AEC-Q200 Automotive Grade Capacitors

AEC-Q200 Automotive Grade Capacitors

At Knowles Capacitors we manufacture Single Layer, Multilayer, High Reliability and Precision Variable Capacitors; EMI Filters and Thin Film Devices.

One of our fields of expertise is the design and manufacture of components important to engineers in the automotive industry. Today's vehicles have many electronic control units that enable absolute precision and control.

The Automotive Electronics Council (AEC) Component Technical Committee is the standardization body for establishing standards for reliable, high quality electronic components. Components meeting these specifications are suitable for use in the harsh automotive environment without additional component-level qualification testing.

The Component Technical Committee established AEC-Q200 "Stress Test Qualification for Passive Components" to define the minimum stress test driven qualification requirements for passive electrical devices including ceramic capacitors.

Knowles has developed a range of MLC capacitors and surface mount EMI filters qualified to AEC-Q200 rev D to meet the needs of high reliability and automotive manufacturers.

Please refer to the following pages for details of the product ranges offered by Knowles.

Electric Vehicle Charging - EV/HEV/PHEV

Contents

MLC Capacitors	Automotive Grade - AEC-Q200 ranges StackiCap™ Capacitors Safety Certified Capacitors	6
	Open Mode & Tandem Capacitors High Temperature Capacitors	10 11
SM EMI Filters	Feedthrough Filters - E01 & E07 1 X2Y Integrated Passive Components - E03 1	2-13

AEC-Q200 approved ranges - pages 4-5

Safety Certified Capacitors - pages 7-9

High Temperature Capacitors - page 11

StackiCap[™] Capacitors - page 6

Open Mode & Tandem Capacitors - page 10

Surface Mount EMI Filters - pages 12-15

Automotive Grade Capacitors - AEC-Q200 range

We offer a range of high quality automotive grade components. With AEC-Q200 approved ranges up to a voltage rating of 1kV we provide for the requirements of modern automotive applications including EV and HEV.

Ranges include :-

- 1. Standard MLCCs
- 2. StackiCap[™] large capacitance/small case size MLCCs
- 3. Open Mode and Tandem capacitors
- 4. 3 terminal EMI components
- 5. X2Y Integrated Passive Component
- 6. X8R high temperature MLCCs
- 7. Safety Certified MLCCs

All fully tested / approved and available with a range of suitable termination options, including tin/lead plating and Knowles $FlexiCap^{TM}$.

AEC-Q200 MLCC range - maximum capacitance values

		0603	0805	1206	1210	1808	18	12	1825	22	20	2225	36	40
								StackiCap™ 3.2mm max thickness			StackiCap™ 4.5mm max thickness			StackiCap™ 4.5mm max thickness
50/	COG/NP0	470pF	2.7nF	10nF	18nF	-	39nF	-	68nF	68nF	-	100nF	220nF	-
50/ 63V	X7R	33nF	150nF	470nF	1µF	-	1.5µF	-	1.8µF	3.3µF	-	3.3µF	4.7µF	-
0.51	X8R	-	33nF	120nF	220nF	270nF	470nF	-	-	680nF	-	1.0µF	-	-
	COG/NP0	330pF	1.8nF	6.8nF	12nF	-	27nF	-	47nF	47nF	-	68nF	180nF	-
100V	X7R	10nF	47nF	150nF	470nF	-	1µF	-	1.2µF	1.5µF	-	1.5µF	3.3µF	-
	X8R	-	15nF	56nF	120nF	150nF	220nF	-	-	470nF	-	560nF	-	-
200/	COG/NP0	100pF	680pF	2.2nF	4.7nF	-	12nF	-	22nF	22nF	-	27nF	82nF	-
200/ 250V	X7R	5.6nF	27nF	100nF	220nF	-	470nF	1.0µF	1.0µF	1.0µF	-	1.0µF	1.5µF	-
2001	X8R	-	10nF	33nF	68nF	82nF	120nF	-	-	220nF	-	330nF	-	-
	COG/NPO	-	330pF	1.5nF	3.9nF	-	10nF	-	15nF	15nF	-	22nF	56nF	-
500V	X7R	-	15nF	68nF	100nF	-	270nF	470nF	560nF	560nF	-	680nF	1.0µF	-
	X8R	-	3.9nF	18nF	39nF	47nF	100nF	-	-	180nF	-	270nF	-	-
	COG/NP0	-	-	1.0nF	1.8nF	-	5.6nF	-	8.2nF	10nF	-	15nF	39nF	-
630V	X7R	-	10nF	47nF	68nF	-	150nF	330nF	180nF	330nF	1.0µF	390nF	680nF	-
	X8R	-	1.8nF	3.9nF	10nF	12nF	33nF	-	-	150nF	-	180nF	-	-
	COG/NPO	-	-	470pF	1nF	-	3.3nF	-	4.7nF	8.2nF	-	10nF	22nF	-
1kV	X7R	-	3.3nF	10nF	22nF	-	68nF	180nF	120nF	120nF	470nF	150nF	180nF	1.0µF
	X8R	-	1nF	2.2nF	4.7nF	5.6nF	18nF	-	-	39nF	-	56nF	-	-
	COG/NP0	-	-	220pF	680pF	-	3.3nF	-	3.9nF	4.7nF	-	6.8nF	18nF	-
1.2kV	X7R	-	-	3.3nF	10nF	-	33nF	100nF	68nF	82nF	-	100nF	150nF	-
	X8R	-	-	1.8nF	3.9nF	4.7nF	12nF	-	-	33nF	-	39nF	-	-
	COG/NPO	-	-	150pF	470pF	-	2.2nF	-	2.7nF	3.3nF	-	4.7nF	12nF	-
1.5kV	X7R	-	-	2.7nF	6.8nF	-	22nF	-	47nF	47nF	-	68nF	100nF	-
	X8R	-	-	1.2nF	2.2nF	2.7nF	8.2nF	-	-	22nF	-	27nF	-	-
	COG/NP0	-	-	100pF	220pF	-	1.5nF	-	1.2nF	1.8nF	-	2.2nF	5.6nF	-
2kV	X7R	-	-	2.2nF	4.7n	-	10nF	-	10nF	27nF	-	33nF	47nF	-
	X8R	-	-	470pF	1.2nF	1.8nF	4.7nF	-	-	12nF	-	18nF	-	-
2.5kV	X8R	-	-	-	-	1.0nF	2.7nF	-	-	6.8nF	-	10nF	-	-
3kV	X8R	-	-	-	-	680pF	2.2nF	-	-	4.7nF	-	5.6nF	-	-

