Octal Counter

The MC14022B is a four-stage Johnson octal counter with built-in code converter. High-speed operation and spike-free outputs are obtained by use of a Johnson octal counter design. The eight decoded outputs are normally low, and go high only at their appropriate octal time period. The output changes occur on the positive-going edge of the clock pulse. This part can be used in frequency division applications as well as octal counter or octal decode display applications.

Features

- Fully Static Operation
- DC Clock Input Circuit Allows Slow Rise Times
- Carry Out Output for Cascading
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4022B
- Triple Diode Protection on All Inputs
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
PD	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	–65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Temperature Derating:

Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

A	= Assembly Location
WL	= Wafer Lot
YY, Y	= Year
WW	= Work Week
G	= Pb-Free Indicator

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

PIN ASSIGNMENT

_			
Q1 [1•	16	
Q0 [2	15] R
Q2 [3	14	рс
Q5 [4	13	
Q6 [5	12	C _{out}
NC [6	11] Q4
Q3 [7	10] Q7
v _{ss} [8	9	П ИС
-			•

NC = NO CONNECTION

BLOCK DIAGRAM

FUNCTIONAL TRUTH TABLE (Positive Logic)

	-	-	-
Clock	Clock Enable	Reset	Output=n
0	X	0	n
Х	1	0	n
	0	0	n+1
\sim	X	0	n
1		0	n+1
Х	_	0	n
Х	X	1	Q0

X = Don't Care. If n < 4 Carry = 1,Otherwise = 0.

NC = PIN 6, 9

LOGIC DIAGRAM

ELECTRICAL CHARACTERISTICS	(Voltages Referenced to V _{SS})
-----------------------------------	---

				- 5	5°C		25°C		125	°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95		4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95		Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15		1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	Vdc
$\begin{array}{l} (V_{O} = 0.5 \text{ or } 4.5 \text{ Vdc}) \\ (V_{O} = 1.0 \text{ or } 9.0 \text{ Vdc}) \\ (V_{O} = 1.5 \text{ or } 13.5 \text{ Vdc}) \end{array}$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11		Vdc
$\begin{array}{l} \text{Output Drive Current} \\ (V_{OH} = 2.5 \ \text{Vdc}) \\ (V_{OH} = 4.6 \ \text{Vdc}) \\ (V_{OH} = 9.5 \ \text{Vdc}) \\ (V_{OH} = 13.5 \ \text{Vdc}) \end{array}$	Source	I _{OH}	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2		- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8		- 1.7 - 0.36 - 0.9 - 2.4		mAdc
(V _{OL} = 0.4 Vdc) (V _{OL} = 0.5 Vdc) (V _{OL} = 1.5 Vdc)	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	 	0.51 1.3 3.4	0.88 2.25 8.8	 	0.36 0.9 2.4		mAdc
Input Current		l _{in}	15	—	± 0.1		±0.00001	± 0.1	—	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	—		—	—	5.0	7.5	—	—	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15		5.0 10 20		0.005 0.010 0.015	5.0 10 20		150 300 600	μAdc
Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outp buffers switching)	ent,	Γ	5.0 10 15			I _T = (0.	28 μA/kHz)f 56 μA/kHz)f 85 μA/kHz)f	+ I _{DD}			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF:

$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: I_T is in μ A (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.00125.

SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25° C)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time t_{TLH} , t_{THL} = (1.5 ns/pF) C _L + 25 ns t_{TLH} , t_{THL} = (0.75 ns/pF) C _L + 12.5 ns t_{TLH} , t_{THL} = (0.55 ns/pF) C _L + 9.5 ns	t _{TLH} , t _{THL}	5.0 10 15		100 50 40	200 100 80	ns
Propagation Delay Time Reset to Decode Output t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 415 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 197 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 150 \text{ ns}$	t _{PLH} , t _{PHL}	5.0 10 15	 	500 230 175	1000 460 350	ns
Propagation Delay Time Clock to C_{out} t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 142 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 100 \text{ ns}$	t _{PLH} , t _{PHL}	5.0 10 15	 	400 175 125	800 350 250	ns
Propagation Delay Time Clock to Decode Output t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 415 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 197 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 150 \text{ ns}$	t _{PLH} , t _{PHL}	5.0 10 15	 	275 125 95	1000 460 350	ns
Turn–Off Delay Time Reset to C_{out} $t_{PLH} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns}$ $t_{PLH} = (0.66 \text{ ns/pF}) C_L + 142 \text{ ns}$ $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 100 \text{ ns}$	t _{PLH}	5.0 10 15		400 175 125	800 350 250	ns
Clock Pulse Width	t _{WH}	5.0 10 15	250 100 75	125 50 35		ns
Clock Frequency	f _{cl}	5.0 10 15		5.0 12 16	2.0 5.0 6.7	MHz
Reset Pulse Width	t _{WH}	5.0 10 15	500 250 190	250 125 95		ns
Reset Removal Time	t _{rem}	5.0 10 15	750 275 210	375 135 105		ns
Clock Input Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15		No Limit		_
Clock Enable Setup Time	t _{su}	5.0 10 15	350 150 115	175 75 52		ns
Clock Enable Removal Time	t _{rem}	5.0 10 15	420 200 140	260 100 70		ns

The formulas given are for the typical characteristics only at 25°C.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

	Output Sink Drive	Output Source Drive
Outputs	(S1 to A)	Clock to desired Output (S1 to B)
Carry	Clock to Q5 thru Q7 (S1 to B)	S1 to A
V _{GS} =	V _{DD}	– V _{DD}
V _{DS} =	V _{out}	V _{out} – V _{DD}

Figure 2. Typical Power Dissipation Test Circuit

APPLICATIONS INFORMATION

Figure 3 shows a technique for extending the number of decoded output states for the MC14022B. Decoded outputs are sequential within each stage and from stage to stage, with no dead time (except propagation delay).

Figure 4. AC Measurement Definition and Functional Waveforms

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14022BCPG	PDIP-16 (Pb-Free)	500 Units / Rail
MC14022BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14022BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE T

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
Κ	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0 °	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

PACKAGE DIMENSIONS

TES: DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	9.80	10.00	0.386	0.393			
В	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.054	0.068			
D	0.35	0.49	0.014	0.019			
F	0.40	1.25	0.016	0.049			
G	1.27	BSC	0.050) BSC			
J	0.19	0.25	0.008	0.009			
K	0.10	0.25	0.004	0.009			
М	0 °	7°	0 °	7°			
Р	5.80	6.20	0.229	0.244			
R	0.25	0.50	0.010	0.019			

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use patent solut. Cwas negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative