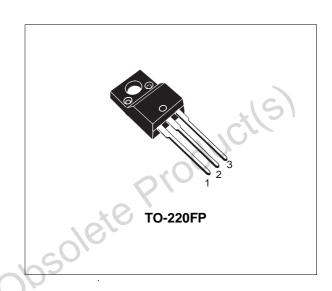
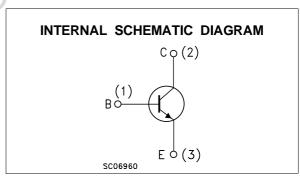


BUL310FP

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERIZED AT 125°C
- LARGE RBSOA
- FULLY MOLDED INSULATED PACKAGE
- 2000 V DC INSULATION (U.L. COMPLIANT)




- HORIZONTAL DEFLECTION FOR COLOUR TV
- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING
- FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS

The BUL310FP is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

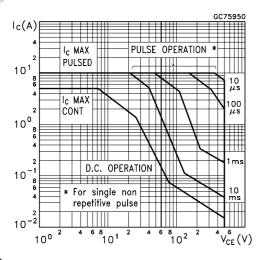
The BUL series is designed for use in lighting applications and low cost switch-mode power supplies.

ABSOLUTE MAXIMUM RATINGS

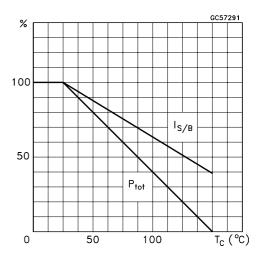
Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	1000	٧
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	500	٧
V_{EBO}	Emitter-Base Voltage (I _C = 0)	9	٧
Ic	Collector Current	5	Α
I _{CM}	Collector Peak Current (t _p <5 ms)	10	Α
I _B	Base Current	3	Α
I _{BM}	Base Peak Current (t _p <5 ms)	4	Α
P _{tot}	Total Dissipation at Tc = 25 °C	36	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	O°

April 2003 1/6

THERMAL DATA

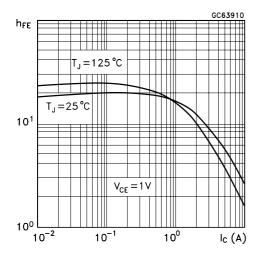

R _{thj-case}	Thermal Resistance	Junction-Case	Max	3.5	°C/W
$R_{thj-amb}$	Thermal Resistance	Junction-Ambient	Max	62.5	°C/W

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

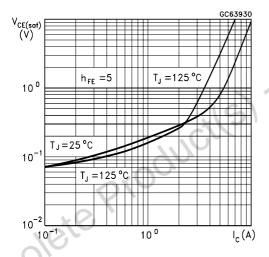

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1000 V V _{CE} = 1000 V T _j = 125 °C			100 500	μA μA
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 500 V			250	μА
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	500			3
V_{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA	9	9/		V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_C = 1 \text{ A}$ $I_B = 0.2 \text{ A}$ $I_C = 2 \text{ A}$ $I_B = 0.4 \text{ A}$ $I_C = 3 \text{ A}$ $I_B = 0.6 \text{ A}$	PI	C	0.5 0.7 1.1	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 1 A I _B = 0.2 A I _C = 2 A I _B = 0.4 A I _C = 3 A I _B = 0.6 A	,		1 1.1 1.2	V V V
h _{FE} *	DC Current Gain	I _C = 10 mA V _{CE} = 5 V I _C = 3 A V _{CE} = 2.5 V	10 6	10	14	
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{lll} I_{C} = 2 \; A & I_{B1} = 0.4 \; A \\ V_{BE(off)} = -5 \; V & R_{BB} = 0 \; \Omega \\ V_{CL} = 250 \; V & L = 200 \; \mu H \\ (see figure 1) & \end{array}$		1.2 80	1.9 160	μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$\begin{array}{lll} I_{C} = 2 \; A & I_{B1} = 0.4 \; A \\ V_{BE(off)} = \text{-5V} & R_{BB} = 0 \; \Omega \\ V_{CL} = 250 \; V & L = 200 \; \mu\text{H} \\ T_{j} = 125 \; ^{\circ}\text{C} & (\text{see figure 1}) \end{array}$		1.8 150		μs ns

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

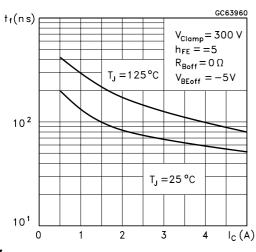
Safe Operating Areas

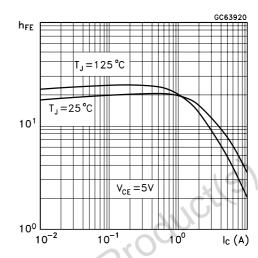


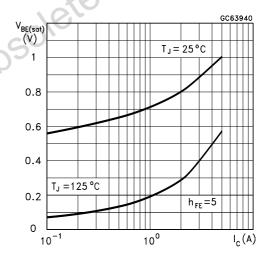
Derating Curve

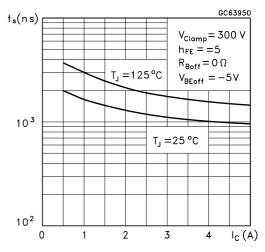


47/


DC Current Gain


Collector Emitter Saturation Voltage


Inductive Load Fall Time


DC Current Gain

Base Emitter Saturation Voltage

Inductive Load Storage Time

Reverse Biased SOA

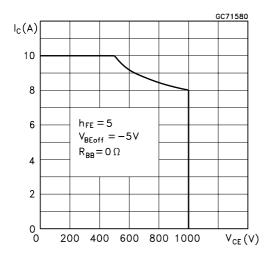
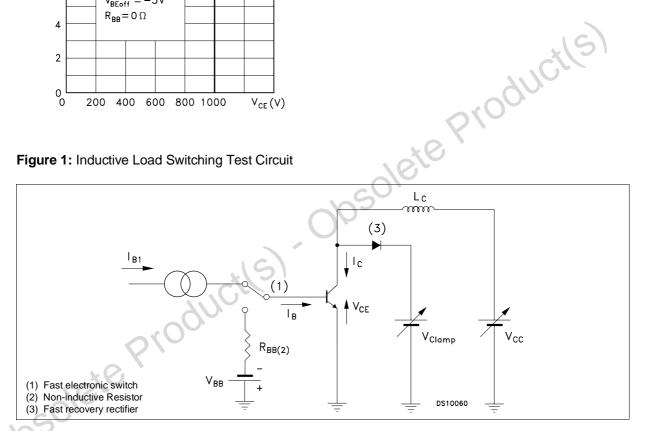
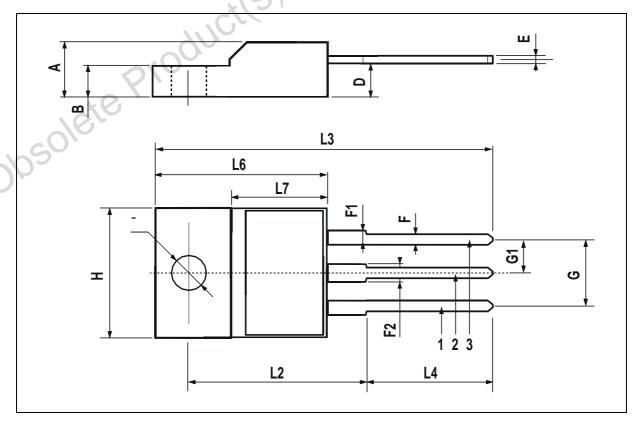




Figure 1: Inductive Load Switching Test Circuit

TO-220FP MECHANICAL DATA

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.4		4.6	0.173		0.181	
В	2.5		2.7	0.098		0.106	
D	2.5		2.75	0.098		0.108	
Е	0.45		0.7	0.017		0.027	
F	0.75		1	0.030		0.039	
F1	1.15		1.7	0.045		0.067	
F2	1.15		1.7	0.045		0.067	
G	4.95		5.2	0.195	900	0.204	
G1	2.4		2.7	0.094	240	0.106	
Н	10		10.4	0.393		0.409	
L2		16		10	0.630		
L3	28.6		30.6	1.126		1.204	
L4	9.8		10.6	0.385		0.417	
L6	15.9		16.4	0.626		0.645	
L7	9		9.3	0.354		0.366	
Ø	3	16	3.2	0.118		0.126	

Obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com