MJE270 (NPN), MJE271 (PNP) # **Complementary Silicon Power Transistors** ### **Features** - High Safe Operating Area $I_{S/B}$ @ 40 V, 1.0 s = 0.375 A - Collector–Emitter Sustaining Voltage V_{CEO(sus)} = 100 Vdc (Min) - High DC Current Gain h_{FE} @ 120 mA, 10 V = 1500 (Min) - Pb-Free Packages are Available* ## **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|--------------|-----------| | Collector-Emitter Voltage | V _{CEO} | 100 | Vdc | | Collector-Base Voltage | V _{CB} | 100 | Vdc | | Emitter-Base Voltage | V _{EB} | 5.0 | Vdc | | Collector Current - Continuous - Peak | IC | 2.0
4.0 | Adc | | Base Current | Ι _Β | 0.1 | Adc | | Total Power Dissipation @ T _C = 25°C
Derate above 25°C | P _D | 15
0.12 | W
W/°C | | Total Power Dissipation @ T _A = 25°C
Derate above 25°C | P _D | 1.5
0.012 | W
W/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to +150 | °C | ## THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 8.33 | °C/W | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 83.3 | °C/W | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. ## ON Semiconductor® http://onsemi.com 2.0 AMPERE COMPLEMENTARY POWER DARLINGTON TRANSISTORS 100 VOLTS, 15 WATTS ## **MARKING DIAGRAM** Y = Year WW = Work Week JE27x = Specific Device Code x= 0 or 1 G = Pb-Free Package ### **ORDERING INFORMATION** | Device | Package | Shipping | |---------|---------------------|---------------| | MJE270 | TO-225 | 500 Units/Box | | MJE270G | TO-225
(Pb-Free) | 500 Units/Box | | MJE271 | TO-225 | 500 Units/Box | | MJE271G | TO-225
(Pb-Free) | 500 Units/Box | ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ## MJE270 (NPN), MJE271 (PNP) ## **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |---|-----------------------|-------------|------------|------| | OFF CHARACTERISTICS | • | | | | | Collector-Emitter Sustaining Voltage (Note 1) $(I_C = 10 \text{ mAdc}, I_B = 0)$ | V _{CEO(sus)} | 100 | _ | Vdc | | Collector Cutoff Current $(V_{CE} = 100 \text{ Vdc}, I_B = 0)$ | ICEO | - | 1.0 | mAdc | | Collector Cutoff Current (V _{CB} = 100 Vdc, I _E = 0) | Ісво | - | 0.3 | mAdc | | Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0) | I _{EBO} | - | 0.1 | mAdc | | SECOND BREAKDOWN | | _ | _ | | | Second Breakdown Collector Current with Base Forward Biased ($V_{\text{CE}} = 40 \text{ Vdc}, t = 1.0 \text{ s}, \text{Non-repetitive}$) | I _{S/b} | 375 | _ | Adc | | ON CHARACTERISTICS (Note 1) | | | | | | DC Current Gain $ \begin{array}{l} (I_C=20 \text{ mAdc, V}_{CE}=3.0 \text{ Vdc}) \\ (I_C=120 \text{ mAdc, V}_{CE}=10 \text{ Vdc}) \end{array} $ | h _{FE} | 500
1500 | | - | | Collector–Emitter Saturation Voltage
(I_C = 20 mAdc, I_B = 0.2 mAdc)
(I_C = 120 mAdc, I_B = 1.2 mAdc) | V _{CE(sat)} | -
- | 2.0
3.0 | Vdc | | Base–Emitter On Voltage ($I_C = 120 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) | V _{BE(on)} | - | 2.0 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | Current Gain – Bandwidth Product (Note 2) $(I_C = 0.05 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc, } f_{test} = 1.0 \text{ MHz})$ | f _T | 6.0 | _ | MHz | ^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. Figure 1. DC Current Gain Figure 2. Safe Operating Area ^{2.} $f_T = |h_{fe}| \cdot f_{test}$. ## MJE270 (NPN), MJE271 (PNP) ### PACKAGE DIMENSIONS TO-225 CASE 77-09 **ISSUE Z** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982 - CONTROLLING DIMENSION: INCH - 3. 077-01 THRU -08 OBSOLETE, NEW STANDARD 077-09. | | INCHES | | MILLIMETERS | | |-----|-----------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.425 | 0.435 | 10.80 | 11.04 | | В | 0.295 | 0.305 | 7.50 | 7.74 | | C | 0.095 | 0.105 | 2.42 | 2.66 | | D | 0.020 | 0.026 | 0.51 | 0.66 | | F | 0.115 | 0.130 | 2.93 | 3.30 | | G | 0.094 BSC | | 2.39 BSC | | | Н | 0.050 | 0.095 | 1.27 | 2.41 | | J | 0.015 | 0.025 | 0.39 | 0.63 | | K | 0.575 | 0.655 | 14.61 | 16.63 | | M | 5° TYP | | 5° TYP | | | Q | 0.148 | 0.158 | 3.76 | 4.01 | | R | 0.045 | 0.065 | 1.15 | 1.65 | | S | 0.025 | 0.035 | 0.64 | 0.88 | | U | 0.145 | 0.155 | 3.69 | 3.93 | | V | 0.040 | | 1.02 | | STYLE 3 PIN 1. BASE COLLECTOR EMITTER ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative