Interrupt Service Routine functions.

When using interrupts, the interrupt vectors must be defined and placed at the
appropriate vector addresses using the #pragma code directives. An inline assembly
GOTO statement redirects program execution to the interrupt functions, whose name
serves as the GOTO argument.

DS41370C-page 50

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-41: DEFINE INTERRUPT VECTORS

[** I N T E R R U P T S 5k ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok k ok ko k ko k ok k ko k ok ok ok ok k ok ok ok /

// High priority interrupt vector

#pragma code InterruptVectorHigh = 0x08
void InterruptVectorHigh (void)

{

asm
goto InterruptServiceHigh //jump to interrupt routine
_endasm

// Low priority interrupt vector

#pragma code InterruptVectorLow =
0x18 void InterruptVectorLow (void)

{

asm
goto InterruptServiceLow //jump to interrupt routine _endasm

The Interrupt Service Routine functions themselves are then declared with the
#pragma interrupt directive for the high priority vector, and #pragma
interruptlow for the low priority. Note the names must match between the vector
GOTO argument, the #pragma attribute, and the function declaration name. The
interrupt functions may call other functions defined elsewhere in the source, though the
lesson source code does not do this.

FIGURE 3-42: INTERRUPT SERVICE FUNCTIONS

// Iterrupt Service Routines

#pragma interrupt InterruptServiceHigh// "interrupt" pragma for high priority
void InterruptServiceHigh(void)

{

//function statements
} // return from high-priority interrupt

#pragma interruptlow InterruptServiceLow // "interruptlow" pragma for low priority
void InterruptServiceLow (void)

//function statements
} // return from low-priority interrupt

As all interrupts of the same priority vector to the same function, it is necessary in the
function to examine which of the enabled interrupt flags caused the interrupt. Once the
flag is found so that peripheral or event may be serviced, the software must clear the
interrupt flag bit to reset the interrupt. In the lesson source code, the high priority
interrupt routine looks for the INTO pin interrupt INTOIF flag bit. Examples are shown in
the source code of how it might check for other enabled interrupts, such as Timer1
TMR1IF and the ADC ADIF although neither of these interrupts are enabled in the
lesson code. Similarly, the low priority vector checks for the TimerO flag TMROIF.
Setting Up Interrupts

Now that the source code has defined the interrupt vectors, and has functions to deal
with the interrupts, it must properly setup and configure the interrupting logic and
enable the individual interrupts it wants to use.

Timer0 and external pin interrupts are set up using the INTCONXx Special Function
Registers. Other interrupts are setup through a number set of peripheral interrupt
SFRs: PIRx, PIEx and IPRx. The PIRx registers contain the interrupt flags. The

© 2009 Microchip Technology Inc. DS41370C-page 51

PICkit™ 3

Debug Express

associated interrupt enable bits are in the PIEXx registers, and the IPRx register bits set
the interrupt priority as low or high. For detailed information the bits in these registers,
see Section 9.0 “Interrupts” of the PIC18F45K20 Data Sheet (DS41303).

FIGURE 3-43: LESSON 8 INTERRUPT INITIALIZATIONS

// Set up switch interrupt on INTO
INTCON2bits.INTEDGO = O0; // interrupt on falling edge of INTO (switch pressed)
INTCONbits.INTOIF = 0; // ensure flag 1is cleared
INTCONbits.INTOIE = 1; // enable INTO interrupt
// NOTE: INTO 1is ALWAYS a high priority interrupt
// Set up global interrupts
RCONbits.IPEN = 1; // Enable priority levels on interrupts
INTCONbits.GIEL = 1; // Low priority interrupts allowed
INTCONbits.GIEH = 1; // Interrupting enabled.

void Timer0_ Init (void)

{
// Set up Interrupts for timer
INTCONbits.TMROIF = 0; // clear roll-over interrupt flag
INTCON2bits.TMROIP = O0; // Timer0 1is low priority interrupt
INTCONbits.TMROIE = 1; // enable the Timer0 interrupt.

An interrupt is desired when the Demo Board button is pressed. Therefore, the
program utilizes the INTO functionality of the RBO pin to use it as an external interrupt
input pin. The interrupt is edge triggered, and we want it to interrupt on the falling edge
so the initial switch press is detected. The edge direction is set with
INTCON2bits.INTEDGO. INTO is always a high priority interrupt. The flag INTOIF in
INTCON is cleared before enabling the interrupt with INTOIE. Switch debouncing is
ignored for the sake of simplicity here, but would be recommended in a product
application.

The interrupt configuration for TimerO has been added to the Timer0 Init ()
function. First, we make sure the flag TMROIF is cleared, set the priority to low (0) with
TMROIP, and then enable the interrupt with TMROIE.

Enabling the individual interrupts has no effect until interrupts are enabled at the global
level. First, the IPEN bit in RCON is used to enable or disable priority interrupts. In
Lesson 8 it is set to enable priority interrupts. Low priority interrupts are enabled with
GIEL, and microcontroller interrupting is enabled with GIEH. Note that high and low
priority interrupts aren’t individually enabled with the two bits, as GIEH shuts off both
when it is off:

INTCONbits.GIEH INTCONbits.GIEL Interrupt Functions

0 0 No Interrupts; all interrupts disabled.
0 1 No Interrupts; all interrupts disabled.
1 0 High priority interrupts only enabled.
1 1 Both priority level interrupts enabled

In this way, all interrupts may be disabled with a single bit, GIEH in INTCON.

DS41370C-page 52

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-44: LESSON 8 INTERRUPT SFRS
INTCONZ: INTERRUPT CONTROL REGISTER 2
RAN-1 RIW-1 RAW-1 RIW-1 U-0 RIW-1 U-0 RIW-1
RBFU || iNTEDGO || INTEDG1 | INTEDG2 | — TMROIP — RBIP
bit 7 bit 0
INTCON: INTERRUPT CONTROL REGISTER
RAW-0 RIW-0 RIN-0 RAN-0 RAW-0 RIW-0 RIN-0 RA-x
GIE/GIEH || PEIE/GIEL [| T™RoIE]| iNTOIE RBIE || TMROIF INTOIF RBIFY
‘ g i 3 bit 0
RCON: RESET CONTROL REGISTER
RAN-0 RAw-111 uU-0 RIW-1 R-1 R-1 rw-0t) RIW-D
IPEN SBOREN — RI TO PD POR BOR
bit 0

In the Lesson 8 source code, all the statements to change the rotation direction are in
the INTO switch interrupt function, and the statements to rotate the LED display are in
the TMRO interrupt function. All that remains in the main program is a while () loop
that updates the PORTD register with LED_Display. This statement could have also
been placed in the TMRO interrupt function, but is left in the main program to illustrate
how the main program runs continuously and interacts with the interrupts.

Single Priority Interrupts

If only a single level of interrupts were used (RCON bit IPEN = 0), then it is only
necessary to define the interrupt vector at 0x0008, and a single Interrupt Service
Routine function with #pragma interrupt. All priority bit settings are ignored. The
function of the INTCON bits GIEH and GIEL become GIE and PEIE, respectively, with
the following functions:

INTCONbits.GIE INTCONbits.PEIE Interrupt Functions

0 0 No Interrupts; all interrupts disabled.

0 1 No Interrupts; all interrupts disabled.

1 0 Only interrupts enabled in INTCONx
enabled.
All PIEX interrupts remain disabled.

1 1 All interrupts, including those enabled in

PIEX registers, are enabled.

3.8.3 Build and Run the Lesson 8 Code with PICkit 3 Debug Express

Build and program the Lesson 8 project, then Run the application in the debugger.
Turning the demo board potentiometer will affect the rotation speed of the LEDs. The
switch may be pressed to reverse the rotation. Use breakpoints to explore the
interrupting functions.

© 2009 Microchip Technology Inc.

DS41370C-page 53

PICKit™ 3 Debug Express

3.9 LESSON 9: INTERNAL OSCILLATOR

Using the on-chip internal oscillator and PLL (Phase Locked Loop) of the
PIC18F45K20 is discussed. Clocks from 31 kHz up to 64 MHz can be generated
without requiring external oscillator components.

Key Concepts

- To use the internal oscillator block, set the OSC Configuration bits to
INTIO67 or INTIO7. The latter outputs the clock signal CLKO on the RAG6
pin.

- The OSCCON Special Function Register is used to set the base internal
oscillator frequency from 31 kHZ up to 16 MHz.

- The OSCTUNE register allows the internal oscillator frequency to be
adjusted on a fine scale and enables or disables the PLL.

- The 4x PLL may only be used when base frequencies of 8 MHz or 16 MHz
are selected in OSCCON. Enabling the PLL multiplies the base frequency by
4, providing clocks at 32 MHz and 64 MHz, respectively.

3.9.1 The Internal Oscillator Block

The internal oscillator block of the PIC18F45K20 generates two different clock signals.
The main output, INTOSC, is a factory calibrated 16 MHz clock source with postscaler
that can provide a range of clock frequencies down to 31 kHz.

The other output, INTRC, is a nominal 31 kHz clock source that drives peripherals such
as the Power-up Timer, the Fail-Safe Clock Monitor, the Watchdog Timer and the
Two-Speed Start-up feature.

When the oscillator block is set to provide a 31 kHz clock to the microcontroller, it can
be selected as a postscaled output of INTOSC, which has the benefit of calibrated
accuracy, or INTRC, which has the benefit of lower power consumption.

The oscillator block also contains a 4x PLL (Phase Locked Loop) frequency multiplier
that can increase the microcontroller clock source up to 32 MHz. The PLL is only
available when the internal oscillator block selected output is 8 MHz or 16 MHz. It will
multiply the base 4 MHz signal by 4 to 32 MHz, and the 8 MHz base clock to 64 MHz.
This allows the internal oscillator block to provide a range of 10 different software
selectable frequencies of 31 kHz, 250 kHz, 500 kHz, 1 MHz, 2 MHz, 4MHz, 8 MHz, 16
MHz and (with the PLL) 32 MHz and 64 MHz. Recall from previous lessons that the
default frequency on a Reset is 1 MHz.

FIGURE 3-45: SIMPLIFIED INTERNAL OSCILLATOR BLOCK DIAGRAM
4x PLL -
I CPU&
INTOSG o ELA L S Peripherals
16 MHz I T
— ! TR ™
INTRC : TRz . N
31 kHz a SO0kHz o |
i 250 kHz
. "
r » :| 31 kHz

DS41370C-page 54

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.9.2 Configuring the Internal Oscillator

The internal oscillator block is selected as the primary oscillator in the Configuration
bits. The OSC bits in the CONFIG1H Configuration Word are set to either INTIO67 or
INTIO7. When INTIOG67 is selected, the internal oscillator is the primary oscillator with
the external oscillator pins OSC2 and OSC1 available as RA6 and RA7 10. OSC =
INTIO?7 differs only in that RAG is not available; instead the internal instruction clock is
output as CLKO on that pin.

The two Special Function Registers that control the internal oscillator block in software
are OSCCON and OSCTUNE, shown in figures 3-44 and 3-45.

FIGURE 3-46: OSCCON: OSCILLATOR CONTROL REGISTER

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

RW-0 RAN-0 RAN-1 R/W-1 R-g R-0 RAN-0 RM-0
_ IDLEN | IRCF2 | IRCF1 [IRCFO | osTtsi!) IOFS | SC3S1 SCs0 |
|bit 7 bit 0 |
| Legend:
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0’ q = depends on condition
| -n = Value at POR 1" = Bit is set ‘0" = Bit is cleared x = Bit is unknown
bit 7 IDLEN: Idle Enable bit

1 = Device enters |dle mode on SLEE? instruction
0 = Device enters Sleep mode on 3LEEP instruction
bit 6-4 IRCF<2:0>: Internal Oscillator Frequency Select bits
111 =168 MHz (HFINTOSC drives clock directly)
110 =8MHz
101 =4 MHz
100 =2MHz
911 =1 MHz®
0 = 500 kHz
1 =250 kHz
5 = 31 kHz (from either HFINTOSC/512 or LFINTOSC directly)(@
bit 3 OSTS: Oscillator Start-up Time-out Status bit?
1 = Device is running from the clock defined by FOSC<2:0> of the CONFIG1 register
2 = Device is running from the internal oscillator (HFINTOSC or LFINTOSC)
bit 2 IOFS: HFINTOSC Freguency Stable bit
1 = HFINTOSC frequency is stable
0 = HFINTOSC frequency is not stable
bit 1-0 SCS<1:0>: System Clock Select bits
1x = Internal oscillator block
01 = Secondary (Timer1) oscillator
00 = Primary clock (determined by CONFIGT1H[FOSC<3:0>]).

Note 1: Reset state depends on state of the IESO Configuration bit.
2: Source selected by the INTSRC bit of the OSCTUNE register, see text.
3: Default outout freauency of HFINTOSC on Reset.

The IDLEN bit in OSCCON affects how the oscillator behaves in power managed
modes, and is not discussed further here.

The IRFCx bits determine the internal oscillator frequency. These are the outputs of the
postscaler. As Note 2 in Figure 3-44 indicates, the 31 kHz clock can be selected as
either a postscaled version of the INTOSC 8 MHz oscillator, on which all other
frequencies are based, or the INTRC low-power 31 kHz oscillator as discussed in
Section 3.9.1. This selection is made with the INTSRC bit in the OSCTUNE register.

© 2009 Microchip Technology Inc. DS41370C-page 55

PICKit™ 3 Debug Express

The IRFCx bits may be changed by software during program execution, allowing the
program to “throttle” the microcontroller execution speed to current processing needs.
This can save on power consumption when fast clock speeds aren’t required.

The OSTS and IOFS bits are read-only Status bits. The PIC18F45K20 has the option
to start-up running off the internal oscillator until an external oscillator circuit has
stabilized. This allows faster start-up of the microcontroller with external oscillators.
OSTS is used to alert the software when the clock source has switched over to the
external primary oscillator. This functionality is not covered further in this lesson.

The SCSx bits allow the software to switch the microcontroller clock source over to the
internal oscillator block even when an external oscillator has been selected in the
Configuration bits. The secondary oscillator may also be selected, which is the
low-speed low-power oscillator that is part of Timer1 and is usually run with a 32 kHz
crystal for Real-Time Clock (RTC) applications. In this lesson, the internal oscillator has
been selected as the primary oscillator in the Configuration bits, and SCS1:SCS0 = 00.

FIGURE 3-47: OSCTUNE: OSCILLATOR TUNING REGISTER
REGISTER 2-2: OSCTUNE: OSCILLATOR TUNING REGISTER
R/W-0 RW-0 R/W-0 R/W-0 R/W-0 RW-0 R/W-0 RW-0
INTSRC PLLEN(TUN5 TUN4 TUN3 TUN2 TUN1 TUNO
bit 7 bit0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as 0’
-n = Value at POR ‘" =Bitis set ‘0" =Bitis cleared x = Bitis unknown

bit 7 INTSRC: Internal Oscillator Low-Frequency Source Select bit
1= 31.25 kHz device clock derived from 16 MHz HFINTOSC source (divide-by-512 enabled)
0= 31 kHz device clock derived directly from LFINTOSC internal oscillator
bit 6 PLLEN: Frequency Multiplier PLL for HFINTOSC Enable bit(")
1= PLL enabled for HFINTOSC (8 MHz and 16 MHz only)
0= PLL disabled
bit 5-0 TUN<5:0>: Frequency Tuning bits

011111 = Maximum frequency

011110=

000001 =

000000 = Oscillator module is running at the factory calibrated frequency.
111111 =

100000 = Minimum frequency

Note 1: The PLLEN bit is active only when the HFINTOSC is the primary clock source (FOSC<2:0> = 100X) and
the selected frequency is 8 MHz or 16 MHz. Otherwise, the PLLEN bit is unavailable and always reads ‘0.

The 5 TUNXx bits in OSCTUNE allow small adjustments in the INTOSC oscillator
frequency. This can be used to calibrate the frequency more accurately than the factory
calibration, and adjust for drift over VDD and temperature changes.

