

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS

3-phase inverters for motor drives Dish washers, refrigerator compressors, heating systems, air-conditioning fans, draining and recirculation pumps

This second series of SLLIMM (small low-loss intelligent molded module) nano provides a compact, high performance AC motor drive in a simple, rugged design. It is composed of six

improved IGBTs with freewheeling diodes and three half-bridge HVICs for gate driving, providing

characteristics with optimized switching speed. The package is designed to allow a better and

compactness in built-in motor applications or

other low power applications where assembly

space is limited. This IPM includes a completely

comparator that can be used to design a fast and

low electromagnetic interference (EMI)

more easily screwed-on heatsink and is

optimized for thermal performance and

uncommitted operational amplifier and a

efficient protection circuit. SLLIMM™ is a

trademark of STMicroelectronics.

SLLIMM[™] nano - 2nd series IPM, 3 A, 600 V, 3-phase IGBT inverter bridge

Applications

Description

Datasheet - production data

Features

- IPM 3 A, 600 V, 3-phase IGBT inverter bridge including 3 control ICs for gate driving and freewheeling diodes
- 3.3 V, 5 V, 15 V TTL/CMOS input comparators with hysteresis and pulldown/pull-up resistors
- Internal bootstrap diode
- Optimized for low electromagnetic interference
- Undervoltage lockout
- V_{CE(SAT)} negative temperature coefficient
- Smart shutdown function
- Interlocking function
- Op-amp for advanced current sensing
- Comparator for fault protection against overcurrent
- NTC (UL 1434 CA 2 and 4)
- Isolation ratings of 1500 Vrms/min.
- Up to ±2 kV ESD protection (HBM C = 100 pF, R = 1.5 kΩ)
- UL recognition: UL 1557 file E81734

Table 1: Device summary Order code Marking Package Packing STGIPQ3H60T-HLS GIPQ3H60T-HLS N2DIP-26L type L no stand-off Tube STGIPQ3H60T-HZS GIPQ3H60T-HZS N2DIP-26L type Z no stand-off Tube

March 2017

DocID028089 Rev 3

1/26

This is information on a product in full production.

Contents

Co	ntents		
1	Internal	schematic diagram and pin configuration	3
2	Electric	al ratings	5
	2.1	Absolute maximum ratings	5
	2.2	Thermal data	6
3	Electric	al characteristics	7
	3.1	Inverter part	7
	3.2	Control part	9
		3.2.1 NTC thermistor	12
	3.3	Waveform definitions	14
4	Smart s	hutdown function	15
5	Applica	tion circuit example	17
	5.1	Guidelines	18
6	Package	e information	20
	6.1	N2DIP-26L type L no stand-off package information	20
	6.2	N2DIP-26L type Z no stand-off package information	22
	6.3	N2DIP-26L packing information	24
7	Revisio	n history	25

1 Internal schematic diagram and pin configuration

Figure 1: Internal schematic diagram

	Table 2: Pin description					
Pin	Symbol	Description				
1	GND	Ground				
2	T/ SD / OD	NTC thermistor terminal / shutdown logic input (active low) / open-drain (comparator output)				
3	Vcc W	Low voltage power supply W phase				
4	HIN W	High-side logic input for W phase				
5	LIN W	Low-side logic input for W phase				
6	OP+	Op-amp non-inverting input				
7	OP _{OUT}	Op-amp output				
8	OP-	Op-amp inverting input				
9	Vcc V	Low voltage power supply V phase				
10	HIN V	High-side logic input for V phase				
11	LIN V	Low-side logic input for V phase				
12	CIN	Comparator input				
13	V _{CC} U	Low voltage power supply for V phase				
14	HIN U	High-side logic input for V phase				
15	T/ SD / OD	NTC thermistor terminal / shutdown logic input (active low) / open-drain (comparator output)				
16	LIN U	Low-side logic input for U phase				
17	V _{BOOT} U	Bootstrap voltage for U phase				
18	Р	Positive DC input				
19	U, OUTu	U phase output				
20	Nυ	Negative DC input for U phase				
21	V _{BOOT} V	Bootstrap voltage for V phase				
22	V, OUT _V	V phase output				
23	Nv	Negative DC input for V phase				
24	VBOOT W	Bootstrap voltage for W phase				
25	W, OUTw	W phase output				
26	Nw	Negative DC input for W phase				

2 Electrical ratings

2.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCES	Collector-emitter voltage each IGBT ($V_{IN}^{(1)}=0$)	600	V
lc	Continuous collector current each IGBT	3	А
I _{CP} ⁽²⁾	Peak collector current each IGBT (less than 1 ms)	6	А
Ртот	Total dissipation at T_C = 25 °C each IGBT	12	W

Notes:

⁽¹⁾Applied among HIN_x, LIN_{x and} GND for x = U, V, W.

