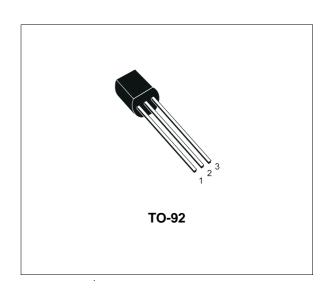
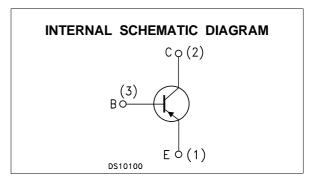


STX93003

HIGH VOLTAGE FAST-SWITCHING PNP POWER TRANSISTOR

- ST93003 SILICON IN TO-92 PACKAGE
- MEDIUM VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED


APPLICATIONS:


 ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING

DESCRIPTION

The device is manufactured using high voltage Multi-Epitaxial Planar technology for high switching speeds and medium voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The STX93003 is expressly designed for a new solution to be used in compact fluorescent lamps, where it is coupled with the STX83003, its complementary NPN transistor.

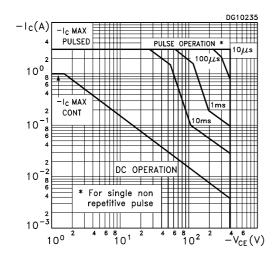
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Value		Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	-500	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	-400	V
V _{EBO}	Emitter-Base Voltage ($I_C = 0$) ($I_C = 0$, $I_B = -0.5$ A, $t_p < 10\mu s$, $T_j < 150$ °C)	$V_{(BR)EBO}$	V
Ic	Collector Current	-1	Α
I _{CM}	Collector Peak Current (tp < 5 ms)	-3	Α
I_{B}	Base Current	-0.5	Α
I _{BM}	Base Peak Current (t _p < 5 ms)	-1.5	Α
P _{tot}	Total Dissipation at T _C = 25 °C	1.5	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

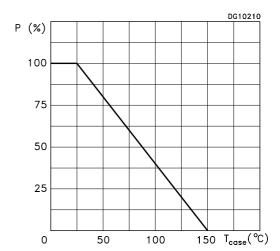
October 2002 1/7

THERMAL DATA

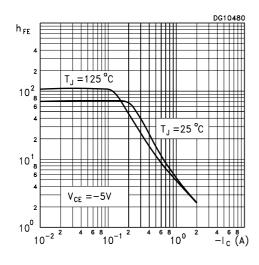
R _{thj-case}	Thermal Resistance Junction-Case	Max	83.3	°C/W	
$R_{thj-Amb}$	Thermal Resistance Junction-Ambient	Max	200	°C/W	

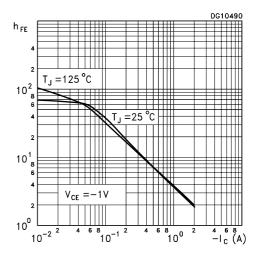

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

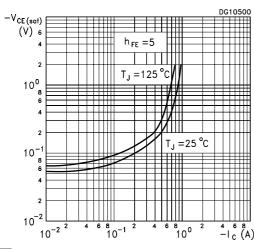
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = -500V V _{CE} = -500V	T _j = 125°C			-1 -5	mA mA
V _{(BR)EBO}	Emitter Base Breakdown Voltage (I _C = 0)	I _E = -10 mA		-5		-10	V
$V_{\text{CEO(sus)}}^*$	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = -10 mA L = 25 mH		-400			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_C = -0.5 A$ $I_C = -0.35 A$	I _B = -0.1 A I _B = -50 mA			-0.5 -0.5	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = -0.5 A	I _B = -0.1 A			-1	V
h _{FE} *	DC Current Gain	$I_{C} = -10 \text{ mA}$ $I_{C} = -0.35 \text{ A}$ $I_{C} = -1 \text{ A}$	$V_{CE} = -5 V$ $V_{CE} = -5 V$ $V_{CE} = -5 V$	10 16 4	25	32	
t _r t _s t _f	RESISTIVE LOAD Rise Time Storage Time Fall Time	$I_{C} = -0.35 \text{ A}$ $I_{B1} = -70 \text{ mA}$ $T_{p} \ge 25 \mu\text{s}$	$V_{CC} = 125 V$ $I_{B2} = 70 mA$ (see Figure 2)	1.5	90 2.2 0.1	2.9	ns μs μs
t _s	INDUCTIVE LOAD Storage Time Fall Time	$I_C = -0.5 A$ $V_{BE(off)} = 5 V$ $V_{clamp} = 300 V$	$I_{B1} = -0.1 A$ L = 10 mH (see Figure 1)		400 40		ns ns
E _{sb}	Avalanche Energy	$L = 4 \text{ mH}$ $I_{BR} \le 2.5 \text{ A}$	C = 1.8 nF 25°C < T _C < 125°C	12			mJ

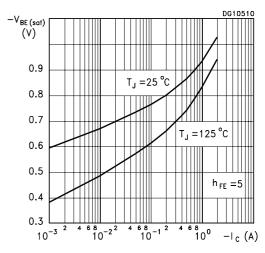

^{*} Pulsed: Pulse duration = 300μs, duty cycle = 1.5 %.

2/7

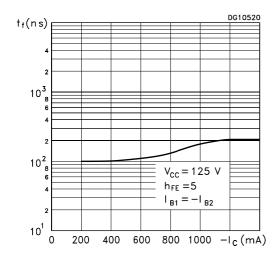

Safe Operating Area


Derating Curve


DC Current Gain

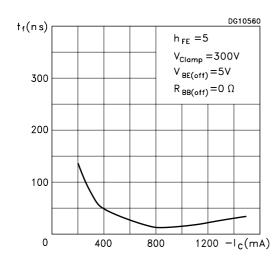

DC Current Gain

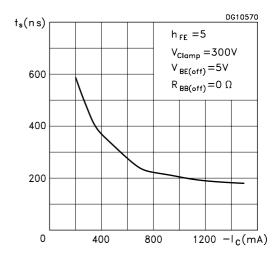
Collector Emitter Saturation Voltage



Base Emitter Saturation Voltage

477


Resistive Load Fall Time


Resistive Load Storage Time


Inductive Load Fall Time

Inductive Load Storage Time

Reverse Biased SOA

4/7

Figure 1: Inductive Load Switching Test Circuit.

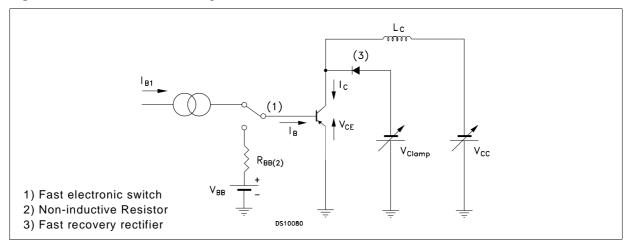
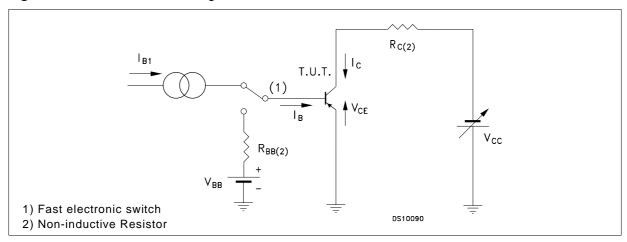
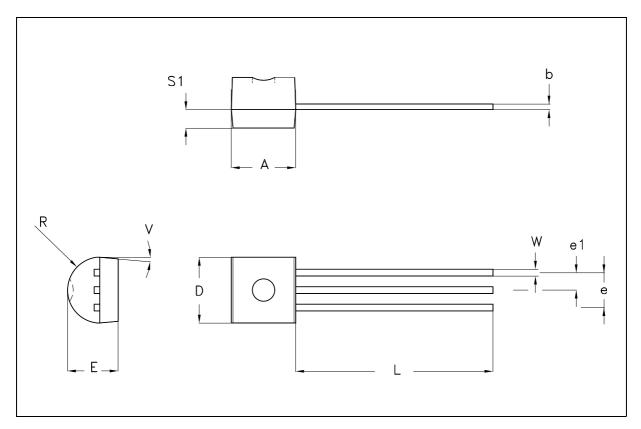




Figure 2: Resistive Load Switching Test Circuit.

TO-92 MECHANICAL DATA

DIM.	mm			inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.32		4.95	0.170		0.195	
b	0.36		0.51	0.014		0.020	
D	4.45		4.95	0.175		0.194	
Е	3.30		3.94	0.130		0.155	
е	2.41		2.67	0.095		0.105	
e1	1.14		1.40	0.045		0.055	
L	12.70		15.49	0.500		0.609	
R	2.16		2.41	0.085		0.094	
S1	1.14		1.52	0.045		0.059	
W	0.41		0.56	0.016		0.022	
V	4 degree	,	6 degree	4 degree		6 degree	

6/7

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