The PLLEN bit enables the PLL, multiplying the INTOSC output by 4. Note that the PLL
may only be enabled for INTOSC = 8 MHz or INTOSC = 16 MHz. Enabling the PLL with
a 4 MHz base frequency gives a 16 MHz clock, and with a 16 MHz base frequency
gives 64 MHz.

For further information on the internal oscillator block, see Section 2.6 of the
PIC18F45K20 Data Sheet (DS41303).

DS41370C-page 56 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.9.3 Exploring the Lesson 9 Source Code

The Lesson 9 program code has a simple background loop in the main () function that
displays a binary count on the demo board LEDs, as shown in Figure 3-46. Each count
increment is delayed by 64,000 instruction cycles. As the clock frequency is changed,
the instruction rate changes and so the total time in seconds of the delay gets shorter
as the clock frequency increases. The effect is that the LED display will count faster as
the clock speed is increased.

At the start of the program, the internal oscillator is running at 250 kHz. Each press of
the demo board switch creates an interrupt that increases the clock frequency by a
factor of 2 up through 64 MHz, after which it returns to 250 kHz.

FIGURE 3-48: SOURCE CODE BACKGROUND LOOP

while (1)
{// delayand counton LEDs here.Interrupt handles switch and fregchanges

LATD =LED_Count++; //output countto PORTD LEDs
DelaylKTCYx (32) ; //delay 32,000cycles or about 1 secat 125kHz

}

A few other things of interest in the Lesson 9 source code are:

» The interrupts are configured for only a single level of priority, where interrupt pri-
orities are disabled. This differs from the Lesson 8 source code where interrupt
priorities were enabled.

* Instead of using ADCON1 to configure the switch input RBO as a digital input as
was done in previous lessons, the Lesson 9 source sets the Configuration bit
PBADEN = OFF. This causes all PORTB pins to default to digital, instead of ana-
log, inputs on a Reset.

» The Lesson 9 interrupt service function void InterruptService (void) dem-
onstrates calling another function void SetIntOSC(IntOSCFreq *ClockSet)
from within the interrupt service code.

3.94 Build and Run the Lesson 9 Code with PICkit 3 Debug Express

Build and program the Lesson 9 project, then Run the application in the debugger.
Pressing the demo board switch causes the program to change the oscillator frequency
during execution. As the oscillator frequency increases, the rate at which the LEDs
count increases.

© 2009 Microchip Technology Inc. DS41370C-page 57

PICKit™ 3 Debug Express

3.10 LESSON 10: USING INTERNAL EEPROM

The PIC18F45K20 microcontroller includes 256 bytes of on-chip EEPROM for data
storage. This lesson discusses reading and writing the internal EEPROM in software.

Key Concepts

- The 4 SFRs that control EEPROM operations are EECON1, EECON2,
EEDATA and EEADR.

- The internal EEPROM is written and read one byte at a time.

- To write EEPROM, a short code sequence must be written to EECON2
immediately before starting the write operation. This is to prevent inadvertent
EEPROM writes.

- Writing a byte to EEPROM takes a period of time before the write cycle is
complete. The microcontroller will continue to execute code during an
EEPROM write cycle.

3.10.1 Reading a data byte from EEPROM

The EECON1 Special Function Register controls operations to both the internal
EEPROM as well as the program memory Flash array.

FIGURE 3-49: EECON1: EEPROM CONTROL REGISTER 1

RA-x RVY-x -0 RAN-D RMY-x -0 RS-0 RS-0
EEPGD | cCFes | - | FREE | WRERR™ | WREN | wR | RD

bit 7 bit 0

Legend: 3 = Set only b (cannol be cleared in software)

R = Readabbe hit W = Writahle big U = Unimplemeanied bit, résd as ‘0

-n = Valee al POR 1" = Bit ks sed 0" = Bitl is cheared ¥ = Bit i unknown

bit T EEPGD: Flash Program of Data EEFROM Mamary Select bit

1 = Access Flash program mamary
0= Access data EEPROM memaory
bit G CFGS: Flash Frogramfata EEFROM or Configuration Select bit
= Access Configuration regisiers
0 = Access Flash program of data EEPROM memary
bit & Unimplemented: Read as ‘¢’
bit 4 FREE: Flash Row Erase Enable bit
1 = Erase the program memory row addressed by TRLPFTR an the next WR command (clearad by
camplation of erass oparation)
0 = Paerlorm wiite onky
bit 3 WRERR: Flazh Program/Data EEPROM Error Flag bitd!
1= A write operation Is prematurely terminated (any Resel during sedf-limed programming In normal
oparation, or an Improper write atiemot)
0= The write ogeration completed
bit 2 WREN: Flash ProgramfData EEFROM Write Enable bit
1= AlGWS wWiile cyches 1o Flash programydata EEPROM
0 = Inhins wnte cycles to Flash programidata EEFROM
bit 1 WR: White Conbrol bit
1= Initiabes a cata EEPROM erasaiwiite cycle Of @ program memory erase cych of write cyck
{Tha operation i3 sel-imed and the bi i3 cleared Sy hardware onca write is complete. The WR bit
can only e se (not cheared) in softwars.)
0 = \Write cycls to the EEPROM i complats
bt RD: Read Control bit
1 = Indtiales an EEPROM read (Read takes one cycle. RD iz dearsd in hardware. The RD bit can only
b et (nod chearad) in safware. RD hit cannot be 28t when EEPGD = 1 er CFGR =1)
0= Does nof infiate an EEFROM read

Note 1: When 3 WRERR occurs, the EEPGD and CFGS bitg are not cleared, Thig allows tracing of the smor
condition,

DS41370C-page 58 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

A read of an EEPROM byte begins by clearing the EEPGD bitin EECON1. This selects
the data EEPROM array for access. The CFGS bit should also be cleared during an
EEPROM access; it is only set to access the Configuration bit locations.

The byte address of the data EEPROM location to be read is loaded into the EEADR
register. The RD bitin EECON1 is then set to execute the read. On the next instruction
cycle, the value of the read EEPROM location is available in the EEDATA register.
Figure 3-50 shows a function that reads a byte of EEPROM.

FIGURE 3-50: DATA EEPROM READ

unsigned char EEPROM Read(unsigned char address)

{ // reads and returns the EEPROM byte value at the address given

// given in "address"

EECON1bits.EEPGD = 0;// Set toaccessEEPROMmemory
EECON1bits.CFGS= 0;// Do notaccessConfigregisters

EEADR = address;//Load EEADRwith address of 1location to write.

// execute the read

EECONlbits.RD = 1;//Set the RDbit to execute the EEPROM read
//The value read is ready the next instruction cycle in EEDATA. No wait is
//needed.

return EEDATA;

}

3.10.2 Writing a data byte to EEPROM

Similar to a read, a write to the internal EEPROM must clear the EEPGD and CFGS
bits in EECON1 to access the internal EEPROM array. The data value to be written is
then written to the EEDATA register. The address of the byte to be written is loaded into
EEADR.

Before a write can take place, the WREN bit in EECON1 must be set, or the write will
not occur. It is also necessary to write a sequence of two bytes, values 0x55 and 0xAA
to EECON2 immediately before beginning the write by setting the WR bit in EECON1.
Both the WREN bit and the EECON2 sequence are to protect against inadvertent
writes to EEPROM and ensure the integrity of EEPROM values.

The three step sequence of:

EECON2 0x55;
EECON2 = O0xAA;
EECONlbits.WR = 1;

must be completed in this order, without other statements or interruptions or the write
will not execute. Therefore, if interrupts are enabled, they should be disabled before the
sequence and re-enabled after the WR bit is set.

EEPROM writes take some time to erase and program the byte in the array. This time
is listed as parameter D122 in the data sheet Section 26.0 “Electrical Characteristics”,
and is usually several ms. During this time, the PIC18F45K20 microcontroller continues
to execute program code. The program may determine when a write has completed by
polling or by an interrupt generated by the EEPROM module.

In the example write function in Figure 3-49, the code waits for the EEPROM write to
complete by polling the WR bit of EECON1. When the write is complete, this bit will be
cleared. Alternatively, the program can be alerted that the write has been completed
with an interrupt. The EEPROM module will set the EEIF bit in PIR2 when the write
completes.

© 2009 Microchip Technology Inc. DS41370C-page 59

PICKit™ 3 Debug Express

For more information on the data EEPROM memory see Section 7.0 of the
PIC18F45K20 Data Sheet (DS41303).

FIGURE 3-51: DATA EEPROM WRITE
void EEPROM Write(unsigned char address, unsigned char databyte)
{ // writes the "databyte" value to EEPROM at the address given
// location in "address".

EECON1lbits.EEPGD = O0; // Set to access EEPROM memory
EECON1bits.CFGS = 0; // Do not access Config registers
EEDATA = databyte; // Load EEDATA with byte to be written
EEADR = address; // Load EEADR with address of 1location to write.
EECONlbits.WREN = 1; // Enable writing
INTCONbits.GIE = 0; // Disable interrupts
EECON2 = 0x55; // Begin Write sequence
EECON2 = OxAA;
EECONlbits.WR = 1; // Set WR bit to begin EEPROM write
INTCONbits.GIE = 1; // re-enable interrupts
while (EECON1bits.WR == 1)
{ // wait for write to complete.
i
EECON1bits.WREN = 0; // Disable writing as a precaution.
}

3.10.3

The Lesson 10 program writes all 256 bytes of the data EEPROM memory, writing each
location with value = 255 — address. For example, the EEPROM byte at address 0x09
is written with value OxF6 = 246.

Once all locations have been written, the program ends in an infinite while (1) loop.

Exploring the Lesson 10 Source Code

3.10.4 Build and Run the Lesson 10 Code with PICkit 3 Debug Express

Build and program the Lesson 10 project, then Run the application in the debugger.
The EEPROM memory may be viewed in the MPLAB IDE by selecting view >
EEPROM.

Note: The EEPROM window in the MPLAB IDE does not update with new

EEPROM values during debugging.

As the EEPROM memory window does not update with changed EEPROM byte values
during debugging, it is necessary to select Debugger > Read to see the current
contents of the data EEPROM memory. However, doing so will cause a program Reset.

DS41370C-page 60

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.11 LESSON 11: PROGRAM MEMORY OPERATIONS

Topics covered in this include reading, writing and erasing locations in the Flash
program memory, protecting areas of program memory in the Configuration bits, and
considerations for using C pointers to program memory.

Key Concepts

- Pointers declared with the ROM keyword point to program memory loca-
tions.

- The EECON1 and EECON2 SFRs control program memory erase and write
operations.

- Unlike Data EEPROM memory, the Flash program memory must be explic-
itly erased before it may be written.

- The CPx (code-protect) Configuration bits prevent programmers from read-
ing ranges of a microcontroller’'s program memory.

- The WRTx Configuration bits prevent software write operations on ranges of
program memory, and the EBTRXx bits prevent software read operations on
ranges of program memory.

- ROM pointers and reading Flash program memory

The MPLAB C Compiler simplifies working with data stored in program memory by
allowing pointers to program memory to be declared. The pointer address length is
either 16 or 24 bits, depending on which “Code Model” is selected in the project
settings. The “Small Code Model” will generate 16-bit pointers, while the “Large Code
Model” generates 24-bit pointers. For the best microcontroller performance, the “Small
Code Model” with 16-bit pointers should be used. The “Large Code Model” is
necessary for devices that have more than 64 KB of Flash program memory to be able
to point to locations above the first 64 KB of program memory. (The maximum of a
16-bit value is 65536, which is 64 x 1024 or 64K).

The Code Model settings may be changed in the MPLAB IDE by selecting Project >
Build Options... > Project. This brings up the Build Options dialog. Select the MPLAB
C18 tab and then “Memory_Model” from the “Categories” drop-down box as shown in
Figure 3-52.

An individual pointer declaration may also use the keywords near or far to explicitly
specify the pointer address length. Use of either keyword overrides the code model
settings.

near rom char *rom pointer; // 16-bit pointer to program memory far
rom char *rom pointer; // 24-bit pointer to program memory

For more information on project memory models, see Chapter 3 of the “MPLAB C18 C
Compiler User’s Guide” (DS51288).

© 2009 Microchip Technology Inc. DS41370C-page 61

PICKit™ 3 Debug Express

FIGURE 3-52: PROJECT CODE MODEL SETTINGS
Build Options For Project “11 Program Memory. mcp” E|E|
Diectones Trace | MPASM/CT7/C18 Sute
MPASM Aszembles | MPLINE Linker ' MFLAB C18

Categones: | MEIIeRuige]

Generate Command Line

Code Model
() Small code model [¢= E4K bytes)
(O Large code model [> 64K bytes)
[Data Modsl

(%) Large data moded [all RAM banks)
() Small data model [access FAM only]

Stack Model
{®) Smogle-bark madel
() Multi-bank model

it clobral eathng: Restare Defauits
|-Ou- -Ot- -0b- -0p- -Or- -0d- -Dpa-

[] Use Altemate Settings

[ok [Cancel | ppeh

Once a pointer to program memory has been declared, it can be pointed to a declared
location in program memory, for example a #pragma romdata array, or an explicit
address.

#pragma romdata mystrings = 0x100

rom char hello str[] = "Hello!";
rom_pointer = hello_str; // = &hello str[0]
char letter = ‘*rom pointer

The first letter ‘H’ of the hello str[] array in program memory is now pointed to by
rom_pointer. The value of the variable letter is now ‘H’

rom pointer = (near rom char *)0x320;
Now, rom_pointer points to the program memory byte at address 0x320.

Reading Flash program memory then simply requires declaring a ROM pointer and
using an assignment statement to read the pointer value.

DS41370C-page 62

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

3.11.1 Erasing and Writing Flash Program Memory

Unlike writing Data EEPROM Memory, writing Flash program memory requires that the
locations being written are erased first. When erased, a program memory location has
all bits set to ‘1’. Thus an erased byte has the hex value 0xFF. Writing a program
memory location sets the appropriate bits to ‘0’, but a write cannot set a bit ‘1’. Also
different from EEPROM operations is that program memory erases and writes cannot
operate on a single byte, but instead operation on “blocks” of a particular number of
bytes.

The PIC18F45K20 erase block size is 64 bytes. This means it will always erase 64
sequential bytes at once, and the block must start at an address that is a multiple of 64.
For example, we could erase the 64 bytes from address 128 through 191 at once, but
not the 64 bytes from address 100 through 163.

To erase a 64 byte block of program memory, we use a rom pointer to set the address
of the block to be erased, and use EECON1 to control the erase. Setting the pointer
address puts the address in the TBLPTRx Special Function Registers. These 3
registers hold the address for program memory operations with TBLRD and TBLWR
assembly instructions. The MPLAB C Compiler handles these tasks for us. The
EEPGD bit, EECON1, is set to ‘1°, so the operation affects program memory and not
data EEPROM. The CFGS bit is setto ‘0’, as we do not want to select the Configuration
bits. To select an erase operation as opposed to a write operation, bit FREE of
EECON1 is setto ‘1’. WREN is then set to ‘1’ to enable write/erase operations.

// point to address 2176, which is a multiple of 64

rom pointer = (near rom char *)0x880;

EECON1lbits.EEPGD = 1; // point to flash program memory
EECON1lbits.CFGS = 0; // not configuration registers
EECON1lbits.FREE = 1; // we're erasing
EECON1lbits.WREN = 1; // enable write/erase operations

Next, the EECON2 sequence must be followed as with data EEPROM writes, and the
WR bit of EECON1 is set to initiate the write.

INTCONbits.GIE = O0; // Disable interrupts

EECON2 = 0x55; // Begin Write sequence

EECON2 = OxAA;

EECON1lbits.WR = 1; // Set WR Dbit to begin EEPROM write
INTCONbits.GIE = 1; // re-enable interrupts

As with a data EEPROM write, an erase or write to Flash program memory takes up to
several ms to complete. While there is an active erase or a write operation to program
memory, all microcontroller program execution is halted since it is possible the
microcontroller might attempt to execute instructions from the locations being erased
or written. This would be illegal, as the program memory location’s value is in an
indeterminate state until the operation has completed.

The PIC18F45K20 write block size is 32 bytes. This requires that we write 32
sequential bytes at a time. As with erasing, the first byte must be at an address that is
a multiple of the block size, 32.

The sequence for writing program memory is very similar to that for erasing. The
differences are that a ROM pointer is used to write the 32 locations, and that the
EECONT1 bit, FREE, is cleared to select a write operation. Don’t forget that the locations
to be written must be erased first!

© 2009 Microchip Technology Inc. DS41370C-page 63

PICKit™ 3 Debug Express

When the 32 locations are written with the pointer, they are not actually written to
program until the completion of the entire sequence. The pointer writes actually store
the data in 32 temporary hardware registers. When the actual write sequence is
executed, it is the contents of this 32-byte buffer that is written to the program memory
array. For example, we might use a for loop to write the contents of a RAM array to
these buffers using a ROM pointer.

for (i = 0; 1 < 32; i++)

i(rom_pointer + 1) = ram arrayl[i]l;// write to the holding registers

}
This data is not actually in program memory yet, and won’t be until the entire write
sequence is completed as shown in Figure 3-51.

Note: The program memory block that is written to is determined by the address
in the TBLPTRU: TBLPTRH:TBLPRTL Special Function Registers, exclud-
ing the 5 Least Significant bits. These bits are excluded to ensure the write
block begins on a 32-byte boundary. Therefore, it is critically important
that the pointer address is not incremented past the last address in
the block. If this occurs, the 32 bytes will be written at the next block
boundary instead of the intended one.

As an example for the above note, suppose using the following code we intended to
write to the 32 block of program memory from address 0x100 to 0x11F. The data would
actually be written to address 0x120 because the pointer is incremented to address
0x120 after the last write.

rom_pointer = (near rom unsigned char *)0x100;
for (1 = 0; 1 < 32; 1++)
* (rom_pointer++) = ram arrayl[i]; // write to the holding registers

}

// after the for loop, the rom pointer address value is 0x120.

If the rom pointer value were left at 0x11F, the data would be written as intended
started at 0x100.

DS41370C-page 64 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-53: EXAMPLE PROGRAM MEMORY WRITE FUNCTION

unsigned char ProgMemWr32 (unsigned int address, wunsigned char *buffer ptr)

{ // NOTE: program memory must also be erased first.
near rom unsigned char “*ptr;
char 1i;
ptr = (rom unsigned char *) (address & OxFFEO);// ensure write starts on 32-byte boundary
for (1 = 0; 1 < 32; 1i++)
{
*(ptr + 1) = buffer ptrli]; // write the data into the holding registers
}
EECON1bits.EEPGD = 1; // write to flash program memory
EECON1bits.CFGS = 0; // not configuration registers
EECON1bits.FREE = 0; // we're not erasing now.
EECON1lbits.WREN = 1; // enable write/erase operations
// execute code sequence, which cannot be interrupted, then execute write32
INTCONbits.GIE = 0; // Disable interrupts
EECON2 = 0x55; // Begin Write sequence
EECON2 = OxAA;
EECONlbits.WR = 1; // Set WR Dbit to begin 32-byte write
INTCONbits.GIE = 1; // re-enable interrupts
EECON1bits.WREN = 0; // disable write/erase operations

}

3.11.2 Protecting Program Memory in the Configuration Bits.

The program is divided into sections that can individually be protected by setting the
appropriate Configuration bits. The protections available are:

Code Protect — The CPx bits prevent microcontroller programmers such as the
PICkit 3 from reading the contents of program memory in the address range asso-
ciated with the particular CPx Configuration bit. If a programmer attempts to read
a code-protected section of memory, all locations will read as value 0x00. This
prevents other parties from stealing proprietary program code.

Write Protect — When a WRTx Configuration bit is ON, then program memory
erase or write operations are prohibited from working on the associated range of
memory. This could be used to protect a bootloader from accidental corruption by
inadvertent application program memory writes or erases.

Table Read Protect — The EBTRX bits, when asserted, prevent program memory
locations being read from instructions executing in another program memory
block. For example, if EBTR3 was asserted, then program memory locations from
0x6000 to Ox7FFF by any code executing from program memory locations 0x0000
to Ox5FFF. Locations in the block 0x6000 to Ox7FFF could still be read by code
executing in that block. This could be used, for example, to prevent using a boot-
loader to read out sensitive code-protected data.

Once these protective Configuration bits have been asserted (set to ON), they cannot
be turned off or changed without a programmer executing a Bulk Erase on the
microcontroller, which erases all program memory and data EEPROM memory. It is
possible to prevent other Configuration bits from being changed after the device is
initially programmed using the WRTC Configuration bit.

© 2009 Microchip Technology Inc.

DS41370C-page 65

PICKit™ 3 Debug Express

3.11.3 Exploring the Lesson 11 Source Code with PICkit 3 Debug

Express

At compile time, when the project is built, the Lesson 11 source code places three
strings in Flash program memory at address 0x100:
#pragma romdata mystrings = 0x100
"Hello!";
rom char mchp str[] = "Microchip"; rom char fill 60[] =

"012345678901234567890123456789012345678901234567890123456789";

After building the project, the strings can be seen in program memory by opening the
Program Memory window in the MPLAB IDE using View > Program Memory.

rom char hello_str[] =

FIGURE 3-54: STRINGS IN PROGRAM MEMORY

M Program Memory

oo oz 04 05 o8 ok oc OE ASCIT
DOF0 D?FD 0012 0012 FFFF FFFF FFFF FFFF FFFE cvvivvave sainvvvas
0100 6548 6C6C 216F 4DO0 6368 6F72 6863 7069 Hello!.M icrochip
0110 3000 3231 3433 3635 3637 3039 3231 3433 ,0123456 78901234
0120 3635 3837 3039 3231 3433 3535 3837 3039 56789012 34567890
0130 3231 3433 3635 3837 3035 3231 3433 3635 12345678 90123456
0140 3837 3039 3231 3433 3635 3837 0039 FFFF 78901234 56789...
0150 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ...viive savvvnns
0160 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF .uuivvis sasinias
0170 FFFF FFFF FFFF FFFF FFFF FFFF TFFF FFFF it i
0160 FFFF' FFFF FFFF FFFF FFFT FFFF FFEF FFFF siviiivs seiwiais
The program code doesn't start until address 0x280.
Build and program the Lesson 11 code and set a breakpoint on the first pointer
assignment statement as shown in Figure 3-55.
FIGURE 3-55: BREAKPOINT ON POINTER ASSIGNMENT

I }PLAB IDE Editor

11 Program Memory.e | 11 Pragram Memarp.h |

&7
| |2 ff read using a pointer to data
JEES R | rou_pointer = hellp_str: /f = ghello_str(d]
| |70
| 71 do
| 72 1
;?3; singlechar = *(rom pointer + it+);
i ?§ } while (singlechsx = 0); A4 string is terminated with 0x00 value.

Run the program until it stops at the breakpoint. Step through the do while loop in
Figure 3-55 and observe the characters of the hello str[] string are read into the
singlechar variable one at a time until the terminating ‘0’ value of the string is
reached.

The next statement demonstrates reading from an explicit program memory address
using a function:

singlechar = ProgMemRdAddress (0x107); // returns 'M' from "Microchip".

DS41370C-page 66 © 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

Step into the following statement and through the function, which erases a 64-byte
block of memory that the strings are stored in.

// Erase the 64 bytes starting at 0x100

ProgMemErase64 (0x100) ;
After completing the erase, select menu Debugger > Read. In the Program Memory

window, the 64 bytes of program memory starting at address 0x0100 where the strings
were stored have been erased, as shown in Figure 3-56.

FIGURE 3-56: ERASED 0X0100 TO 0X013F
B Program Memory - _
| Address | oo | o2 | 04 | 06 | 08 | oa | oc | oE ASCII B
OOFD D7FD 0012 0012 FFFF FFFF FFFF FFFF FFFF . .iicoss -ascasas
0100 FFFE: FFFE FEFF FEFF FFFF EFFE FEFF FEFP Ji.iddaa wasanias
0110 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ...iicus coaiaaess
0120 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF .ciaacis wesans
0130 FEFF FFFF FFFF FFFF TIFFF FFFF FFFF FFFF . iiiiiin nesnncns
0140 3837 3039 3231 3433 3635 3837 0039 FFFF 78901234 S6789...
0150 YFFF. FEPF FFFF FFFF FFFF PFFF FEFP FFFF ivwiaes wuawuiaas
n1&n FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF ..o iccns oenacans
The remaining code creates a 32-byte buffer in RAM and fills it with the alphabet
characters in uppercase, plus a few punctuation characters at the end. This buffer is
then written to the 32-byte block of program memory starting at 0x0100 that was just
erased. Since we read program memory, we'll have to reset the debugger. Select
Debugger > Reset > Processor Reset. Right-click on the source code and select
Breakpoints > Remove All Breakpoints from the pop-up menu to clear the breakpoint
we set earlier. Run the program. After running for a few seconds, select Debugger >
Halt. The program should be stopped at final while (1) loop. Select Debugger > Read
again and we can see that the write to program memory was successful.
FIGURE 3-57: PROGRAM MEMORY WRITE RESULTS
M Program Memory
Address | 00 | 0z | 04 | o6 | o8 | ox | oc | oE | ASCII |
OOFD D7FD 0012 0012 FFFF FFFF FFFF FFFF FFFF oo......
0100 4741 4443 4F45 45497 4Ah99 4C4F 94E4D S0O4F ABCDEFGH IJELNNOF
0110 5251 5453 S655 5857 5459 S5C5B SESD H0S5F OQRSTUVHE YZ[y]1*
0120 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF . ovcunrn vrnnvens
0130 FFFF: 'FFEF' FFEF FFEF' FFFF "FFFF TFFFP FFFF sacasoss snnuaiass
0140 3837 3039 3231 3433 3635 3IOIT O03IS FFFF 78901234 56789...

© 2009 Microchip Technology Inc.

DS41370C-page 67

PICKit™ 3 Debug Express

3.12 LESSON 12: USING THE CCP MODULE PWM

FIGURE 3-58:

This lesson gives a brief introduction to using the Pulse Width Modulation (PWM)
functionality of the Capture/Compare/PWM (CCP) peripheral of the PIC18F45K20.

Key Concepts

- The PWM time base (frequency) is determined by Timer2 and the PR2
Special Function Register.

- PWM operation of the CCP module is selected in the CCPxCON SFR.

- Up to 10 bits of resolution are possible, with the 8 MSbs of the duty cycle in
CCPRXL, and the 2 LSBs in CCPxCON.

- The actual amount of duty cycle resolution depends on the value of the PR2
register.

3.12.1 PWM Overview

In short, Pulse Width Modulation is a square wave of a given frequency where the duty
cycle of the period is varied. The duty cycle is a ratio of how long the signal is high to
the total length of the period. For example, a waveform with a frequency of 250 Hz has
a period of 4ms. For a PWM signal with a 25% duty cycle, the waveform would be high
for 1ms and low for 3ms (and then repeat). A PWM signal with 50% duty is high for 2ms
and low for 2ms, while a 75% duty cycle would be high for 3ms and low for 1ms.

EXAMPLE PWM DUTY CYCLES

=
n

'S
3
7

P
3
]

B
=
1]

LS]
=
"

FY
=
]

= 25% Duty Cycle _| F] |—| |—| |_I
= 50% Duty Cycle —| |—| | l | _‘ _

= 75% Duty Cycle |_| |_| I_’ |_| I_

4 ms

!ZI‘I‘IS.

4ms

Pulse Width modulation is used in a variety of applications, including communications,
motor control, audio and analog outputs, and lighting. In this lesson, the brightness of
a demo board LED will be controlled with the output of the PWM. The LED is only on
during the high portion of the PWM period, and is off during the low period. As the duty
cycle is decreased, the LED is on for a shorter and shorter portion of the PWM period,
so it appears dimmer. The frequency is set high enough that the human eye cannot

detect the individual blinks of each period, but sees the LED light as continuously on.

3.12.2 Using the CCP Module

Timer2 is used to set the period, or frequency, of the PWM waveform. Timer2 operation
is very similar to TimerO discussed in Lesson 5, with a few differences. Namely, Timer2
is always an 8-bit timer.

DS41370C-page 68

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

Timer2 also has a postscaler, but the postscaler does not affect the CPP module
operation PWM time base, so its settings are “don’t care.” The Timer2 module also has
a Period Register, known as PR2. This Special Function Register is the maximum to
which Timer2 can count before being reset to 0.

Normally, an 8-bit timer would count up to 255 before resetting to 0 and beginning to
count again. With the PR2 register, the timer counts up to the value in PR2. When it
reaches this value, the timer is reset to 0. For example if PR2 = 3, then Timer2 would
count 0-1-2-3-0-1-2-3-0-1-2-3- etc.

The count cycle from zero up until Timer2 reaches the PR2 in conjunction with the timer
prescaler (which determines how long each timer count takes) determines the PWM
frequency. The time between each reset to 0 in Timer2 is the PWM period. For
example, assume we want a PWM frequency of 62.5 Hz, which has a period of 16 ms.

Our clock is the internal oscillator block default, 1 MHz, which gives a 250 kHz
instruction rate. 250,000 Hz/62.5 Hz = 4000. Thus, we need to count 4000 times at 250
kHz before each Timer2 Reset. However, Timer2 is 8 bits and can count to a maximum
of 255. So we must use the prescaler to slow down the counting. Timer2 has 3
prescaler options: 1:1, 1:4, or 1:16 (Figure 3-59). 4000/256 = 15.6 so it requires a
prescaler of 1:16.

With the prescaler set to 1:16, the count frequency of Timer2 is 250,000 Hz/16 = 15625
Hz. To get our PWM frequency of 62.5 Hz, Timer 2 must count 15625/62.5 = 250 times.
Since Timer2 starts at 0, we set PR2 = 249, so it counts 0-249 (250 counts), resets to
zero, and counts back to 249. A simplified diagram of the PWM module is shown in

Figure 3-60.
FIGURE 3-59: T2CON: TIMER2 CONTROL REGISTER

u-0 RANW-0 RAW-0 RW-0 RW-0 RAW-0 RW-D RAN-0

— | T20UTPS3 | T20UTPS2 | T20UTPS1 | T20UTPSO | TMR2ON | T2CKPS1 | T2CKPSO
hit 7 bit O
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as 0
-n = Value at POR 1" = Bit is set 0' = Bit is cleared ¥ = Bit is unknown
Lit 7 Unimplemented: Read as ‘0

hit 6-3

it 2

bit 1-0

T20UTPS3:T20UTPS0: Timer2 Output Postscale Select hits
2000 =1:1 Postscale
2001 = 1:2 Postscale

-
-

1111 = 1:16 Postscale

TMR2ON: Timer2 On bit

1 = Timer2 is on

0 = Timer2 is off

T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
20 = Prescaleris 1

21 = Prescaleris 4
1x = Prescaler is 16

© 2009 Microchip

Technology Inc. DS41370C-page 69

PICKit™ 3 Debug Express

FIGURE 3-60: SIMPLIFIED PWM BLOCK DIAGRAM

CCPR1L

CCP1CON<5:4>

[|

o

Comparator

i

TMR2

{MOTE)

1L

Comparator

clear

Claar

PWM pin

T

PR2

NOTE: To create a 10-bit timebase, the 8-bit TMR2 register is concatenated
with the 2-bit internal Q clock, or the 2 most significant bits of the prescaler.

Now that the frequency has been determined, it is necessary to set up the CCP1
module for PWM using the CCP1CON register. Bits CCP1Mx determine the module
mode; there is only one value to select for PWM, CCP1Mx = 0b11xx where the X’ bits
are “don’t care”, so 0b1100 will work. The two DC1Bx bits in CCP1CON are the 2 Least
Significant bits of the 10-bit PWM duty cycle value. The 8 Most Significant of the 10 bits

are written to CCPR1L.

The duty cycle value is determined by the duty cycle percentage (DC%) times the 10-bit
time base (PR2 * 4). DCValue = DC% * (PR2 * 4). For example, to get a duty cycle of
50%, the value would be 50% * (250 * 4) = 500. 500 decimal is 0x1F4 hex or Ob01 1111
0100 binary. The 8 Most Significant bits, 0b01 1111 01 or Ox7D, are written to CCPR1L,
and the 2 LSbs are written to the DC1B1 and DC1BO bits in CCP1CON.

DS41370C-page 70

© 2009 Microchip Technology Inc.

PICkit™ 3 Debug Express Lessons

FIGURE 3-61: CCPXCON: CCPX CONTROL REGISTER
u-0 U-0 RAN-O RAN-0 RIw-0 RAN-0 RAN-0 RAW-0
— — DCxB1 OCxBO CCPxM3 CCPxM2 CCPxM1 CCPxMOD
bit 7 hit 0
Legend:
R = Readable bit W = ‘Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR 1" = Bit is set ‘0" = Bit is cleared ¥ = Bit is unknown

bit 7-6
bit 5-4

hit 3-0

Unimplemented: Read as ‘0"

DCxB1:DCxB0; PWM Duty Cycle bit 1 and bit 0 for CCPx Module

Capture mode;

Unuzad.

Compare mode:

Unused

P'WM miode:;

Thesa bits are the two LSbs (bit 1 and bit 0) of the 10-bit WM duty cycle. The eight MShs (DCxS:DCx2)
of the duty cycle are found in CCPRxL.

CCPXM3:CCPxM0: CCPx Module Mode Select bits

0000
000l
QaLo
01l
Q100
0101
0110
0111
1000
1001
1010

1011

= Capture/Compare/MWM disabled (resets CCPx module)

Reserved

Compare mode, toggle output on match (CCPxIF bit is set)

Reserved

Capture mode, every falling edge

Capture mode, every rising edge

Capture mode, every 4th nsing edge

Capture mode, every 16th rising edge

Compare mode, initalize CCFx pin low; on compane match, force CCFx pin high (CCPXIF bit is set)
Compare mode, infialize CCPx pin high; on compare match, force CCPx: pin low (CCPxIF bit is set)
Compare mode, generate software interrupt on compare maich (CCPxIF bit is set, CCPx pin
reflects VO state)

Compare mode, tngger special event; reset timer, CCP2 match starts A/D conversion (CCPxIF
it is set)

o = PYWM mode

For more information on Timer2 see Section 13.0 “Timer2 Module” of the
PIC18F45K20 Data Sheet (DS41303). More info on the CCP module PWM
functionality can be found in Section 15.0 “Capture/Compare/PWM (CCP) Module”,
and Section 15.4 “PWM Mode”.

3.12.3 Exploring the Lesson 12 Source Code

The PWM signal from the CCP1 module is normally output on the CCP1/RC2 pin.
However, this pin is not connected to any demo board LEDs. To output a signal on an
LED pin, the Enhanced CCP module (ECCP) on the PIC18F45K20 is utilized. This
functionality is selected in the upper 2 bits of CCP1CON (P1Mx), which are set to 0b01
so the modulated PWM signal appears on the P1D/RD7 which drives LED 7. No other
aspect of the enhanced PWM functionality is used; for more information see Section
16.0 “Enhanced Capture/Compare/Pwm (ECCP) Module”.

The first thing done in the lesson source code is to set PWM pin RD7 to an output.
TRISDbits.TRISD7 = 0;

Timer2 is then configured to generate the PWM period of 16 ms as discussed
previously in this lesson.

T2CON = 0b00000111;// Prescale = 1:16, timer on
PR2 = 249;// Timer 2 Period Register = 250 counts

© 2009 Microchip Technology Inc. DS41370C-page 71

PICKit™ 3 Debug Express

Finally, the CCP1 module is configured for PWM operation with a duty cycle of 50% as
described previously in this lesson:

CCPR1L = 0x7D; // The 8 most significant bits of the period are 0x7D
CCP1CON = 0b01001100; // The 2 LSbs are 0b00, and CCP1Mx = 110 for PWM

At this point in the program in the module running, generating and outputting a PWM
signal on RD7/P1D with 50% duty cycle at 62.5 Hz.

To make the LED get brighter and then dimmer, we have a loop that changes the duty
cycle. The first do while loop increases the brightness over 2 seconds by increasing
the duty cycle. As the duty cycle is increased, the LED is on for a longer period of time
so it appears brighter. Note that for simplicity, the lesson program only changes the 8
MSbs of the duty cycle value in CCPR1L.

The second do while loop decreases the brightness over 2 seconds by reducing the
duty cycle. As the duty cycle is decreased, the LED is on for shorter and shorter periods
of time, making it appear dimmer.

3.12.4 Build and Run the Lesson 12 Code with PICkit 3 Debug Express

Build and program the Lesson 12 project, then Run the application in the debugger. You
will see the demo board LED 7 continuously get brighter then dimmer! If you have an
oscilloscope available, connect a probe to one of the RD7 signal points on the demo

board to see the changing the PWM waveform.

DS41370C-page 72

© 2009 Microchip Technology Inc.

PICkit™ 3 DEBUG EXPRESS

SCHEMATIC FOR PICKIT 3 DEBUG EXPRESS 44-PIN DEMO

Appendix A. Schematics
BOARD WITH PIC18F45K20

FIGURE A-1:

MICROCHIP

I
ol

bdr - A+ dMd
< {Zad
vos, 88d
42 Q INV/SO/Z3Y
€ ONV/IMWL Y
B <80y] SNV/QM/03d ssh [z
e ppum e
/“A (San] SdSd/Sad
pdSd/vay
ot Mwo £dSd/Ead oN|ve
zdsdizay ON |ee
1< <y LdSd/Lay on et
oos. S0 . 0dsd/oay ozt =l
N (] 4dgz) La/X¥/L0Y
)\/\< < e _ 0 = MO/XL/90Y 5 =
vos. ¥Sa = o 5282 v] 0as/sox 4dzz —
8y 44 D 2y| vasnasyod [%)
)>\< < & on L€ 10S/MOS/E0Y
vos, €S — 9g | 1d00/Z0Y \/
Y 3 = S¢| zdoonsoLL/Lod AN
\/\/\(¢ e} ZE| 1M01LL/OSOLL/00Y
THI_ LNOM10/20S0 | 1e
RN zpyze ©0°10cC L 77| aod/z8u OWL =zHA oL
J d Y P ECEE g or| 09d/98d | T X
)\/\(< 0ad 4921 zx g [sey SLsed NIMIO/LOSO [oe
0052 1sa 90 £ay vij v / \
o R T ead
i o e i
Logx> 8 | OLNIVOSY aunritom [g1 ddzz
(v ¥z SSIVNV/SYY 1 28]
|Zvd > €2| IMOoLVY -
| Evd 2 22 [HRINENY/EVY =
|cvd 12| -#FACNY/ZYE aap [gg
kv 2 0z] LNV/LV
Lovy > 51 LONV/OVY adn|L 410
1X3
ATIANVA NId-v1 @O_n_ \ﬂ 0
N
m OMolL
1X3Y
XNnv w|A XNV -
M10dS2l S -
1vadsol |3, U||
aNo < A+
aan Z
ddA L
wdSOl a0 E:r%
ld 2 T T
LMS OML v
1 v

DS41370C-page 73

© 2009 Microchip Technology Inc.

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

http://support.microchip.com

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

03/26/09

DS41370C-page 74

© 2009 Microchip Technology Inc.

	Chapter 1. Introduction
	1.1 Before Beginning the Lessons
	Figure 1-1: MPLAB C Compiler INSTALLATION CONFIGURATION OPTIONS

	Chapter 2. PIC18FXXXX Microcontroller Architectural Overview
	2.1 Memory Organization
	2.2 Program Memory
	2.2.1 Data Memory
	2.2.2 Special Function Registers
	2.2.3 Return Address Stack

	Chapter 3. PICkit™ 3 Debug Express Lessons
	3.1 Lesson 1: Hello LED
	3.1.1 Creating the Lesson 1 Project in the MPLAB® IDE
	3.1.1.1 Step One: Select a device
	Figure 3-1: Wizard Step One: Select PIC18F45K20 Device
	3.1.1.2 Step Two: Select a language toolsuite
	Figure 3-2: Wizard Step Two: Select Toolsuite
	3.1.1.3 Step Three: Create a new project
	Figure 3-3: Wizard Step Three: Create a New Project
	3.1.1.4 Step Four: Add existing files to your project
	Figure 3-4: Wizard Step Four: Add Existing Files
	3.1.1.5 Summary
	Figure 3-5: The Project Window
	Figure 3-6: Add Files to Project
	Figure 3-7: New Project Files

	3.1.2 Exploring the Lesson 1 Source Code
	Figure 3-8: Lesson 1 “HELLO LED” Source Code

	3.1.3 Building and Programming the Lesson 1 Code
	Figure 3-9: MPLAB IDE Output Window Build Results
	Figure 3-10A: Output Window PICKIT 3 Programmer
	Figure 3-10B: PICkit 3 Programmer Power Supply
	Figure 3-11: Output Window PICKIT 3 Programming Results

	3.2 Lesson 2: Blink LED
	3.2.1 Opening the Lesson 2 Project and Workspace in the MPLAB IDE
	3.2.2 Defining Configuration Bit Settings in the Source Code
	Figure 3-12: Lesson 2 “BLINK LED” Configuration Bit Definitions
	Figure 3-13: MPLAB Help Topics
	Figure 3-14: PIC18F45K20 Configuration

	3.2.3 Exploring the Lesson 2 Source Code
	Figure 3-15: Lesson 2 “BLINK LED” Source Code

	3.2.4 Build and Program the Lesson 2 Code

	3.3 Lesson 3: Rotate LED
	3.3.1 Allocating File Register Memory
	Figure 3-16: Lesson 3 Global Variable Declaration

	3.3.2 Allocating Program Memory
	Figure 3-17: Lesson 3 Constant Data and Program Code
	Figure 3-18: Program Memory “LED_LOOKUPTABLE” Array Values

	3.3.3 Exploring the Lesson 3 Source Code
	Figure 3-19: Lesson 3 “ROTATE LED” Source Code

	3.3.4 Build and Program the Lesson 3 Code

	3.4 Lesson 4: Switch Input
	3.4.1 Files and the #define Directive
	Figure 3-20: Header File

	3.4.2 Switch Debouncing
	Figure 3-21: Switch Debouncing Program Flow

	3.4.3 Exploring the Lesson 4 Source Code
	Figure 3-22: LESSON 4 “SWITCH INPUT” SOURCE CODE
	3.4.3.1 Variables
	3.4.3.2 Switch Input
	Figure 3-23: ANSELH: ANALOG REGISTER 1
	3.4.3.3 Rotating the LEDs

	3.4.4 Build and Program the Lesson 4 Code

	3.5 Lesson 5: Using Timer0
	3.5.1 The PIC18F45K20 Timer0 Module
	Figure 3-24: Simplified 16-bit TIMER0 Block Diagram
	Figure 3-25: T0CON: TIMER0 CONTROL REGISTER

	3.5.2 Exploring the Lesson 5 Source Code
	3.5.3 Build and Program the Lesson 5 Code
	3.5.4 Assigning the Timer0 Prescaler

	3.6 Lesson 6: Using PICkit 3 Debug Express
	3.6.1 Resources Reserved by the PICkit 3 Debug Express
	3.6.1.1 General Resources
	3.6.1.2 Program and Data Memory Resources
	Figure 3-26: RESERVED ICD FILE REGISTER LOCATIONS IN THE PIC18F45K20

	3.6.2 Selecting PICkit 3 as a Debugger in the MPLAB IDE
	3.6.3 Basic Debug Operations
	3.6.3.1 Halt
	Figure 3-27: GREEN ARROW POINTS TO NEXT STATEMENT TO EXECUTE
	3.6.3.2 Step
	Figure 3-28: Step Into
	Figure 3-29: Step Over
	3.6.3.3 Run
	3.6.3.4 Reset
	Figure 3-30: C018 START-UP LIBRARY CODE

	3.6.4 Using Breakpoints
	Figure 3-31: SET BREAKPOINT ON LINE 111
	Figure 3-32: BREAKPOINT SET
	Figure 3-33: BREAKPOINT HALT
	Figure 3-34: BREAKPOINTS DIALOGUE

	3.6.5 Watching Variables and Special Function Registers
	Figure 3-35: WATCH WINDOW
	Figure 3-36: WATCH VARIABLES

	3.7 Lesson 7: Analog-to-Digital Converter (ADC)
	3.7.1 PIC18F45K20 ADC Basics
	3.7.2 ADC Configuration and Operation
	Figure 3-37: ADCON2: A/D CONTROL REGISTER 2
	Figure 3-38: ADCON0: A/D CONTROL REGISTER 0

	3.7.3 Exploring the Lesson 7 Source Code
	3.7.4 Build and Run the Lesson 7 Code with PICkit 3 Debug Express

	3.8 Lesson 8: Interrupts
	3.8.1 PIC18FXXXX Interrupt Architecture
	Figure 3-39: SIMPLIFIED INTERRUPT LOGIC
	Figure 3-40: PRIORITY INTERRUPT EXECUTION FLOW

	3.8.2 Exploring the Lesson 8 Source Code
	Figure 3-41: DEFINE INTERRUPT VECTORS
	Figure 3-42: INTERRUPT SERVICE FUNCTIONs
	Figure 3-43: LESSON 8 INTERRUPT INITIALIZATIONS
	Figure 3-44: LESSON 8 INTERRUPT SFRS

	3.8.3 Build and Run the Lesson 8 Code with PICkit 3 Debug Express

	3.9 Lesson 9: Internal Oscillator
	3.9.1 The Internal Oscillator Block
	Figure 3-45: SIMPLIFIED INTERNAL OSCILLATOR BLOCK DIAGRAm

	3.9.2 Configuring the Internal Oscillator
	Figure 3-46: OSCCON: OSCILLATOR CONTROL REGISTER
	Figure 3-47: OSCTUNE: OSCILLATOR TUNING REGISTER

	3.9.3 Exploring the Lesson 9 Source Code
	Figure 3-48: SOURCE CODE BACKGROUND LOOp

	3.9.4 Build and Run the Lesson 9 Code with PICkit 3 Debug Express

	3.10 Lesson 10: Using Internal EEPROM
	3.10.1 Reading a data byte from EEPROM
	Figure 3-49: EECON1: EEPROM CONTROL REGISTER 1
	Figure 3-50: DATA EEPROM READ

	3.10.2 Writing a data byte to EEPROM
	Figure 3-51: DATA EEPROM WRITe

	3.10.3 Exploring the Lesson 10 Source Code
	3.10.4 Build and Run the Lesson 10 Code with PICkit 3 Debug Express

	3.11 Lesson 11: Program Memory Operations
	Figure 3-52: PROJECT CODE MODEL SETTINGS
	3.11.1 Erasing and Writing Flash Program Memory
	Figure 3-53: EXAMPLE PROGRAM MEMORY WRITE FUNCTIOn

	3.11.2 Protecting Program Memory in the Configuration Bits.
	3.11.3 Exploring the Lesson 11 Source Code with PICkit 3 Debug Express
	Figure 3-54: STRINGS IN PROGRAM MEMORY
	Figure 3-55: BREAKPOINT ON POINTER ASSIGNMENT
	Figure 3-56: ERASED 0x0100 TO 0x013F
	Figure 3-57: PROGRAM MEMORY WRITE RESULTS

	3.12 Lesson 12: Using the CCP Module PWM
	3.12.1 PWM Overview
	Figure 3-58: EXAMPLE PWM DUTY CYCLES

	3.12.2 Using the CCP Module
	Figure 3-59: T2CON: TIMER2 CONTROL REGISTEr
	Figure 3-60: SIMPLIFIED PWM BLOCK DIAGRAm
	Figure 3-61: CCPxCON: CCPx CONTROL REGISTER

	3.12.3 Exploring the Lesson 12 Source Code
	3.12.4 Build and Run the Lesson 12 Code with PICkit 3 Debug Express

	Appendix A. Schematics
	Worldwide Sales

