Incremental Shaft Encoder **OPE1275S Single Channel (Tachometer) OPE2275S Dual Channel**

- Body O.D. = 28mm [1.10"] •
- Shaft Diameter 6.35 mm [0.25"]
- 3/8"-32 UNF Thread
- Pulses per revolution 256 maximum
- Analog Output
- 100 5,000 RPM

Description:

The OPE1275S and OPE2275S are designed for small shaft motors. The OPE1275S provides a single channel analog output for speed of rotation while the OPE2275S provides a dual channel analog output for speed and direction of rotation.

The output of the **OPE1275S** provides a rise and fall pulse providing the designer two slopes for each pulse doubling the count capability. The OPE2275S provides quadrature rise and fall pulse patterns providing the design engineer 4 times the pulse per revolution count.

Power requirements are 5 volts ± .5 volts.

Electrical connection is achieved with a 4-pin Molex 53048-0410 connector providing V+, Ground and Output pins. The mating connector is a 4-pin Molex 51021-0400 (Terminal pin 50058 or 50079) or equivalent.

Frequency response is from DC to 25 kHz providing a maximum of 256 cycles per revolution (CPR) and 1024 guadrature states per revolution (PPR).

This product is designed for general encoding for low-speed applications.

The OPE1275S and OPE2275S are fully assembled and ready to be connected to your application.

Applications Printer motors 	otors <u>OPE X 275 S</u> - <u>ZZZ</u>				
 Machine autor Machine safet 		Resolution per revolution: 128 holes per revolution 256 holes per revolution Shaft Configuration:			
RoHS C	Motor Diameter- 27.5mm	S = Extended Shaft			

Incremental Shaft Encoder OPE1275S Single Channel (Tachometer) OPE2275S Dual Channel

	Pin	Out	
1	2	3	4
V _{cc}	CH A	CH B	GND

Incremental Shaft Encoder OPE1275S Single Channel (Tachometer) OPE2275S Dual Channel

Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

	Maximum	Units
Storage Temperature Range	-40° C to +85°	С
Operating Temperature Range	0° C to +85°	С
Power Supply Voltage V _{CC}	4.5 to 5.5	V _{DC}
Power Dissipation ⁽²⁾	250	mW
Vibration (5 Hz to 2 kHz)	20	g
Shaft Axial Play	± 0.51 mm [0.02"]	
Off-Axis Mounting Tolerance	0.254 mm [0.01"]	
Acceleration	250,000	rad/sec ²

Mechanical Specifications:

	Dimensions	Units
Moment of Inertia	6.48 X 10 ⁻⁵	OZ-IN-S ²
Shaft Length	0.3 to 0.7	Inches

Electrical Characteristics (T_A = 25°C unless otherwise noted — for reference only)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
V _{cc}	Supply Voltage	4.5	5.0	5.5	V	
I _{CC}	Supply Current	-	21	27	mA	$V_{CC} = 5.0$ volts
V _{OH}	High Level Output Voltage	Vcc-0.5	-	-	V	I _C = 100 μA
V _{OL}	Low Level Output Voltage	-	-	0.4	V	I _C = 20 mA
TR	Rise Time	-	500	-	ns	10% to 90%, V_{CC} = 5.0 volts
TF	Fall Time	-	100	-	ns	10% to 90%, V_{CC} = 5.0 volts
FR	Frequency Response	-	-	60	kHz	
H.S.	Hole Size	0.10	-	-	inch	
Rotation	Maximum speed of rotation with 1024 holes per rotation	-	-	100	rev/sec	
Encoding	Characteristics:	•	_	•	•	
SE	Symmetry Error	0	16	75		

SE	Symmetry Error	0	16	75	°o
QE	Quadrature Error—OPE2275 only	0	12	60	e

Notes:

1. All parameters measured using pulse technique, Vcc = 5.0 volts and $T_A = 25^{\circ}C$.

Timing Diagram:

Timing Definitions: PPR = Pulses Per Revolution Electrical Degree (°e) = 1/360th of 1 cycle **Cycle** = 360 electrical degrees (°e) **Symmetry** = Relationship between X & Y in electrical dearees (°e). **Position Error** = The difference between the actual shaft position and the position indicated by the encoder cycle count. Quadrature: The lead or lag difference between channels "A" and "B" in electrical degrees (normally 90°e) Cycle Error = The difference between the actual shaft rotational position and the cycle count rotational position. Rise Time = Time required to switch between 10% and 90% of the highest to lowest signal levels. Fall Time = Time required to switch between 90% and 10% of the highest to lowest signal levels.