LV8415XA

Bi-CMOS IC

Blurring correction driver H bridge $\times 2$-channel driver

ON Semiconductor ${ }^{\text {® }}$
http:/lonsemi.com

Overview

LV8415XA is dual channel H-bridge driver IC for digital still camera.

Function

- Actuator driver (saturation drive H bridge) $\times 2$-channel
- Hall Amplifier $\times 2$-channel
- Constant current hall bias circuit $\times 2$-channel
- General-purpose amplifier $\times 2$-channel
- With built-in for PWM signal generation logic circuit $\times 2$-channel
- 8-bit DAC for hall bias $\times 2$-channel
- 8-bit DAC for hall amplifier offset adjustment $\times 2$-channel

WLP32L

- Three line serial input
- Two systems in power supply (V_{M} : for actuator, V_{CC})
- With built-in thermal protection circuit
- With built-in low voltage malfunction prevention circuit

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V_{M} max		6	V
Supply voltage 2	$\mathrm{V}_{\text {CC }}$ max		6	V
Output peak current	lo peak	OUT1 to 2 ($\mathrm{t} \leq 10 \mathrm{msec}$, duty $\leq 20 \%$)	600	mA
Output current	$\mathrm{I}_{0} \mathrm{max}$	OUT1 to 2	350	mA
Hall bias current	IHB max		5	mA
Allowable power dissipation	Pd max	On a specified board *	1	W
Operating temperature	Topr		-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

* Specified board: $40.0 \mathrm{~mm} \times 50.0 \mathrm{~mm} \times 0.8 \mathrm{~mm}$, Four layers fiberglass epoxy circuit board.
* 2 Tjmax $=150^{\circ} \mathrm{C}$ Please design PCB so that internal chip temperature does not exceed $150^{\circ} \mathrm{C}$.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range 1	$\mathrm{~V}_{\mathrm{M}}$		2.7 to 5.5	V
Supply voltage range 2	$\mathrm{~V}_{\mathrm{CC}}$		2.7 to 5.5	V
Logic input voltage	V_{IN}		0 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V

ORDERING INFORMATION

See detailed ordering and shipping information on page 13 of this data sheet.

LV8415XA
Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=5.0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Current consumption when standing by	${ }^{\text {I CCO }}$	ST = "L"			1.0	$\mu \mathrm{A}$
VM current consumption	${ }^{\prime} \mathrm{M}$	$\mathrm{V}_{\mathrm{M}}=5.0 \mathrm{~V}, \mathrm{ST}=$ " H ", no load			10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CC }}$ current consumption	${ }^{\text {ICC }}$	ST = "H", no load		2	3.2	mA
$\mathrm{V}_{\text {CC }}$ low voltage cutting voltage	VTHVCC		2.1	2.40	2.6	V
Low voltage hysteresis voltage	VTHHYS		100	150	200	mV
Thermal shutdown temperature	TSD	Design guarantee	155	175	195	${ }^{\circ} \mathrm{C}$
Thermal hysteresis width	$\Delta T S D$	Design guarantee	15	35	55	${ }^{\circ} \mathrm{C}$
H bridge output (OUT1-2)						
Output on resistance	Ronu	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$, Upper-side on resistance		0.7	0.98	Ω
	Rond	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$, Under-side on resistance		0.5	0.7	Ω
Output leakage current	IO leak				1	$\mu \mathrm{A}$
Diode forward voltage	VD	$I D=-100 \mathrm{~mA}$		0.7		V
Operational amplifier (OP-AMP1-4)						
Input offset voltage	OP_VIO			± 1	± 5	mV
Input offset current	OP_ІІ			± 5	± 50	nA
Input bias current	OP_IB			30	250	nA
Equal phase input voltage range	VICM		0		V_{CC}	V
Equal phase signal removal ratio	CMR	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{VIN}=1 \mathrm{mV}$ (open loop gain)	60	80		dB
Large amplitude voltage range	VG	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$	1	10		V / mV
Output voltage range	$\mathrm{V}_{\mathrm{O}} \mathrm{H}$	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{CC}}-0.2$			V
	$\mathrm{V}_{\mathrm{O}} \mathrm{L}$				0.2	V
Power supply change removal ratio	SVR		65	85		dB
Output current (sink/source)	OP_IO		1	2		mA
Hall bias (HB1-2)						
Output current	IHB	$\mathrm{RHG}=1 \mathrm{k} \Omega$, VHBIN $=1.0 \mathrm{~V}$	0.95	1.00	1.05	mA
Output saturation voltage	VSATHB	$\mathrm{I}_{\mathrm{HB}}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.2$			V
Reference voltage						
Reference voltage	VREF		1.60	1.65	1.70	V
Reference voltage load characteristic	VRref	$\mathrm{I}_{\text {REF }}=100 \mu \mathrm{~A}$	1.60	1.65	1.70	V
Internal CLK frequency for PWM drive						
CLK frequency	Fclk		13.5	15	17.25	MHz
Control pin (ST, SCLK, DATA, STB)						
Built-in pull-down resistance	Rin		50	100	200	k ת
Input current	${ }_{1} \mathrm{~N}^{\text {L }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
	${ }_{\text {IN }}{ }^{\text {H }}$	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$	20	33	50	$\mu \mathrm{A}$
Input " L " level voltage	$\mathrm{V}_{\text {IN }} \mathrm{L}$				1.0	V
Input "H" level voltage	$\mathrm{V}_{\text {IN }} \mathrm{H}$		2.5			V

Block Diagram

Package Dimensions

SIDE VIEW

Pin Assignment

(NC_TEST) is pin only for the test. Please NC_TESTpin connect GND line.
\bigcirc Power supply pin
GND pinOutput pin
Logic control pinAnalog control pin
Ball side view

Pin function

Pin No.	Pin name	Pin function	Equivalent Circuit
$\begin{aligned} & \text { E2 } \\ & \text { E3 } \\ & \text { E4 } \\ & \text { E5 } \end{aligned}$	ST SCLK DATA STB	Input pin. High level 2 V to $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right)$ Low level 0 to $0.5 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right)$	
$\begin{aligned} & \hline \text { F1 } \\ & \text { F2 } \\ & \text { F4 } \\ & \text { F5 } \\ & \text { E1 } \\ & \text { F3 } \end{aligned}$	OUT1A OUT1B OUT2A OUT2B VM PGND	Output pin. (PWM output) VM : POWER - Power supply pin. PGND : POWER - GND pin.	
$\begin{aligned} & \hline \text { D1 } \\ & \text { D6 } \end{aligned}$	V_{CC} SGND	Signal system power supply pin Signal system GND pin	
$\begin{aligned} & \text { C1 } \\ & \text { B1 } \\ & \text { C6 } \\ & \text { B6 } \end{aligned}$	HB1 HGND1 HB2 HGND2	HB1, 2 pin Hall bias source pin HGND1, 2 pin Hall bias current setting pin	
$\begin{aligned} & \text { A1 } \\ & \text { A2 } \\ & \text { A3 } \\ & \text { A6 } \\ & \text { A5 } \\ & \text { A4 } \end{aligned}$	$\mathrm{V}_{\mathrm{IN}^{+1}}$ $\mathrm{V}_{\mathrm{IN}}-1 \mathrm{~A}$ $V_{I N^{-1 B}}$ $\mathrm{V}_{\mathrm{IN}}+2$ $\mathrm{V}_{\mathrm{IN}}-2 \mathrm{~A}$ $V_{I N}-2 B$	Hall amplifier input pin $\mathrm{V}_{\mathrm{IN}^{+}}$Hall amplifier+ input pin V_{IN}-A Hall amplifier- input pin V_{IN}-B LPF formation pin (The filter is formed for the noise removal.)	
$\begin{aligned} & \text { B3 } \\ & \text { B4 } \end{aligned}$	VOUT1 VOUT2	Hall amplifier output pin. VOUT1 : Hall amplifier 1ch output pin. VOUT2 : Hall amplifier 2ch output pin.	

Continued from preceding page.

Pin No.	Pin name	Pin function	Equivalent Circuit
$\begin{aligned} & \mathrm{D} 2 \\ & \mathrm{C} 2 \\ & \mathrm{D} 5 \\ & \mathrm{C} 5 \end{aligned}$	$\mathrm{V}_{1 \mathrm{~N}^{+3}}$ $V_{1 N^{-3}}$ $\mathrm{V}_{1 \mathrm{~N}^{+4}}$ $\mathrm{V}_{\mathrm{IN}}{ }^{+4}$	General purpose amplifier input pin. $\mathrm{V}_{\mathrm{IN}^{+3}}$: 3ch general purpose amplifier+ input pin $\mathrm{V}_{\mathrm{IN}} \mathrm{N}^{-3}$: 3ch general purpose amplifier- input pin $\mathrm{V}_{\mathrm{IN}^{+4}}$: 4ch general purpose amplifier+ input pin $\mathrm{V}_{\mathrm{IN}}-4$: 4ch general purpose amplifier- input pin	
$\begin{aligned} & \text { B2 } \\ & \text { B5 } \end{aligned}$	VOUT3 VOUT4	General purpose amplifier output pin. VOUT3 : 3ch general purpose amplifier output pin VOUT4 : 4ch general purpose amplifier output pin	
E6	VREF	Internal standard voltage pin $\mathrm{V}_{\mathrm{CC}} / 2$ output	
F6	NC-TEST	```N.C. pin TEST pin Please NC_TEST pin connect GND line.```	

LV8415XA
3 line serial communication electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=5.0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Serial data forwarding pin						
Logic pin input current	${ }_{1} \mathrm{~N}^{\text {L }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ (SCLK, DATA, STB)			1.0	$\mu \mathrm{A}$
	${ }_{\text {IN }} \mathrm{H}$	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ (SCLK, DATA, STB)		33	50	$\mu \mathrm{A}$
Input "H" level voltage	$\mathrm{V}_{1 N^{\prime}} \mathrm{H}$	SCLK, DATA, STB	2.5			V
Input "L" level voltage	$\mathrm{V}_{\text {IN }} \mathrm{L}$	SCLK, DATA, STB			1.0	V
Minimum SCLK "H" pulse width	$\mathrm{Tsch}^{\text {H }}$		0.1			$\mu \mathrm{s}$
Minimum SCLK " L " pulse width	$\mathrm{T}_{\text {SCL }}$		0.1			$\mu \mathrm{s}$
STB regulation time	Tlat		0.1			$\mu \mathrm{s}$
Minimum STB pulse width	Tlatw		0.1			$\mu \mathrm{s}$
Data set-up time	Tds		0.1			$\mu \mathrm{S}$
Data hold time	Tdh		0.1			$\mu \mathrm{s}$
maximum CLK frequency	Fclk				4	MHz

Serial data timing condition
Serial data input timing chart

It inputs it from A0 in order of D11. The data transfer is done by the rising edge, and after all data transfers, the latch does all data to SCLK by the STB signal standing up. The STB signal accepts and the internal logic of IC doesn't accept the SCLK signal during "H".

Serial logic map
PWMh - bridge relation serial map

Input																Setting mode	Set content	Remarks
A0	A1	A2	A3	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11			
0	0	0	0	*	*	0	0	0	0	0	0	0	0	0	0	1ch PWM Duty set	100\%	Reverse
				*	*	1	0	0	0	0	0	0	0	0	0		511/512 $\times 100 \%$	
				*	*	0	1	0	0	0	0	0	0	0	0		510/512 $\times 100 \%$	
																	\ldots	
				*	*	0	1	1	1	1	1	1	1	1	0		2/512 $\times 100 \%$	
				*	*	1	1	1	1	1	1	1	1	1	0		$1 / 512 \times 100 \%$	
				*	*	0	0	0	0	0	0	0	0	0	1		0\%	Middle point
				*	*	1	0	0	0	0	0	0	0	0	1		1/512 $\times 100 \%$	Normal rotation
				*	*	0	1	0	0	0	0	0	0	0	1		$2 / 512 \times 100 \%$	
																	\ldots	
				*	*	1	0	1	1	1	1	1	1	1	1		509/512 $\times 100 \%$	
				*	*	0	1	1	1	1	1	1	1	1	1		$510 / 512 \times 100 \%$	
				*	*	1	1	1	1	1	1	1	1	1	1		511/512 $\times 100 \%$	
1	0	0	0	*	*	0	0	0	0	0	0	0	0	0	0	2ch PWM Duty set	100\%	Reverse
				*	*	1	0	0	0	0	0	0	0	0	0		511/512 $\times 100 \%$	
				*	*	0	1	0	0	0	0	0	0	0	0		510/512 $\times 100 \%$	
																	\ldots	
				*	*	0	1	1	1	1	1	1	1	1	0		2/512 $\times 100 \%$	
				*	*	1	1	1	1	1	1	1	1	1	0		$1 / 512 \times 100 \%$	
				*	*	0	0	0	0	0	0	0	0	0	1		0\%	Middle point
				*	*	1	0	0	0	0	0	0	0	0	1		1/512 $\times 100 \%$	Normal rotation
				*	*	0	1	0	0	0	0	0	0	0	1		$2 / 512 \times 100 \%$	
																	\ldots	
				*	*	1	0	1	1	1	1	1	1	1	1		509/512 $\times 100 \%$	
				*	*	0	1	1	1	1	1	1	1	1	1		510/512 $\times 100 \%$	
				*	*	1	1	1	1	1	1	1	1	1	1		511/512 $\times 100 \%$	
0	1	0	0	0	0	0	0	0	0	0	0	*	*	*	*	1ch hall bias set (8bit DAC)	0V	
				1	0	0	0	0	0	0	0	*	*	*	*		$1 / 255 \times$ VREF	
				0	1	0	0	0	0	0	0	*	*	*	*		$2 / 255 \times$ VREF	
												*	*	*	*		\ldots	
				1	0	1	1	1	1	1	1	*	*	*	*		253/255 \times VREF	
				0	1	1	1	1	1	1	1	*	*	*	*		254/255 \times VREF	
				1	1	1	1	1	1	1	1	*	*	*	*		VREF	
1	1	0	0	0	0	0	0	0	0	0	0	*	*	*	*	2ch hall bias set (8bit DAC)	0V	
				1	0	0	0	0	0	0	0	*	*	*	*		$1 / 255 \times$ VREF	
				0	1	0	0	0	0	0	0	*	*	*	*		$2 / 255 \times$ VREF	
												*	*	*	*		\ldots	
				1	0	1	1	1	1	1	1	*	*	*	*		253/255 \times VREF	
				0	1	1	1	1	1	1	1	*	*	*	*		$254 / 255 \times$ VREF	
				1	1	1	1	1	1	1	1	*	*	*	*		VREF	
0	0	1	0	0	0	0	0	0	0	0	0	*	*	*	*	1ch hall amplifier offset adjustment (8bit DAC)	0V	
				1	0	0	0	0	0	0	0	*	*	*	*		$1 / 255 \times \mathrm{V}_{\mathrm{CC}}$	
				0	1	0	0	0	0	0	0	*	*	*	*		$2 / 255 \times \mathrm{V}_{\mathrm{CC}}$	
												*	*	*	*		2	
				1	0	1	1	1	1	1	1	*	*	*	*		$253 / 255 \times \mathrm{V}_{\mathrm{CC}}$	
				0	1	1	1	1	1	1	1	*	*	*	*		$254 / 255 \times \mathrm{V}_{\mathrm{CC}}$	
				1	1	1	1	1	1	1	1	*	*	*	*		V_{CC}	
1	0	1	0	0	0	0	0	0	0	0	0	*	*	*	*	2ch hall amplifier offset adjustment (8bit DAC)	0V	
				1	0	0	0	0	0	0	0	*	*	*	*		$1 / 255 \times \mathrm{V}_{\mathrm{CC}}$	
				0	1	0	0	0	0	0	0	*	*	*	*		$2 / 255 \times \mathrm{V}_{\mathrm{CC}}$	
												*	*	*	*		\ldots	
				1	0	1	1	1	1	1	1	*	*	*	*		$253 / 255 \times \mathrm{V}_{\mathrm{CC}}$	
				0	1	1	1	1	1	1	1	*	*	*	*		$254 / 255 \times \mathrm{V}_{\mathrm{CC}}$	
				1	1	1	1	1	1	1	1	*	*	*	*		V_{CC}	

The PWMh-bridge driver's ON/OFF operation is done with the ST pin.