Note: See page 6 for full details of the StackiCap[™] range.

Safety Certified Capacitors

Dielectric Approval	X1 PY2		X2 SP	Y2/X1 SP		Y2/X1 B16	X2 B17	
	Body	1808	1812	1808	2211 2215		2220	2220
COG/NP0	TÜV, UL	4.7pF - 390pF	4.7pF - 390pF	4.7pF - 1.5nF	4.7pF - 1.5nF	820pF - 1.0nF	-	-
X7R	TÜV, UL	150pF - 1nF	150pF - 2.2nF	150pF - 4.7nF	100pF - 3.9nF	2.7nF - 3.9nF	150pF - 5.6nF	150pF - 22nF (TÜV approval only)

Note: See pages 7, 8 and 9 for full details of 250Vac Safety Certified AC Capacitors and ordering information.

Automotive Grade Capacitors - AEC-Q200 range

AEC-Q200 range - Open Mode - max capacitance values

	0603	0805	1206	1210	1808	1812	2220	2225
	X7R							
16/25V	-	56nF	220nF	470nF	-	-	-	-
50/63V	22nF	100nF	220nF	470nF	470nF	1.0µF	1.5µF	2.7µF
100V	6.8nF	27nF	100nF	220nF	220nF	680nF	1.0µF	1.5µF
200/250V	2.7nF	15nF	68nF	100nF	100nF	330nF	680nF	1.0µF
500V	-	5.6nF	39nF	68nF	68nF	180nF	330nF	39 0nF
630V	-	-	22nF	33nF	27nF	100nF	180nF	220nF
1kV	-	-	6.8nF	15nF	15nF	47nF	82nF	100nF

See page 10 for full details of the product range.

AEC-Q200 range - Tandem - max capacitance values

	0603	0805	1206	1210	1812
	X7R	X7R	X7R	X7R	X7R
50/63V	6.8nF	33nF	100nF	180nF	390nF
100V	2.2nF	10nF	47nF	82nF	220nF
200/250V	1.0nF	4.7nF	22nF	47nF	100nF

See page 10 for full details of the product range.

AEC-Q200 range - 3 Terminal EMI Components (E01 & E07) - max capacitance values

			E01		E07			
		0805	1206	1806	0805	1206	1806	
501/	COG/NP0	820pF	1.0nF	2.2nF	220pF	1nF	1.5nF	
50V	X7R	47nF	100nF	200nF	47nF	100nF	200nF	
100V	COG/NP0	560pF	1.0nF	2.2nF	120pF	560pF	680pF	
	X7R	15nF	15nF	68nF	15nF	15nF	68nF	

Note: For some lower capacitance parts, higher voltage rated parts may be supplied. See page 12 and 13 for full details of the product range.

AEC-Q200 range - X2Y Integrated Passive Components (E03) - capacitance values

		0805	1206	1410	1812
50V	COG/NP0	390pF - 470pF	1.2nF - 1.5nF	4.7nF - 5.6nF	8.2nF - 10nF
	X7R	18nF - 33nF	56nF - 150nF	180nF - 330nF	390nF - 560nF
100V	COG/NP0	10pF - 330pF	22pF - 1.0nF	100pF - 3.9nF	820pF - 6.8nF
1000	X7R	470pF - 15nF	1.5nF - 47nF	4.7nF - 150nF	8.2nF - 330nF

Note: For some lower capacitance parts, higher voltage rated parts may be supplied. See page 14 and 15 for full details of the product range.

Ordering information - AEC-Q200 ranges

1210	Y	100	0103	K	S	Т	
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric Release codes	Packaging	Suffix code
0603 0805 1206 1210 1808 1812 1825 2220 2225 3640	 Y = FlexiCap™ termination base with Ni barrier (100% matte tin plating). RoHS compliant. H = FlexiCap™ termination base with Ni barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. A = Nickel barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. 	050 = 50V 063 = 63V 100 = 100V 200 = 200V 250 = 250V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2kV 2K5 = 2.5kV 3K0 = 3kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following Example: 0103 = 10nF	$F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	S = X7R (BME) AEC-Q200 $E = X7R$ (2R1) AEC-Q200 $A = C0G/NP0$ (1B/NP0) AEC-Q200 $T = X8R with$ AEC-Q200 release Note: AEC-Q200 X7R is only available in Y or H termination.	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	WS2 = StackiCap™ M01 = Open Mode T01 = Tandem E01/E07 & E03 = 3 terminal EMI component

StackiCap[™] Capacitors - X7R

The StackiCap[™] range offers a significant reduction in 'PCB real estate' for an equivalent capacitance value when board space is at a premium. For example, a standard 150nF chip in a 8060 case size is now available in a much smaller 3640 case size.

Knowles's unique patented* construction and FlexiCap[™] termination material make the StackiCap[™] range suitable for applications including: power supplies, lighting, aerospace electronics and high voltage applications where a large amount of capacitance is required. Further developments are on-going, please contact the Sales Office for details of the full range.

* StackiCap™ technology is protected by international patents (pending) EP2847776, WO2013186172A1, US20150146343A1 and CN104471660A.

Insulation resistance Time Constant (RxCr) (whichever is the least - 500s or $500M\Omega$)

Maximum capacitance Up to 5.6µF Maximum voltage Up to 2kV

Maximum capacitance values - StackiCap™ Capacitors

Chip Size	1812	2220	3640
200/250V	1.0µF	2.2µF	5.6µF
500V	470nF	1.0µF	2.7µF
630V	330nF	1.0µF	2.2µF
1kV	180nF	470nF	1.0µF
1.2kV	100nF	220nF	470nF
1.5kV	56nF	150nF	330nF
2kV	33nF	100nF	150nF

= AEC-Q200

Ordering information - StackiCap[™] Capacitors

1812	Y	500	0474	K	J	т	WS2
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric	Packaging	Suffix code
1812 2220 3640	 Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant. Lead free. H = FlexiCap™ Termination base with nickel barrier (Tin/lead plating with minimum 10% lead). Not RoHS compliant. 	200/250 = 200/250V 500 = 500V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2kV	First digit is 0. Second and third digits are significant figures of capacitance code in picofarads (pF). Fourth digit is number of zeros eg. 0474 = 470nF Values are E12 series	$J = \pm 5\%$ K = ±10% M = ±20%	J = X7R (BME) E = X7R (2R1) AEC-Q200 S = X7R (BME) AEC-Q200 X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	WS2

Reeled quantities - StackiCap™ Capacitors

	1812	2220	3640
178mm (7") Reel	500	500	-
330mm (13") Reel	2,000	2,000	500

Note: Parts in this range may be defined as dual-use under export control legislation as such may be subject to export licence restrictions.

Please refer to page 12 for more information on the dual-use regulations and contact the Sales Office for further information on specific part numbers.

StackiCap[™]

250Vac Safety Certified AC Capacitors

Safety Certified capacitors comply with international UL and TÜV specifications to offer designers the option of using a surface mount ceramic multilayer capacitor to replace leaded film types. Offering the benefits of simple pick-and-place assembly, reduced board space required and lower profile, they are also available in a FlexiCap[™] version to reduce the risk of mechanical cracking.

Knowles's high voltage capacitor expertise means the range offers among the highest range available of capacitance values in certain case sizes. Applications include: modems, AC-DC power supplies and where lightning strike or other voltage transients represent a threat to electronic equipment.

• Surface mount multilayer ceramic capacitors

Meet Class Y2/X1, X1 and X2 requirements

Sizes 1808, 1812, 2211, 2215 and 2220

Approved by UL and TÜV

to EN60950

Approved for mains ac voltages, up to 250Vac

Smaller sizes suitable for use in equipment certified

- Surface mount package
- Reduces board area and height restrictions
- Reduced assembly costs over conventional through hole components
- FlexiCap[™] option available on all sizes

Class	Rated voltage	Impulse voltage	Insulation bridging	May be used in primary circuit
Y1	250Vac	8000V	Double or reinforced	Line to protective earth
Y2	250Vac	5000V	Basic or supplementary*	Line to protective earth
Y4	150Vac	2500V	Basic or supplementary*	Line to protective earth
X1	250Vac	4000V	-	Line to line
X2	250Vac	2500V	-	Line to line
Х3	250Vac	None	-	Line to line

* 2 x Y2 or Y4 rated may bridge double or reinforced insulation when used in series.

250Vac Safety Certified AC Capacitors - Certification Chart

Classification and approval specification - Safety Certified capacitors

CHIP SIZE	SUFFIX CODE	DIELECTRIC	CAP RANGE	CLASSIFICATION	APPROVAL SPECIFICATION	APPROVAL BODY	AEC-Q200
1808	SP ⁽¹⁾	C0G/NP0	4.7pF to 1.5nF	X2 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
1808	SP ⁽¹⁾	X7R	150pF to 4.7nF	X2 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE 'Y' TERM ONLY
1808	PY2 ⁽¹⁾	C0G/NP0	4.7pF to 390pF	X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
1808	PY2 ⁽¹⁾	X7R	150pF to 1nF	X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL 1nF max. 'Y' TERM ONLY
1812	PY2 ⁽¹⁾	C0G/NP0	4.7pF to 390pF	X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
1812	PY2 ⁽¹⁾	X7R	150pF to 2.2nF	X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL 2.2nF max. 'Y' TERM ONLY
2211	SP ⁽²⁾	C0G/NP0	4.7pF to 1nF	Y2/X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
2211	SP ⁽²⁾	X7R	100pF to 3.9nF	Y2/X1NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL Full Range 'Y' & 'h' term only
2215	SP ⁽²⁾	C0G/NP0	820pF to 1.0nF	Y2/X1NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	TÜV UL	TÜV & UL FULL RANGE
2215	SP ⁽²⁾	X7R	2.7nF to 3.9nF	Y2/X1 NWGQ2, NWGQ8	IEC60384-14 EN60384-14 UL-60950-1, 2nd Ed CSA 60950-1-07 2nd Ed	UL	TÜV & UL Full Range 'Y' & 'h' term only
2220	B16	X7R	150pF to 5.6nF	Y2/X1 FOWX2, FOWX8	IEC60384-14 EN60384-14 UL-60384-14:2010 CSA E60384-14:09	TÜV UL	TÜV & UL FULL RANGE 'Y' & 'H' TERM ONLY
2220	B17 ⁽²⁾	X7R	150pF to 22nF	X2	IEC60384-14 EN60384-14	TÜV	TÜV ONLY 22nF max. 'Y' & 'H' TERM ONLY

Notes: Termination availability

(1) J & Y terminations only.

8

(2) PY2 J, Y, A & H terminations available.

Unmarked capacitors also available as released in accordance with approval specifications. Suffix Code SY2 applies.

SP Unmarked capacitors also available as released in accordance with approval specifications. Suffix Code SPU applies.

250Vac Safety Certified AC Capacitors - Ordering Information

Ordering information - Safety Certified capacitors - Class SPU/SP ranges

1808	J	A25	0102	J	С	Т	SP
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code
1808 2211 2215	J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. Y = FlexiCap [™] termination base with nickel barrier (100% matte tin plating). RoHS compliant. 2211/2215 only A = Nickel barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. H = FlexiCap [™] termination base with nickel barrier (Tin/lead plating with minimum 10% lead). Not RoHS compliant.	A25 = 250Vac	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0102 = 1.0nF	<10pF B = ± 0.10 pF C = ± 0.25 pF D = ± 0.50 pF F = $\pm 1\%$ G = $\pm 2\%$ J = $\pm 5\%$ K = $\pm 10\%$ M = $\pm 20\%$	C = COG/NP0 X = X7R A = COG/NP0 (1B/NP0) AEC-Q200 E = X7R (2B1) AEC-Q200	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	SP = Surge Protection capacitors (marked and approved) SPU = Surge Protection capacitors (un-marked parts are in accordance with but not certified)

Ordering information - Safety Certified capacitors - Class PY2/SY2

1	808	J	A25	0102	J	X	Т	PY2
	Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code
	1808 1812	 J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant. 	A25 = 250Vac	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0102 = 1.0nF	<10pF B = ± 0.10 pF C = ± 0.25 pF D = ± 0.50 pF E = $\pm 1\%$ G = $\pm 2\%$ J = $\pm 5\%$ K = $\pm 10\%$ M = $\pm 20\%$	C = COG/NP0 X = X7R A = COG/NP0 (1B/NP0) AEC-Q200 E = X7R (2B1) AEC-Q200	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	PY2 = Safety tested Surge Protection capacitors (marked and approved) SY2 = Surge Protection capacitors (un-marked parts are in accordance with but not certified)

Ordering information - Safety Certified capacitors - Class B16/B17 ranges

2220	J	A25	0102	J	X	Т	B16
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code
2220	 J = Nickel barrier (100% matte tin plating). RoHS compliant. Lead free. Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating). RoHS compliant. A = Nickel barrier (Tin/lead plating with min. 10% lead). Not RoHS compliant. H = FlexiCap™ termination base with nickel barrier (Tin/lead plating with minimum 10% lead). Not RoHS compliant. 	A25 = 250Vac	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0102 = 1.0nF	J = ±5% K = ±10% M = ±20%	X = X7R E = X7R (2B1) AEC-Q200	T = 178mm (7") reel 1000 pieces R = 330mm (13") reel 4000 pieces B = Bulk pack - tubs or trays	B16 = Type A: X ¹ /Y ² B17 = Type B: X ²

Open Mode and Tandem Capacitors - X7R

Open Mode capacitors have been designed specifically for use in applications where mechanical cracking is a severe problem and short circuits due to cracking are unacceptable.

Open Mode capacitors use inset electrode margins, which prevent any mechanical cracks which may form during board assembly from connecting to the internal electrodes.

When combined with FlexiCap[™] termination, Open Mode capacitors provide a robust component with the assurance that if a part becomes cracked, the crack will be unlikely to result in short circuit failure.

Open Mode max capacitance (X7R only) = AEC-Q200 qualified

2220 0603 0805 1206 1210 1808 1812 2225 16V 39nF 56nF 150nF 100nF 100nF 470nF 680nF 680nF 1.5uF 3.3uF 4.7uF 25V 33nF 56nF 120nF 220nF 330nF 470nF 560nF 560nF 1.2µF 2.2µF 3.9µF 50/63V 22nF 100nF 220nF 470nF 470nF 1.0µF 1.5µF 2.7µF 100V 680nF 1.5µF 1.8µF 6.8nF 27nF 220nF 220nF 1.0µF 100nF 200/250V 15nF 100nF 100nF 330nF 680nF 1.0µF 2.7nF 68nF 500V 68nF 180nF 330nF 390nF 5.6nF 39nF 68nF 630V 22nF 33nF 27nF 100nF 180nF 220nF 1kV 6.8nF 15nF 47nF 82nF 100nF 15nF

Oualification included cracking the components by severe bend tests. Following the bend tests cracked components were subjected to endurance / humidity tests, with no failures evident due to short circuits.

Note: Depending on the severity of the crack, capacitance loss was between 0% and 70%.

Tandem Capacitors have been designed as a fail safe range using a series section internal design, for use in any application where short circuits would be unacceptable.

When combined with FlexiCap[™] termination, Tandem capacitors provide an ultra robust and reliable component, for use in the most demanding applications.

Non-standard voltages are available. For more information please consult the Sales Office.

Tandem max capacitance (X7R only) = AEC-Q200 qualified

	0603	0805	1206	1210	1812	2220	2225
16V	12nF	47nF	150nF	270nF	560nF	1.2µF	1.5µF
25V	10nF	39nF	120nF	220nF	470nF	1.0µF	1.2µF
50/63V	6.8nF	33nF	100nF	180nF	390nF	680nF	1.0µF
100V	2.2nF	10nF	47nF	82nF	220nF	470nF	680nF
200/250V	1.0nF	4.7nF	22nF	47nF	100nF	220nF	330nF

Ordering information - Open Mode and Tandem Capacitors

1206	Y	050	0224	K	X	Т	
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging	Suffix code
0603 0805 1206 1210 1808 1812 2220 2225	Y = FlexiCap [™] termination base with nickel barrier (100% matte tin plating). RoHS compliant.	016 = 16V 025 = 25V 050 = 50V 063 = 63V 100 = 100V 200 = 200V 250 = 250V 500 = 500V 630 = 630V 1K0 = 1kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0224 = 220000pF	$J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	X = X7R S = X7R BME (AEC-Q200) E = X7R (AEC-Q200 product)	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays	M01 = Open Mode capacitor T01 = Tandem capacitor

Open Mode capacitor

Qualification included cracking the components by severe bend tests. Following the bend tests cracked components were subjected to endurance / humidity tests, with no failures evident due to short circuits.

Note: Depending on the severity of the crack, capacitance loss was between 0% and 50%.

High Temperature Caps - up to 150°C X8R, Commercial, AEC-Q200

The X8R dielectric will operate from -55°C to +150°C, with a maximum capacitance change $\pm 15\%$ (without applied voltage). The devices are available in sizes 0805 to 2225, with voltage ranges from 25V to 3kV and capacitance values from 100pF to 1.8μ F.

The capacitors have been developed by Knowles to meet demand from various applications in the automotive and industrial markets and in other electronic equipment exposed to high temperatures. The increased use of electronics in automotive "under the hood" applications has created demand for this product range.

The X8R range incorporates a specially formulated termination with a nickel barrier finish that has been designed to enhance the mechanical performance of these SMD chip capacitors in harsh environments typically present in automotive applications.

For information, X8R dielectric contains lead within the ceramic and parts rated less than 250Vdc are not compliant with the EU 2011/65/EU RoHS directive.

Capacitance Range

100pF to 1.8μ F (0805 to 2225) Temperature Coefficient of Capacitance (TCC) ±15% from -55°C to +150°C Dissipation Factor (DF) ≤ 0.025 Termination Nickel Barrier Tin Plated

Insulation Resistance (IR) 100G Ω or 1000secs (whichever is the less). Dielectric Withstand Voltage (DWV) 2.5 x rated voltage for 5±1 seconds, 50mA charging current maximum. Ageing Rate 1% per decade (typical)

X8R High Temperature Capacitors - minimum/maximum cap. values according to the rated d.c. voltage

	0805	1206	1210	1808	1812	2220	2225	4540*	7565*	
Min cap	100pF	100pF	100pF	100pF	150pF	220pF	330pF	1nF	2.2nF	
25V	56nF	180nF	330nF	470nF	680nF	1.5µF	1.8µF	5.6µF	15µF	
50V	33nF	120nF	220nF	270nF	470nF	680nF	1µF	4.7µF	12µF	
100V	15nF	56nF	120nF	150nF	220nF	470nF	560nF	3.9µF	10µF	
200/250V	10nF	33nF	68nF	82nF	120nF	220nF	330nF	2.7µF	6.9µF	
500V	3.9nF	18nF	39nF	47nF	100nF	180nF	270nF	1.2µF	3.2µF	
630V	1.8nF	3.9nF	10nF	12nF	33nF	150nF	180nF	-	-	
1kV	1nF	2.2nF	4.7nF	5.6nF	18nF	39nF	56nF	-	-	
1.2kV	-	1.8nF	3.9nF	4.7nF	12nF	33nF	39nF	-	-	
1.5kV	-	1.2nF	2.2nF	2.7nF	8.2nF	22nF	27nF	-	-	
2kV	-	470pF	1.2nF	1.8nF	4.7nF	12nF	18nF	-	-	
2.5kV	-	-	-	1nF	2.7nF	6.8nF	10nF	-	-	
3kV	-	-	-	680pF	2.2nF	4.7nF	5.6nF	-	-	

Notes: = X8R ranges in yellow available as qualified AEC-Q200. *Only available as Novacap parts.

Ordering information - Syfer X8R High Temperature Capacitors

1206	Y	100	0473	K	N	т
Chip size	Termination	Voltage d.c.	Capacitance in picofarads (pF)	Capacitance tolerance	Dielectric codes	Packaging
0805 1206 1210 1808 1812 2220 2225	Y = FlexiCap™ termination base with nickel barrier (100% matte tin plating).	025 = 25V 050 = 50V 100 = 100V 200 = 200V 250 = 250V 630 = 630V 1K0 = 1kV 1K2 = 1.2kV 1K5 = 1.5kV 2K0 = 2kV 2K5 = 2.5kV 3K0 = 3kV	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following. Example: 0473 = 47000pF = 47nF	J = ±5% K = ±10% M = ±20%	N = X8R T = X8R AEC-Q200	T = 178mm (7") reel R = 330mm (13") reel B = Bulk pack - tubs or trays

Ordering information - Novacap High Temperature Capacitors

4540	S	125	K	501	Ν	Т	Μ
Chip size	Dielectric codes	Capacitance in picofarads (pF)	Capacitance tolerance code	Voltage code	Termination codes	Packaging	Marking
0805 1206 1210 1812 1825 2225 4540 7565	S = X8R High Temp. (up to 150°C)	Value in Picofarads. Two significant figures, followed by number of zeros: 125 = 1.2nF	J = ±5% (X8R) K = ±10% (Class II) M = ±20% (Class II)	Two significant figures, followed by number of zeros: 250 = 25 Volts 500 = 50 Volts 101 = 100 Volts 251 = 250 Volts 501 = 500 Volts	P = Palladium Silver PR = Palladium Silver* K = Solderable Palladium Silver* N = Nickel Barrier* 100% tin Y = Nickel Barrier* 90% tin, 10% lead C = FlexiCap™/Nickel Barrier* 100% tin D = FlexiCap™/Nickel Barrier* 90% tin, 10% lead S = Solderable Silver* *Indicates RoHS terminations	None = Bulk T = Tape & Reel W = Waffle Pack	None = Unmarked M = Marked

Surface Mount EMI Filters - E01 & E07 feedthrough capacitors

The Syfer E01 and E07 ranges of feedthrough MLCC chip 'C' filters are 3 terminal chip devices designed to offer reduced inductance compared to conventional MLCCs when used in signal line filtering.

The filtered signal passes through the chip internal electrodes and the noise is filtered to the grounded side contacts, resulting in reduced length noise transmission paths.

Available in COG/NPO and X7R dielectrics, with current ratings of 300mA, 1A, 2A, 3A and voltage ratings of 25Vdc to 200Vdc. Also available with FlexiCap[™] termination which is strongly recommended for new designs.

Commonly used in automotive applications, a range qualified to AECQ-200 is also available.

E01 300mA, E07 1A/2A/3A

Dimensions

	0805	1206	1806	1812
L.	2.0 ± 0.3	3.2 ± 0.3	4.5 ± 0.35	4.5 ± 0.35
	(0.079 ± 0.012)	(0.126 ± 0.012)	(0.177 ± 0.014)	(0.177 ± 0.014)
w	1.25 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	3.2 ± 0.3
	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.063 ± 0.008)	(0.126 ± 0.012)
т	1.0 ± 0.15	1.1 ± 0.2	1.1 ± 0.2	2.0 ± 0.3
	(0.039 ± 0.006)	(0.043 ± 0.008)	(0.043 ± 0.008)	(0.079 ± 0.012)
B1	0.60 ± 0.2	0.95 ± 0.3	1.4 ± 0.3	1.45 ± 0.35
	(0.024 ± 0.008)	(0.037 ± 0.012)	(0.055 ± 0.012)	(0.055 ± 0.012)
B2	0.3 ± 0.15	0.5 ± 0.25	0.5 ± 0.25	0.75 ± 0.25
	(0.012 ± 0.006)	(0.02 ± 0.01)	(0.02 ± 0.01)	(0.02 ± 0.01)

Notes: 1) All dimensions mm (inches).

2) Pad widths less than chip width gives improved mechanical performance.

3) The solder stencil should place 4 discrete solder pads. The unprinted distance between ground pads is shown as dim E.

4) Insulating the earth track underneath the filters is acceptable and can help avoid displacement of filter during soldering but can result in residue entrapment under the chip.

Standard Range - E01 & E07 Feedthrough Capacitors

Туре			E01		E07				
Chip Si	ze	0805	1206	1806	0805	1206	1806	1812	
Max Cur	rent	300mA	300mA	300mA	1A	2A	2A	3A	
Rated Voltage	Dielectric			Minimum an	nd maximum capacitance values				
25Vdc	COG/NP0	180pF-1.5nF	560pF-3.9nF	820pF-4.7nF	180pF-1.5nF	560pF-3.9nF	820pF-4.7nF	-	
25000	X7R	470pF-100nF	5.6nF-330nF	3.9nF-560nF	820pF-100nF	10nF-330nF	22nF-560nF	560nF-1.8µF	
50Vdc	COG/NP0	22pF-820pF	22pF-3.3nF	22pF-3.9nF	10pF-220pF	22pF-1nF	100pF-1.5nF	-	
Suvuc	X7R	560pF-68nF	4.7nF-220nF	3.3nF-330nF	1nF-68nF	10nF-220nF	22nF-330nF	330nF-1.5µF	
100Vdc	COG/NP0	22pF-560pF	22pF-2.2nF	22pF-3.3nF	10pF-120pF	22pF-560pF	100pF-680pF	-	
TOOAGC	X7R	560pF-27nF	1.8nF-100nF	3.3nF-180nF	1nF-27nF	10nF-100nF	22nF-180nF	180nF-820nF	
200Vdc	COG/NP0	-	560pF-1.2nF	56pF-1nF	-	15pF-180pF	56pF-470pF	-	
200400	X7R	-	2.7nE-56nE	3.9nF-100nF	-	12nF-56nF	22nF-100nF	100nF-270nF	

Note: E07 25Vdc C0G/NP0 1206 and 1806 ranges in green, have maximum current of 1A.

AEC-Q200 Qualified Range - E01 & E07 Feedthrough Capacitors - maximum capacitance values

Туре			E01		E07			
Chip Size		0805	1206	1806	0805	1206	1806	
50V	COG/NP0	820pF	1nF	2.2nF	220pF	1nF	1.5nF	
500	X7R	47nF	100nF	200nF	47nF	100nF	200nF	
100V	COG/NP0	560pF	1nF	2.2nF	120pF	560pF	680pF	
	X7R	15nF	15nF	68nF	15nF	15nF	68nF	

Note: For some lower capacitance parts, higher voltage rated parts may be supplied. Please refer to the table below.

E01/E07

Recommended solder lands

Signal tra

	Sigi			
	0805	1206	1806	1812
A	0.95 (0.037)	1.20 (0.047)	1.2 (0.047)	2.65 (0.104)
В	0.90 (0.035)	0.90 (0.035)	1.40 (0.055)	1.40 (0.055)
С	0.30 (0.012)	0.60 (0.024)	0.80 (0.031)	0.80 (0.031)
D	0.40 (0.016)	0.80 (0.031)	1.40 (0.055)	1.40 (0.055)
E	0.75 (0.030)	1.0 (0.039)	1.0 (0.039)	2.05 (0.080)

Surface Mount EMI Filters - E01 & E07 feedthrough capacitors

Open board insertion loss performance in $\textbf{50}\Omega$ system

Open Board Performance									
Capacitance	0.1MHz	1MHz	10MHz	100MHz	1GHz	Resonance Freq (MHz) approx.			
10pF	0	0	0	0	7.5	2200			
22pF	0	0	0	0	16	1600			
33pF	0	0	0	1	22	1350			
47pF	0	0	0	2	28	1150			
68pF	0	0	0	3	41	900			
100pF	0	0	0	5	28	800			
150pF	0	0	0	8	24	700			
220pF	0	0	0	12	20	600			
330pF	0	0	1	15	20	500			
470pF	0	0	2	18	20	425			
560pF	0	0	3	20	20	350			
680pF	0	0	4	22	20	300			
820pF	0	0	5	24	20	260			
1nF	0	0	7	27	20	220			
1.5nF	0	0	9	31	20	200			
2.2nF	0	0	12	34	20	170			
3.3nF	0	1	14	39	20	135			
4.7nF	0	2	18	46	20	110			
6.8nF	0	3	21	50	20	90			
10nF	0	5	24	48	20	80			
15nF	0	8	27	45	20	65			
22nF	0	12	31	43	20	56			
33nF	1	14	34	40	20	40			
47nF	2	17	38	40	20	34			
68nF	4	20	41	40	20	30			
100nF	6	24	45	40	20	28			
150nF	8	26	48	40	20	24			
220nF	10	30	52	40	20	17			
330nF	13	33	55	40	20	15.5			
470nF	16	36	60	40	20	14			
560nF	18	39	65	40	20	12			

Ordering Information - E01 & E07 feedthrough capacitors

1206	Y	100	0103	М	Х	Т	E07
Chip size	Termination	Voltage	Capacitance in picofarads (pF)	Tolerance	Dielectric	Packaging	Туре
0805 1206 1806	J = Nickel Barrier (Tin) *Y = FlexiCap™ (Tin - X7R only) A = (Tin/Lead) Not RoHS compliant. *H = FlexiCap™ (Tin/Lead) Not RoHS compliant.	025 = 25V 050 = 50V 100 = 100V 200 = 200V	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following Example: 0103 = 10000pF.	M = ±20%	A = COG/NP0 AEC-Q200 C = COG/NP0 E = X7R AEC-Q200 X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk	E01 E07

Note: *FlexiCap™ termination only available in X7R material. Please contact our Sales Office for any special requirements.

Reeled	178mm	0805	1206	1806	330mm	0805	1206	1806
quantities	(7") reel	3000	2500	2500	(13") reel	12000	10000	10000

The Syfer X2Y Integrated Passive Component is a 3 terminal EMI chip device.

When used in balanced line applications, the revolutionary design provides simultaneous line-to-line and line-to-ground filtering, using a single ceramic chip. In this way, differential and common mode filtering are provided in one device.

For unbalanced applications, it provides ultra low ESL (equivalent series inductance). Capable of replacing 2 or more conventional devices, it is ideal for balanced and unbalanced lines, twisted pairs and dc motors, in automotive, audio, sensor and other applications.

Available in sizes from 0805 to 1812, these filters can prove invaluable in meeting stringent EMC demands.

Manufactured by Knowles Capacitors under licence from X2Y Attenuators LLC.

t irs ons.

Temperature rating -55°C to 125°C Insulation resistance

the less)

100Gohms or 1000s (whichever is

Dielectric withstand voltage ≤200V 2.5 times rated Volts for 5 secs 500V 1.5 times rated Volts for 5 secs Charging current limited to

50mA Max.

 X7R or COG/NP0
 All

 Electrical configuration
 Tr

 Multiple capacitance
 Button

 (control of the second se

Dielectric

At 1000hr point **Typical capacitance matching** Better than 5% (down to 1% available on request)

Capacitance measurement

E03 Туре **Chip size** 0805 1206 1410 1812 **Rated voltage** Dielectric COG/NPO -_ 16Vdc X7R COG/NP0 560pF - 820pF 1.8nF - 3.3nF 6.8nF - 8.2nF 12nF - 15nF 25Vdc X7R 4.7nF - 5.6nF 390pF - 470pF 8.2nF - 10nF COG/NP0 1.2nF - 1.5nF 50Vdc 18nF - 47nF 180nF - 400nF 390nF - 680nF X7R 56nF - 220nF 10pF - 330pF 100pF - 3.9nF 820pF - 6.8nF COG/NPO 22pF - 1.0nF 100Vdc X7R 8.2nF - 330nF COG/NP0 -22pF - 1.0nF 100pF - 3.3nF 820pF - 5.6nF 200Vdc X7R 820pF - 33nF 1.2nF - 120nF 2.7nF - 180nF 820pF - 3.9nF COG/NP0 _ --500Vdc X7R 2.7nF - 100nF

Note: For some lower capacitance parts, higher voltage rated parts may be supplied.

AEC-Q200 range (E03) - capacitance values

Chip size		0805	1206	1410	1812
50Vdc	COG/NP0	390pF - 470pF	1.2nF - 1.5nF	4.7nF - 5.6nF	8.2nF - 10nF
Sovac	X7R	18nF - 33nF	56nF - 150nF	180nF - 330nF	390nF - 560nF
100Vde	COG/NP0	10pF - 330pF	22pF - 1.0nF	100pF - 3.9nF	820pF - 6.8nF
100Vdc	X7R	470pF - 15nF	1.5nF - 47nF	4.7nF - 150nF	8.2nF - 330nF

	0805	1206	1410	1812
L.	2.0±0.3 (0.08±0.012)	3.2±0.3 (0.126±0.012)	3.6±0.3 (0.14±0.012)	4.5±0.35 (0.18±0.014)
w	1.25±0.2 (0.05±0.008)	1.60±0.2 (0.063±0.008)	2.5±0.3 (0.1±0.012)	3.2±0.3 (0.126±0.012)
т	1.0±0.15 (0.04±0.006)	1.1±0.2 (0.043±0.008)	2.0 max. (0.08 max.)	2.1 max. (0.08 max.)
B1	0.5±0.25 (0.02±0.01)	0.95±0.3 (0.037±0.012)	1.20±0.3 (0.047±0.012)	1.4±0.35 (0.06±0.014)
B2	0.3±0.15 (0.012±0.006)	0.5±0.25 (0.02±0.01)	0.5±0.25 (0.02±0.01)	0.75±0.25 (0.03±0.01)

Notes: 1) All dimensions mm (inches).

- $\hat{2}$) Pad widths less than chip width gives improved mechanical performance.
- The solder stencil should place 4 discrete solder pads. The un-printed distance between ground pads is shown as dim E.

4) Insulating the earth track underneath the filters is acceptable and can help avoid displacement of filter during soldering but can result in residue entrapment under the chip.

14

Surface Mount EMI Filters - E03 X2Y Integrated Passive Components

Recommended solder lands		0805	1206	1410	1812
D	Α	0.95 (0.037)	1.2 (0.047)	2.05 (0.08)	2.65 (0.104)
	В	0.9 (0.035)	0.9 (0.035)	1.0 (0.040)	1.4 (0.055)
	С	0.3 (0.012)	0.6 (0.024)	0.7 (0.028)	0.8 (0.031)
	D	0.4 (0.016)	0.8 (0.031)	0.9 (0.035)	1.4 (0.055)
	E	0.75 (0.030)	1.0 (0.039)	1.85 (0.071)	2.05 (0.080)

Component	Advantages	Disadvantages	Applications
Chip capacitor	Industry standard	Requires 1 per line High inductance Capacitance matching problems	By-pass Low frequency
3 terminal feedthrough	Feedthrough Lower inductance	Current limited	Feedthrough Unbalanced lines High frequency
Syfer X2Y Integrated Passive Component	Very low inductance Replaces 2 (or 3) components Negates the effects of temperature, voltage and ageing Provides both common mode and differential mode attenuation Can be used on balanced & unbalanced lines	Care must be taken to optimise circuit design	By-pass Balanced lines High frequency dc electric motors Unbalanced lines Audio amplifiers CANBUS

Ordering Information - X2Y IPC range

1812	Y	100	0334	М	Х	т	E03
Chip Size	Termination	Voltage	Capacitance in picofarads (pF) C1	Tolerance	Dielectric	Packaging	Туре
0805 1206 1410 1812	J = Nickel Barrier (Tin)	016 = 16V 025 = 25V 050 = 50V 100 = 100V 200 = 200V 500 = 500V	First digit is 0. Second and third digits are significant figures of capacitance code. The fourth digit is number of zeros following Example: 0334 =330nF. Note: $C_1 = 2C_2$	$M = \pm 20\%$ (Tighter tolerances may be available on request).	A = COG/NP0 AEC-Q200 C = COG/NP0 E = X7R AEC-Q200 X = X7R	T = 178mm (7") reel R = 330mm (13") reel B = Bulk	Syfer X2Y Integrated Passive Component

Note: *FlexiCap™ termination only available in X7R material. Please contact the sales office for any special requirements.

Reeled quantities	178mm (7")	0805	1206	1410	1812		330mm (13") reel	0805	1206	1410	1812	Ĺ
	reel	3000	2500	2000	1000			12000	10000	8000	4000	

DLI•Novacap•Syfer•Voltronics

Knowles Capacitors designs, manufactures and sells special electronic components. Our products are used in military, space, telecom infrastructure, medical and industrial applications where function and reliability are crucial.

Knowles (Cazenovia) 2777 Route 20 East, Cazenovia, NY 13035 USA

Phone: +1 315 655 8710 Fax: +1 315 655 0445 DLISales@knowles.com

Knowles (Valencia) 25111 Anza Drive, Valencia, CA 91355 USA

Phone: +1 661 295 5920 Fax: +1 661 295 5928 NovacapSales@knowles.com

Knowles (UK) Ltd Hethel Engineering Centre, Chapman Way, Hethel, Norwich, Norfolk NR14 8FB

Phone: +44 1603 723300 Fax: +44 1603 723301 SyferSales@knowles.com

Knowles (Cazenovia) 2777 Route 20 East, Cazenovia, NY 13035 USA

Phone: +1 315 655 8710 Fax: +1 315 655 0445 VoltronicsSales@knowles.com