

PT7C4502

PLL Clock Multiplier

Features

- Low cost frequency multiplier
- Zero ppm multiplication error
- Input crystal frequency of 5 30 MHz
- Input clock frequency of 4 50 MHz
- Output clock frequencies up to 180 MHz
- Period jitter 50ps (100~180MHz)
- Duty cycle of 45/55% up to 160MHz
- Operating voltages of 3.0 to 5.5V
- Tri-state output for board level testing
- Die form, Wafer form

Applications

• Used for crystal oscillator

Description

The PT7C4502 is a high performance frequency multiplier, which integrates Analog Phase Lock Loop techniques.

The PT7C4502 is the most cost effective way to generate a high quality, high frequency clock output from a lower frequency crystal or clock input. It is designed to replace crystal oscillators in most electronic systems, clock multiplier and frequency translation.

Using Phase-Locked-Loop (PLL) techniques, the device uses a standard fundamental mode, inexpensive crystal to produce output clocks up to 180 MHz.

The complex Logic divider is the ability to generate nine different popular multiplication factors, allowing one chip to output many common frequencies.

The device also has an Output Enable pin that tristates the clock output when the OE pin is taken low. This product is intended for clock generation and frequency translation with low output jitter (variation in the output period)

Block Diagram

Pin/Pad Configuration

Pin/Pad Description

Pin Name	Pad Name	Туре	Description		
X1/ICLK	X1-ICLK	Ι	Crystal connection or clock input.		
X	2	0	Crystal connection. Leave unconnected for clock input.		
S	0	Ι	Multiplier select pin 0. Connect to Vcc or float.		
S1 I Multiplier select pin 1. Connect to GND or float. Internal pull-up.		Multiplier select pin 1. Connect to GND or float. Internal pull-up.			
C	OE I		Output Enable. Tri-states CLK output when low.		
CI	LK	0	Clock output.		
VCC	AVDD	Р	Analog Power.		
VCC DVDD		Р	Digital power.		
AGND		Р	Analog Ground		
GND DGND		Р	Digital ground.		

	Pad Coordinate File					
Pad Name	X Coordinate	Y Coordinate	Pad Name	X Coordinate	Y Coordinate	
X1-ICLK	120.90	892.90	CLK	1098.90	118.60	
X2	120.90	641.50	S 0	1322.10	118.60	
S1	117.70	401.10	DVDD	1303.50	973.30	
AGND	111.50	225.80	AVDD	1063.10	973.30	
DGND	698.40	118.60	OE	470.70	981.70	
NI-4 C Laterate	a second start to CNI					

Note: Substrate is connected to GND.

Die Size: 1670µm*1180µm (Including scribe line size 150µm*80µm.)

Die Thickness: PT7C4502DE: 350±25μm without coating; PT7C4502-2WF: 220±20μm with coating **Pad Size:** 75μm*75μm

S1	SO	CLK
0	M Note 2	$\times 2^{\text{Note 1}}$
0	1	×3
1 ^{Note 3}	M Note 2	$\times 4^{(default)}$
1 ^{Note 3}	1	×5

Note 1: CLK output frequency=ICLK×2;

- 2. M=Leave unconnected (self-biases to Vcc/2);
- 3. Internal pull-up on S1, unconnected = 1

External Components

Decoupling Capacitor

As with any high-performance mixed-signal IC, the PT7C4502 must be isolated from system power supply noise to perform optimally. A decoupling capacitor of 0.01μ F or 0.1uF must be connected between VCC and the GND. It must be connected close to the PT7C4502 to minimize lead inductance. No external power supply filtering is required for the PT7C4502.

Series Termination Resistor

A 33 Ω terminating resistor can be used next to the CLK pin for trace lengths over one inch.

Crystal Load Capacitors

There is no on-chip capacitance build-in chip. A parallel resonant, fundamental mode crystal should be used. The device crystal connections should include pads for small capacitors from X1 to ground and from X2 to ground. These capacitors are used to adjust the stray capacitance of the board to match the nominally required crystal load capacitance. Because load capacitance can only be increased in this trimming process, it is important to keep stray capacitance to a minimum by using very short PCB traces (and no vias) between the crystal and device. Crystal capacitors, if needed, must be connected from each of the pins X1 and X2 to ground. The value (in pF) of these crystal caps should equal C_L*2 . In this equation, $C_L=$ crystal load capacitance in pF. Example: For a crystal with a 15 pF load capacitance, each crystal capacitor would be 30pF.

Maximum Ratings

Storage Temperature	-65° C to $\pm 150^{\circ}$ C
Supply Voltage to Ground Potential (V_{CC})	
Inputs(Reference to GND)	
Clock Output (Reference to GND)	
Soldering Temperature (Max of 10 seconds)	260°C

Recommended operation conditions

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Symbol	Description	Min	Туре	Max	Unit
T _A	Operation Temperature	-40	-	+85	°C
V _{DD}	Supply voltage	3.0	-	5.5	V

Note:

DC Electrical Characteristics

 $(V_{CC} = 3.3V \pm 0.3V, T_A = -40 \sim 85$ °C, unless otherwise noted)

Sym.	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	-	Vcc	3	3.3	3.6	V
Icc	Supply Current	no load, 20MHz crystal, OE = Vcc	Vcc	-	12	20	mA
V _{IH}	Input Logic High	-	ICLK, OE	2	-	-	V
V _{IL}	Input Logic Low	-	ICLK, OE	-	-	0.8	V
V _{IH}	Input Logic High	-	S0, S1	Vcc-0.5	-	-	V
V _{IM}	Input mid-level	-	S0, S1	-	Vcc/2	-	V
V _{IL}	Input Logic Low	-	S0, S1	-	-	0.5	V
V _{OH}	High-level output voltage	$I_{OH} = -12mA$	CLK	2.4	-	-	V
V _{OL}	Low-level output voltage	$I_{OL} = 12mA$	CLK	-	-	0.4	V
I _S	Short Circuit Current	-	CLK	-	±30	-	mA
т	Innut Lookogo Cumont	-	OE	-	_	1	μΑ
II	Input Leakage Current	-	S1	-	-7.5	-20	μΑ

$(V_{CC} = 5.0V \pm 0.5V, T_A = -40 \sim 85$ °C, unless otherwise noted)

Sym.	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	-	Vcc	4.5	5.0	5.5	V
Icc	Supply Current	no load, 20MHz crystal, OE = Vcc	Vcc	-	20	30	mA
V_{IH}	Input Logic High	-	ICLK, OE	0.65Vcc	-	-	V
V_{IL}	Input Logic Low	-	ICLK, OE	-	-	0.8	V
V_{IH}	Input Logic High	-	S0, S1	Vcc-0.4	-	-	V
V_{IM}	Input mid-level	-	S0, S1	-	Vcc/2	-	V
V _{IL}	Input Logic Low	-	S0, S1	-	-	0.4	V
V _{OH}	High-level output voltage	$I_{OH} = -12mA$	CLK	Vcc-0.5	-	-	V
V _{OL}	Low-level output voltage	$I_{OL} = 12mA$	CLK	-	-	0.4	V
Is	Short Circuit Current	-	CLK	-	±70	-	mA
-	Innet Looks on Comment	-	OE	-	_	1	μΑ
I_{I}	Input Leakage Current	-	S1	-	-7.5	-20	μΑ

AC Electrical Characteristics

 $(V_{CC} = 3.3V \pm 0.3V, T_A = -40 \sim 85$ °C, unless otherwise noted)

Sym.	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
f_{IN}	Input Frequency	Crystal	ICLK	5	-	30	MHz
\mathbf{f}_{OUT}	Output frequency	Vcc: 3.0 to 3.6V	CLK	20	-	180	MHz
t _r	Output clock rise time	0.8 to 2.0V, 15pF load	CLK	-	1	-	ns
$t_{\rm f}$	Output clock fall time	2.0 to 0.8V, 15pF load	CLK	-	1	-	ns
Dutu		At Vcc/2, below 160MHz	CLK	45	50	55	%
Duty	Output clock duty cycle	At Vcc/2, 160MHz to 180MHz	CLK	40		60	%
	PLL bandwidth	-	-	10	-	-	kHz
	Output enable time	OE high to output on	-	-	-	50	ns
	Output disable time	OE low to tri-state	-	-	-	50	ns
	Period Jitter	100MHz~180MHz	CLK	-	50	100	ps

 $(V_{CC} = 5.0V \pm 0.5V, T_A = -40 \sim 85$ °C, unless otherwise noted)

Sym.	Parameter	Test Condition	Pin	Min.	Тур.	Max.	Unit
f_{IN}	Input Frequency	Crystal	ICLK	5	-	30	MHz
\mathbf{f}_{OUT}	Output frequency	Vcc: 4.5 to 5.5V	CLK	20	-	180	MHz
t _r	Output clock rise time	20% Vcc to 80% Vcc, 15pF load	CLK	-	1.2	-	ns
t _f	Output clock fall time	20%Vcc to 80%Vcc, 15pF load	CLK	-	1.2	-	ns
Duty		At Vcc/2, below 160MHz	CLK	45	50	55	%
Duty	Output clock duty cycle	At Vcc/2, 160MHz to 180MHz	CLK	40		60	%
	PLL bandwidth	-	-	10	-	-	kHz
	Output enable time	OE high to output on	-	-	-	50	ns
	Output disable time	OE low to tri-state	-	-	-	50	ns
	Period Jitter	100MHz~180MHz	CLK	-	50	100	ps

Test circuits

1>Load circuit for output clock duty cycle, rise and fall time Measurement

2>Timing Definitions for output clock rise and fall time Measurement

Ordering Information

Part Number	Package Code	Package
PT7C4502DE	DE	$350\pm25\mu m$ without coating Die form
PT7C4502-2WF	WF	220±20 µm with coating Wafer form

Note:

• E = Pb-free and Green

• "-2" shows die thickness is 220±20 µm with coating; PT7C4502DE die thickness is 350±25 µm with coating.

• Adding X Suffix= Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

Pericom reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom.