

Current Transducer HAIS 50 .. 400-P HAIS 50 .. 150-TP

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

All data are given with $R_1 = 10 \text{ k}\Omega$

Electrical data

t_{ra}

t,

di/dt

 V_{no}

BW

	•	imary current	Туре				
rms current $I_{PN}(A)$ measuring range $I_{PM}(A)$							
50	±1	50	HAIS 5	0-P/50-TP 1)			
100	±3	300	HAIS 10	00-P/100-TP ¹⁾			
150	±4	50	HAIS 1	50-P/150-TP ¹⁾			
200	±6	600	HAIS 20	00-P			
400	±6	600	HAIS 40	00-P			
$G_{_{Th}}$	Theorical sensitiv	vity @ I _{PN}		0.625	V/ I _{PN}		
V _{out}	Analog output vo	ltage $@I_{P}$		V _{OE} +(0.625			
$V_{\rm ref}$	Reference voltag	ge ²⁾ Output v	oltage	2.5 ±0.025	V		
101		Output ir	npedance	typ. 200	Ω		
		Load imp	bedance	≥200	kΩ		
R	Load resistance			≥2	kΩ		
R _{out}	Output internal re	esistance		<5	Ω		
C_{L}^{out}	Capacitive loadir			4.7	nF		
U _c	Supply voltage (±	• • •		5	V		
I _c	Current consump		/	<19	mA		
Accuracy - Dynamic performance data							
X	Accuracy ⁴⁾ @ I _{PI}	$T_{0} = 25^{\circ} \text{ C}$		≤± 1	% of $I_{_{\mathrm{PN}}}$		
ε	Linearity error 0			≤±0.5	% of $I_{\rm PN}$		
<i>TCV</i> _{OE}	Temperature coe			≤±0.3	mV/K		
	Temperature coe		(+25 +85 °C)	≤±0.01	%/K		
Ter	·	lei	(-40 +25 °C)	≤±0.015	%/K		
TCV_N	f Temperature coe	efficient of V_{or}/V_{or}	ef.	≤±0.2	mV/K		
TCG	Temperature coe		ei	≤±0.05 % o	f reading/K		
$V_{\rm OE}$	Electrical offset v		, <i>T</i> , = 25 °C	$V_{ref} \pm 0.025$	v		
V _{OM}	Magnetic offset v		A	iei			
OM	after an overload		HAIS 50-P/TP	<±0.5	% of $I_{_{\mathrm{PN}}}$		
			HAIS 100-P/TP 40		% of I		

% of $I_{_{\mathrm{PN}}}$ HAIS 100-P/TP..400-P<±0.4 Reaction time to 10 % of $I_{\rm PN}$ step <3 μs

Step response time to 90 % of $I_{_{\rm PN}}$ <5 μs

<40

DC .. 50

 Fixed offset & sensitivity Insulating plastic case recognized according to UL 94-V0.

Advantages

 $I_{PN} =$

Features

50 .. 400 A

50 .. 150 A

• Small size and space saving

· Hall effect measuring principle Galvanic separation between primary and secondary circuit Insulation test voltage 2500 V Low power consumption Single power supply +5 V

- · Only one design for wide current ratings range
- High immunity to external interference
- V_{ref} IN/OUT.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

¹⁾ -TP version is equipped with a primary bus bar; Temperature of primary bus bar Notes: should not exceed 100 °C

 $^{2)}$ It is possible to overdrive $V_{\rm ref}$ with an external reference voltage between

1.5 V - 2.8 V providing its ability to sink or source approximately 5 mA

(DC .. 10 kHz)

(DC .. 1 MHz)

³⁾ Maximum supply voltage (not operating) <6.5 V

4) Excluding offset and magnetic offset voltage

di/dt accurately followed

Frequency bandwidth (-3 dB) 5)

Output voltage noise

⁵⁾ Small signal only to avoid excessive heatings of the magnetic core.

 $74.83.25.000.0, \ 74.83.34.000.0, \ 74.83.39.000.0, \ 74.83.44.000.0, \ 74.83.48.000.0, \ 74.70.25.000.0, \ 74.70.34.000.0, \ 74.70.39.000.0, \ 74.70.0, \ 74.70.0, \ 74.70.0, \ 74.70.0, \ 74$

26November2014/Version 13 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

>100 A/µs <15 mVpp

mVpp

kHz

Current Transducer HAIS 50 .. 400-P and HAIS 50 .. 150-TP

General data					
T _A T _s m	Ambient operating temperature Ambient storage temperature Mass (in brackets: TP version) Standard	-40 +85 -40 +85 20 (30) EN 50178: 1997	°C °C g		
Insulation coordination					
U _d U _e	Rms voltage for AC insulation test, 50 Hz, 1 min Partial discharge extinction rms voltage @ 10 pC	2.5	kV		
	HAIS 50 400-P	>1	kV		
	HAIS 50 150-TP	>1.4	kV		
Û _w	Impulse withstand voltage 1.2/50 µs	8 Min	kV		
$d_{_{\rm Cp}}$	Creepage distance	>8	mm		
d _{ci}	Clearance distance	>8	mm		
CTI	Comparative Tracking Index (group I)	>600			

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
$d_{_{\mathrm{Cp}}},d_{_{\mathrm{Cl}}},\hat{U}_{_{\mathrm{W}}}$	Rated insulation voltage	Nominal voltage
Basic insulation	1000 V	1000 V
Reinforced insulation	600 V	300 V

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Dimensions HAIS 50 .. 400-P and HAIS 50 .. 150-TP (in mm)

26November2014/Version 13 LEM reserves the right to carry out modifications on its transducers, in order to improve them, without prior notice

Page 3/3