Hall amplifier gain setting range
Hall amplifier relation serial map

Input								Setting mode	Hall amplifier magnification ()Inside: Resistance
A0	A1	A2	A3	D0	D1	D2	D3		
0	0	0	1	0	0	0	0	1ch hall amplifier gain setting (" 3 " Resistance \div " 2 " Resistance)	10 (36k//3.6k)
				1	0	0	0		20 (72k/3.6k)
				0	1	0	0		40 (144k//3.6k)
				1	1	0	0		50 (180k//3.6k)
				0	0	1	0		60 (216k//3.6k)
				1	0	1	0		70 (252k//3.6k)
				0	1	1	0		90 (324k//3.6k)
				1	1	1	0		100 (360k//3.6k)
				0	0	0	1		110 (396k//3.6k)
				1	0	0	1		120 (432k//3.6K)
				0	1	0	1		140 (504k//3.6k)
				1	1	0	1		150 (540k/3.6k)
				0	0	1	1		160 (570k/3.6k)
				1	0	1	1		170 (612k/3.6k)
				0	1	1	1		190 (684k/3.6k)
				1	1	1	1		200 (720k/3.6k)
1	0	0	1	0	0	0	0	2ch hall amplifier gain setting (" 3 " Resistance \div " 2 " Resistance)	10 (36k//3.6k)
				1	0	0	0		20 (72k/3.6k)
				0	1	0	0		40 (144k//3.6k)
				1	1	0	0		50 (180k//3.6k)
				0	0	1	0		60 (216k/3.6k)
				1	0	1	0		70 (252k/3.6k)
				0	1	1	0		90 (324k/3.6k)
				1	1	1	0		100 (360k/3.6k)
				0	0	0	1		110 (396k//3.6k)
				1	0	0	1		120 (432k/3.6K)
				0	1	0	1		140 (504k//3.6k)
				1	1	0	1		150 (540k/3.6k)
				0	0	1	1		160 (570k/3.6k)
				1	0	1	1		170 (612k/3.6k)
				0	1	1	1		190 (684k/3.6k)
				1	1	1	1		200 (720k/3.6k)
0	1	0	1	0	0	0	0	1ch hall amplifier offset resistance / input resistance (" 1 " Resistance \div " 2 " Resistance)	10 (36k//3.6k)
				1	0	0	0		20 (72k/3.6k)
				0	1	0	0		40 (144k//3.6k)
				1	1	0	0		50 (180k/3.6k)
				0	0	1	0		60 (216k/3.6k)
				1	0	1	0		70 (252k/3.6k)
				0	1	1	0		90 (324k/3.6k)
				1	1	1	0		100 (360k/3.6k)
				0	0	0	1		110 (396k//3.6k)
				1	0	0	1		120 (432k//3.6K)
				0	1	0	1		140 (504k//3.6k)
				1	1	0	1		150 (540k//3.6k)
				0	0	1	1		160 ($570 \mathrm{k} / 3.6 \mathrm{k}$)
				1	0	1	1		170 (612k/3.6k)
				0	1	1	1		190 (684k/3.6k)
				1	1	1	1		200 (720k//3.6k)
1	1	0	1	0	0	0	0	2ch hall amplifier offset resistance / input resistance (" 1 " Resistance \div " 2 " Resistance)	10 (36k/3.6k)
				1	0	0	0		20 (72k/3.6k)
				0	1	0	0		40 (144k//3.6k)
				1	1	0	0		50 (180k/3.6k)
				0	0	1	0		60 (216k/3.6k)
				1	0	1	0		70 (252k/3.6k)
				0	1	1	0		90 (324k/3.6k)
				1	1	1	0		100 (360k//3.6k)
				0	0	0	1		110 (396k//3.6k)
				1	0	0	1		120 (432k//3.6K)
				0	1	0	1		140 ($504 \mathrm{k} / 3.6 \mathrm{k}$)
				1	1	0	1		150 ($540 \mathrm{k} / 3.6 \mathrm{kk}$)
				0	0	1	1		160 (570k//3.6k)
				1	0	1	1		170 (612k//3.6k)
				0	1	1	1		190 ($684 \mathrm{k} / 3.6 \mathrm{k}$)
				1	1	1	1		200 (720k//3.6k)

General-purpose amplifier ON/OFF setting

Input								Setting mode	Set content

PWM circuit accuracy setting

Input						Setting mode	Set content	Remarks
A0	A1	A2	A3	D0	D1			
1	0	1	1	0	0	PWM accuracy setting	10bit resolution	Initial value
				0	1		11bit resolution	
				1	0		12bit resolution	
				*	*		-	

PWM pulse width of moving
1ch (X axis side)

Input [3:0]								Setting mode	Moving pulse number
A0	A1	A2	A3	D0	D1	D2	D3		
0	1	1	1	0	0	0	0	1ch (X axis) side width of moving	0 (Initialization)
				1	0	0	0		1
				0	1	0	0		2
				1	1	0	0		3
				0	0	1	0		4
				1	0	1	0		5
				0	1	1	0		6
				1	1	1	0		7
				0	0	0	1		8
				1	0	0	1		9
				0	1	0	1		10
				1	1	0	1		11
				0	0	1	1		12
				1	0	1	1		13
				0	1	1	1		14
				1	1	1	1		15

Note : 1 pulse = 1CLK
2ch (Y axis side)

Input [7:4]								Setting mode	Moving pulse number
A0	A1	A2	A3	D4	D5	D6	D7		
0	1	1	1	0	0	0	0	2ch (Y axis) side width of moving	0 (Initialization)
				1	0	0	0		1
				0	1	0	0		2
				1	1	0	0		3
				0	0	1	0		4
				1	0	1	0		5
				0	1	1	0		6
				1	1	1	0		7
				0	0	0	1		8
				1	0	0	1		9
				0	1	0	1		10
				1	1	0	1		11
				0	0	1	1		12
				1	0	1	1		13
				0	1	1	1		14
				1	1	1	1		15

Note : 1 pulse = 1CLK
The ON/OFF operation of the hall amplifier and the hall bias is done with the ST pin.
Note : An initial value of A0 to A3 = 1111 is a static test mode. Use it specifying data D0 for one.
TEST mode setting

Input				Setting mode	Content	Remarks	
A0	A1	A2	A3				
1	1	1	1	0	NC pin_TEST mode	External CLK	It uses it by the shipment inspection.
				1		Internal CLK operation	

[^0]Hall bias, Offset adjustment circuit configuration

Hall amplifier, Hall bias equivalent circuit
About the gain adjustment
The resistance ratio of " 2 " and " 3 " is adjusted in figure and the gain is set. Refer to the setting to the cereal map. The magnification can be set from ten by 200.

About the Offset adjustment

The resistance ratio of " 1 " and " 2 " is adjusted in figure and the Offset is set. Refer to the setting to the cereal map. The magnification can be set from ten by 200.

Note in design

- Stand-by function

IC becomes a stand-by state at $\mathrm{ST}=$ "L", and IC enters the state of operation at $\mathrm{ST}=$ " H ". Moreover, the register in IC is reset as for $\mathrm{ST}=$ "L" at times.

- Hall bias

The constant current output is built into for the hall element drive. The constant current value is set from detection resistance (RHG) connected from the HBIN pin impression voltage and the HGND pin between GND.

Constant current value (I_{O}) $=$ HBIN voltage \div Detection resistance

Constant current value (IO) becomes about 1 mA when assuming HBIN pin impressed voltage $=1.0 \mathrm{~V}$ and detection resistance $=1 \mathrm{k} \Omega$ from the above-mentioned calculation type. Moreover, the HGND pin must connect with the HB pin, and connect the detection resistance of a large value as much as possible when you do not use the hall bias circuit.

- Operation amplifier

Impress the bias to the $\mathrm{V}_{\mathrm{IN}}{ }^{+}$pin, and compose the buffer by the connection to the VOUT pin in the V_{IN} pin in the operational amplifier not used.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV8415XA-MH	WLP32L $(2.47 \mathrm{~mm} \times 2.47 \mathrm{~mm})$ (Pb-Free / Halogen Free)	$5000 /$ Tape \& Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

[^0]: Note : External CLK mode is for the shipment inspection. Use it with internal CLK. Use it after it internal CLK switches because default is external CLK mode.

