A product Line of Diodes Incorporated

PI3PCIE3412

3.3V, PCI Express® 3.0 2-Lane, 2:1 Mux/DeMux Switch, with Single Enable

Features

- 4 Differential Channel, 2:1 Mux/DeMux
- PCI Express® 3.0 Performance, 8.0Gbps
- Bi-directional Operation
- Low Bit-to-Bit Skew, 10ps max
- Low channel-to-channel skew, 20ps max
- Low Crosstalk: - $35 \mathrm{~dB} @ 4 \mathrm{GHz}$
- High Off Isolation: -22dB@4 GHz (8.0Gbps)
- Low insertion loss: -1.3dB@4 GHz (8.0Gbps)
- Return loss: -21dB@4 GHz
- Support for DP1.2 - HBR2, HBR, RBR
- Supply Voltage 3.3 V
- Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Packaging (Pb-free \& Green):
-42-contact, TQFN (ZH42), $3.5 \times 9 \mathrm{~mm}$
-40 -contact, TQFN (ZL40), $3 \times 6 \mathrm{~mm}$
Pin Configuration - 40- Contact TQFN

Description

The PI3PCIE3412 is an 8 to 4 differential channel multiplexer/ demultiplexer switch. This solution can switch 2 full PCI Express® 3.0, lanes to one of two locations. Using a unique design technique, Diodes has been able to minimize the impedance of the switch such that the attenuation observed through the switch is minimal. The unique design technique also offers a layout targeted for PCI Express signals, which minimizes the channel to channel skew as well as channel to channel crosstalk as required by the PCI Express specification. PI3PCIE3412 can also be used for application up to 12 Gbps

Application

Routing of PCI Express 3.0, DP1.2, USB3.0, SAS2.0, SATA3.0, XAUI, RXAUI signals with low signal attenuation.

Pin Configuration-42- Contact TQFN

Block Diagram

Truth Table

Function	SEL
A_{N} to B_{N}	L
A_{N} to C_{N}	H

A product Line of Diodes Incorporated

PI3PCIE3412

Pin Description

Pin \#		Pin Name	I/O	Description
42-TQFN	40-TQFN			
2 3	$\begin{array}{\|l\|} 1 \\ 2 \end{array}$	$\begin{aligned} & \mathrm{A} 0+ \\ & \mathrm{A} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port A
6	$\begin{array}{\|l\|} \hline 4 \\ 5 \end{array}$	$\begin{aligned} & \mathrm{A} 1+ \\ & \mathrm{A} 1- \end{aligned}$	I/O	Signal I/O, Channel 1, Port A
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{array}{\|l\|} \hline 9 \\ 10 \end{array}$	$\begin{aligned} & \text { A2+ } \\ & \text { A2- } \end{aligned}$	I/O	Signal I/O, Channel 2, Port A
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { A3+ } \\ & \text { A3- } \end{aligned}$	I/O	Signal I/O, Channel 3, Port A
$\begin{aligned} & 38 \\ & 37 \end{aligned}$	$\begin{aligned} & 36 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { B0+ } \\ & \text { B0- } \end{aligned}$	I/O	Signal I/O, Channel 0, Port B
$\begin{aligned} & 36 \\ & 35 \end{aligned}$	$\begin{aligned} & 34 \\ & 33 \end{aligned}$	$\begin{aligned} & \text { B1+ } \\ & \text { B1- } \end{aligned}$	I/O	Signal I/O, Channel 1, Port B
$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { B2+ } \\ & \text { B2- } \end{aligned}$	I/O	Signal I/O, Channel 2, Port B
$\begin{aligned} & 27 \\ & 26 \end{aligned}$	$\begin{aligned} & 24 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { B3+ } \\ & \text { B3- } \end{aligned}$	I/O	Signal I/O, Channel 3, Port B
$\begin{aligned} & 34 \\ & 33 \end{aligned}$	$\begin{aligned} & 32 \\ & 31 \end{aligned}$	$\begin{aligned} & \mathrm{C} 0+ \\ & \mathrm{C} 0- \end{aligned}$	I/O	Signal I/O, Channel 0, Port C
$\begin{aligned} & 32 \\ & 31 \end{aligned}$	$\begin{aligned} & 30 \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1+ \\ & \mathrm{C} 1- \end{aligned}$	I/O	Signal I/O, Channel 1, Port C
$\begin{aligned} & 25 \\ & 24 \end{aligned}$	$\begin{aligned} & 22 \\ & 21 \end{aligned}$	$\begin{aligned} & \mathrm{C} 2+ \\ & \mathrm{C} 2- \end{aligned}$	I/O	Signal I/O, Channel 2, Port C
$\begin{aligned} & 23 \\ & 22 \end{aligned}$	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	$\begin{aligned} & \mathrm{C} 3+ \\ & \mathrm{C} 3- \end{aligned}$	I/O	Signal I/O, Channel 3, Port C
9	7	SEL	I	Operation mode Select (when SEL $=0$: $A \rightarrow B$, when SEL $=1$: $A \rightarrow C$
$\begin{aligned} & 5,8,13,18, \\ & 20,30,40, \\ & 42 \end{aligned}$	$\begin{aligned} & 3,6,11,17, \\ & 28,38 \end{aligned}$	V_{DD}	Pwr	$3.3 \mathrm{~V} \pm 10 \%$ Positive Supply Voltage
$\begin{aligned} & 1,4,10,14, \\ & \text { 17, 19, 21, 39, } \\ & \text { 41, Center } \\ & \text { Pad } \end{aligned}$	$\begin{aligned} & 8,12,15,16, \\ & 18,27,37, \\ & 39,40 \end{aligned}$	GND	Pwr	Power ground

A product Line of
Diodes Incorporated
T) PERICOM

PI3PCIE3412

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)
Storage Temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +4.6 V
Channel DC Input Voltage .. 4.6 V

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
V_{DD}	3.3V Power Supply		3.0	3.3	3.6	V
I_{DD}	Total current from V_{DD} 3.3V supply	SEL $=0 \mathrm{~V}$ or V_{DD}		0.15	1	mA
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}-\mathrm{DIF}}$	Differential Voltage (differential pins)				1.6	$\mathrm{~V}_{\mathrm{ppd}}$
$\mathrm{V}_{\mathrm{I} / \mathrm{O}-\mathrm{CM}}$	Common Mode Voltage (differiential pins)		0		0.8	V
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature range		-40		85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics for Switching over Operating Range

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(1)}$	Max.	Units
VIH - SEL	Input HIGH Voltage, SEL Input		2		3.6	V
V IL - SEL	Input LOW Voltage, SEL Input		0		0.8	
VIK	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.7	-1.2	
IIH	Input HIGH Current, SEL	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$			± 5	$\mu \mathrm{A}$
IIL	Input LOW Current, SEL	$\mathrm{V}_{\text {DD }}=$ Max., $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			± 5	
IIN - SEL	Input Leakage Current, SEL Input	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}-$ SEL Max or $\mathrm{V}_{\text {IL }}-$ SEL Min	-10		+10	$\mu \mathrm{A}$
IIH	Input HIGH Current, $\mathrm{A}_{\mathrm{X}}, \mathrm{B}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}$	$\mathrm{V}_{\text {DD }}=$ Max., $\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$	-10		+10	$\mu \mathrm{A}$
IIL	Input LOW Current, $\mathrm{A}_{\mathrm{X}}, \mathrm{B}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-10		+10	
IOZH	HighZ HIGH Current, $\mathrm{B}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$	-10		+10	$\mu \mathrm{A}$
IOZL	HighZ LOW Current, $\mathrm{B}_{\mathrm{X}}, \mathrm{C}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-10		+10	$\mu \mathrm{A}$
$\mathrm{CI}_{\text {/ O-ON }}$	ON state I/O capacitance			1.5		pF
R_{ON}	ON state resistance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{IO}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}$		5		Ω

Note:

1. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tPZH, tPZL	Line Enable Time - SEL to AN, BN, CN		2	20	25	ns
tPHZ, tPLZ	Line Disable Time - SEL to AN, BN, CN		0.5	5	25	
$t_{b}-b$	Bit-to-bit skew within the same differential pair			5	10	ps
t_{ch}-ch	Channel-to-channel skew				20	ps

PI3PCIE3412

Dynamic Electrical Characteristics

Parameter	Description	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Units
DDIL	Differential Insertion Loss $\left(\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{dBm}, \mathrm{DC}=0 \mathrm{~V}\right)$	$\begin{aligned} & \mathrm{f}=50 \mathrm{MHz}-1.25 \mathrm{GHz} \\ & \mathrm{f}=1.25 \mathrm{GHz}-2.5 \mathrm{GHz} \\ & \mathrm{f}=2.5 \mathrm{GHz}-4 \mathrm{GHz} \\ & \mathrm{f}=5 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & -0.8 \\ & -1.0 \\ & -1.3 \\ & -1.8 \end{aligned}$	$\begin{gathered} -1 \\ -1.2 \\ -1.6 \\ -2.2 \end{gathered}$	dB
DDIL ${ }_{\text {OFF }}$	Differential Off Isolation	$\begin{aligned} & \mathrm{f}=50 \mathrm{MHz}-1.25 \mathrm{GHz} \\ & \mathrm{f}=1.25 \mathrm{GHz}-2.5 \mathrm{GHz} \\ & \mathrm{f}=2.5 \mathrm{GHz}-4 \mathrm{GHz} \\ & \mathrm{f}=5 \mathrm{GHz} \end{aligned}$	$\begin{gathered} -26.3 \\ -21.4 \\ -17.6 \\ -16 \end{gathered}$	$\begin{gathered} -32.9 \\ -26.7 \\ -22 \\ -20 \end{gathered}$		dB
DDRL	Differential Return Loss	$\begin{aligned} & \mathrm{f}=50 \mathrm{MHz}-1.25 \mathrm{GHz} \\ & \mathrm{f}=1.25 \mathrm{GHz}-2.5 \mathrm{GHz} \\ & \mathrm{f}=2.5 \mathrm{GHz}-4 \mathrm{GHz} \\ & \mathrm{f}=5 \mathrm{GHz} \end{aligned}$	$\begin{gathered} -20 \\ -18.4 \\ -16.8 \\ -9.6 \end{gathered}$	$\begin{aligned} & -25 \\ & -23 \\ & -21 \\ & -12 \end{aligned}$		dB
DDNEXT	Near End Crosstalk	$\begin{aligned} & \mathrm{f}=50 \mathrm{MHz}-1.25 \mathrm{GHz} \\ & \mathrm{f}=1.25 \mathrm{GHz}-2.5 \mathrm{GHz} \\ & \mathrm{f}=2.5 \mathrm{GHz}-4 \mathrm{GHz} \\ & \mathrm{f}=5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -34.1 \\ & -30.5 \\ & -28.1 \\ & -27.2 \end{aligned}$	$\begin{gathered} -42.6 \\ -38.1 \\ -35.1 \\ -34 \end{gathered}$		dB
$\mathrm{V}_{\text {IF }}$	Max Signal Frequency Range	Insertion loss 1.5 dB , $\mathrm{V}_{\mathrm{IN}}=0.623 \mathrm{Vpp}, \mathrm{DC}=0 \mathrm{~V}$ Insertion loss 1.5 dB , $\mathrm{V}_{\mathrm{IN}}=0.623 \mathrm{Vpp}, \mathrm{DC}=0.9 \mathrm{~V}$		4.0 4.0		GHz
		Insertion loss 3dB, $\mathrm{V}_{\mathrm{IN}}=0.623 \mathrm{Vpp}, \mathrm{DC}=0 \mathrm{~V}$		8.0		
		Insertion loss 3dB, $\mathrm{V}_{\mathrm{IN}}=0.623 \mathrm{Vpp}, \mathrm{DC}=0.9 \mathrm{~V}$		8.0		
BW	-3dB Bandwidth			8.2		GHz

Notes:

1. Guaranteed by design. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Diff. Insertion Loss and Return Test
Diff. Off Isolation Test Circuit
Diff. Near End Xtalk Test Circuit

Circuit

A product Line of Diodes Incorporated
PI3PCIE3412

Differential Insertion Loss

Differential Return Loss

A product Line of Diodes Incorporated

Differential Off Isolation

Differential Crosstalk

A product Line of Diodes Incorporated

PI3PCIE3412

5.0 Gbps RX signal eye without PI3PCIE3412

8.0 Gbps RX signal eye without PI3PCIE3412

5.0 Gbps RX signal eye with PI3PCIE3412

8.0 Gbps RX signal eye with PI3PCIE3412

A product Line of Diodes Incorporated

PI3PCIE3412

Test Circuit for Electrical Characteristics ${ }^{(1-5)}$

Switch Positions

Test	Switch
t $_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	3.0 V
t $_{\text {PHZ }}$, $\mathrm{t}_{\text {PH }}$	GND
Prop Delay	Open

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance
2. $\quad \mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\text {OUT }}$ of the Pulse Generator
3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

Output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

Voltage Waveforms Enable and Disable Times

DP1.2 Application

 Diodes Incorporated

PI3PCIE3412

Packaging Information

Packaging Information

TOP VIEW

NOTE:
. ALL DIMENSIONS ARE $\operatorname{IN} \mathrm{mm}$. ANGLES IN DEGREES
2. COPLANARITY APPLIES TO THE EXPOSED THERMAL PAD AS WELL AS THE TERMINALS. 3. REFER JEDEC MO-220
4. RECOMMENDED LAND PATTERN IS FOR REFERENCE ONLY.
5. Thermal pad soldering area (mesh stencil is recommended).

16-0161

BOTTOM VIEW

ENABLING SERIAL CONNECTIVITY
DATE: 07/28/16

DESCRIPTION: 42-Contact, Very Thin Quad Flat No-Lead (TQFN)

DOCUMENT CONTROL \#: PD-2035
REVISION: F

Note: For latest package info, please check: http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description
PI3PCIE3412ZLE	ZL	40 -contact, Thin Fine Pitch Quad Flat No-Lead (TQFN)
PI3PCIE3412ZLEX	ZL	40 -contact, Thin Fine Pitch Quad Flat No-Lead (TQFN), Tape \& Reel
PI3PCIE3412ZHE	ZH	42 -contact, Very Thin Quad Flat No-Lead (TQFN)
PI3PCIE3412ZHEX	ZH	42-contact, Very Thin Quad Flat No-Lead (TQFN), Tape \& Reel

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb -free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

PI3PCIE3412

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or to affect its safety or effectiveness.
Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