 $^{(2)}\mbox{Pulse}$ width limited by max. junction temperature.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Low voltage power supply	- 0.3	21	V
Vboot	Bootstrap voltage	- 0.3	620	V
Vout	Output voltage applied among OUT_U , OUT_V , OUT_W - GND	V _{boot} - 21	V _{boot} + 0.3	V
Vcin	Comparator input voltage	- 0.3	Vcc + 0.3	V
V _{op+}	Op-amp non-inverting input	- 0.3	V _{CC} + 0.3	V
V _{op-}	Op-amp inverting input	- 0.3	Vcc + 0.3	V
Vin	Logic input voltage applied among HINx, LINx and GND	- 0.3	15	V
$V_{T/\overline{SD}/OD}$	Open-drain voltage	- 0.3	15	V
ΔV out/dt	Allowed output slew rate		50	V/ns

Table 4: Control part

Table 5: Total system

Symbol	Parameter	Value	Unit
Viso	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, $t = 60 s$)	1500	V
Tj	Power chip operating junction temperature	-40 to 150	°C
Tc	Module case operation temperature	-40 to 125	°C

2.2 Thermal data

Table 6: Thermal data

Symbol	Parameter	Value	Unit
D	Thermal resistance junction-case single IGBT	10	
R _{th(j-c)}	Thermal resistance junction-case single diode	15	°C/W
Rth(j-a)	Rth(j-a) Thermal resistance junction-ambient 44		

3 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified

3.1 Inverter part

Table 7: Static							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Ices	Collector-cut off current $(V_{IN}^{(1)} = 0$ "logic state")	$V_{CE} = 550$ V, $V_{CC} = V_{Boot} = 15$ V	-		250	μA	
	Collector-emitter saturation voltage	$V_{CC} = V_{boot} = 15 V,$ $V_{IN}^{(1)} = 0 \text{ to } 5 V, I_C = 1 A$	-	2.15	2.6	V	
V _{CE} (sat)		$V_{CC} = V_{Boot} = 15 V,$ $V_{IN}^{(1)} = 0 \text{ to } 5 V, I_C = 1 A,$ $T_J = 125 \ ^{\circ}C$		1.65			
VF	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 1 A$	-		1.8	V	

Notes:

 $^{(1)}\mbox{Applied}$ among $HIN_x,\,LIN_x$ and G_{ND} for x = U, V, W.

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
Cynnoor	i arameter				maxi	•
ton ⁽¹⁾	Turn-on time		-	275	-	
t _{c(on)} ⁽¹⁾	Crossover time (on)		I	90	-	
t _{off} ⁽¹⁾	Turn-off time	$V_{DD} = 300 V,$	-	890	-	ns
t _{c(off)} ⁽¹⁾	Crossover time (off)	$V_{CC} = V_{boot} = 15 V,$ $V_{IN}^{(2)} = 0 \text{ to } 5 V,$	-	125	-	
trr	Reverse recovery time	$l_{\rm R} = 1 {\rm A}$	I	50	-	
Eon	Turn-on switching energy	(see Figure 3: "Switching time definition")	-	18	-	
E _{off}	Turn-off switching energy		-	13	-	μJ

Table 8: Inductive load switching time and energy

Notes:

 $^{(1)}\text{t}_{ON}$ and toFF include the propagation delay time of the internal drive. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under the internally given gate driving conditions.

 $^{(2)}\mbox{Applied}$ among $HIN_x,$ LIN_x and G_{ND} for x = U, V, W.

Electrical characteristics

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS

Figure 3: Switching time definition

3.2 Control part

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{CC_hys}	Vcc UV hysteresis		1.2	1.5	1.8	V	
V _{CC_th(on)}	V _{CC} UV turn-on threshold		11.5	12	12.5	V	
V _{CC_th(off)}	Vcc UV turn-off threshold		10	10.5	11	V	
Iqccu	Undervoltage quiescent supply current	$V_{CC} = 10 \text{ V},$ T/ SD /OD = 5 V; L _{IN} =H _{IN} =C _{IN} = 0 V			150	μΑ	
Iqcc	Quiescent current	$V_{CC} = 10 \text{ V},$ T/ SD /OD = 5 V; L _{IN} = H _{IN} =C _{IN} = 0 V			1	mA	
V _{ref}	Internal comparator (CIN) reference voltage		0.51	0.54	0.56	V	

Table 9: Low voltage power supply

Table '	10:	Bootstrapped	voltage
---------	-----	--------------	---------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
VBS_th(on)	VBS UV turn-ON threshold		11.1	11.5	12.1	V
VBS_th(off)	V _{BS} UV turn-OFF threshold		9.8	10	10.6	V
Ιαβου	Undervoltage V _{BS} quiescent current	$V_{BS} < 9 V,$ T/ SD /OD = 5 V; $L_{IN} = 0 V$ and $H_{IN} = 5 V;$ $C_{IN} = 0 V$		70	110	μΑ
I _{QBS}	V _{BS} quiescent current			150	210	μA
R _{DS(on)}	Bootstrap driver on- resistance	LVG ON		120		Ω

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS

Table 11: Logic inputs							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vil	Low logic level voltage				0.8	V	
Vih	High logic level voltage		2.25			V	
Ihinh	HIN logic "1" input bias current	HIN = 15 V	20	40	100	μA	
Інілі	HIN logic "0" input bias current	HIN = 0 V			1	μA	
ILINI	LIN logic "0" input bias current	LIN = 0 V			1	μA	
I _{LINh}	LIN logic "1" input bias current	LIN = 15 V	20	40	100	μA	
Isdh	SD logic "0" input bias current	<u>SD</u> = 15 V	220	295	370	μA	
I _{SDI}	SD logic "1" input bias current	$\overline{SD} = 0 V$			3	μA	
Dt	Dead time	see Figure 8: "Dead time and interlocking waveform definitions"		180		ns	

Table 12: Op-amp characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vio	Input offset voltage	$V_{ic} = 0 V, V_o = 7.5 V$			6	mV
lio	Input offset current	$V_{ic}=0\ V,\ V_o=7.5\ V$		4	40	nA
l _{ib}	Input bias current ⁽¹⁾			100	200	nA
V _{OL}	Low level output voltage	R_L = 10 k Ω to V_{CC}		75	150	mV
Vон	High level output voltage	R∟= 10 kΩ to GND	14	14.7		V
	Output abort airquit aurrant	Source, V_{id} = + 1 V; V_o = 0 V	16	30		mA
lo	Output short-circuit current	Sink, V_{id} = -1 V; V_o = V _{CC}	50	80		mA
SR	Slew rate	$V_i = 1 - 4 V; C_L = 100 pF;$ unity gain	2.5	3.8		V/µs
GBWP	Gain bandwidth product	V _o = 7.5 V	8	12		MHz
A _{vd}	Large signal voltage gain	R _L = 2 kΩ	70	85		dB
SVR	Supply voltage rejection ratio	vs Vcc	60	75		dB
CMRR	Common mode rejection ratio		55	70		dB

Notes:

 $^{(1)}\mbox{The}$ direction of input current is out of the IC.

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS

Electrical characteristics

Table 13: Sense comparator characteristics						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
lib	Input bias current	V _{CIN} = 1 V	-		3	μA
V_{od}	Open-drain low level output voltage	I _{od} = 3 mA	-		0.5	V
Ron_od	Open-drain low level output	I _{od} = 3 mA	-	166		Ω
RPD_SD	SD pull-down resistor ⁽¹⁾		-	125		kΩ
td_comp	Comparator delay	T/ SD /OD pulled to 5 V through 100 k Ω resistor	-	90	130	ns
SR	Slew rate	C_L = 180 pF; R_{pu} = 5 k Ω	-	60		V/µs
t _{sd}	Shutdown to high / low-side driver propagation delay	$\label{eq:Vour} \begin{array}{l} V_{\text{OUT}}=0, \ V_{\text{boot}}=V_{\text{CC}}, \\ V_{\text{IN}}=0 \ to \ 3.3 \ V \end{array}$	-	125		
t _{isd}	Comparator triggering to high / low-side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN	-	200		ns

Notes:

⁽¹⁾Equivalent values as a result of the resistances of three drivers in parallel.

Table 14: Truth table

	Logi	Logic input (V _I)			Output		
Conditions	T/ SD /OD	LIN	HIN	LVG	HVG		
Shutdown enable half-bridge tri-state	L	X ⁽¹⁾	X ⁽¹⁾	L	L		
Interlocking half-bridge tri-state	Н	Н	Н	L	L		
0 "logic state" half-bridge tri-state	Н	L	L	L	L		
1 "logic state" low-side direct driving	Н	Н	L	Н	L		
1 "logic state" high-side direct driving	Н	L	Н	L	Н		

Notes:

⁽¹⁾X: don't care.

3.2.1 NTC thermistor

Figure 4: Internal structure of SD and NTC

Figure 5: Equivalent resistance (NTC//RPD_SD)

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS

57

Electrical characteristics

DocID028089 Rev 3

13/26

3.3 Waveform definitions

Figure 8: Dead time and interlocking waveform definitions

4 Smart shutdown function

The device integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference V_{REF} connected to the inverting input, while the non-inverting input on pin (CIN) can be connected to an external shunt resistor for overcurrent protection.

When the comparator triggers, the device is set to the shutdown state and both of its outputs are set to the low level, causing the half-bridge to enter a tri-state.

In common overcurrent protection architectures, the comparator output is usually connected to the shutdown input through an RC network so to provide a monostable circuit, which implements a protection time following to a fault condition.

Our smart shutdown architecture immediately turns off the output gate driver in case of overcurrent through a preferential path for the fault signal, which directly switches off the outputs. The time delay between the fault and output shutdown no longer depends on the RC values of the external network connected to the shutdown pin. At the same time, the

DMOS connected to the open-drain output (pin T/SD /OD) is turned on by the internal

logic, which holds it on until the shutdown voltage is well below the minimum value of logic input threshold (Vil).

Besides, the smart shutdown function allows the real disable time to be increased while the constant time of the external RC network remains as it is.

An NTC thermistor for temperature monitoring is internally connected in parallel to the

 \overline{SD} pin. To avoid an undesired shutdown, keep the voltage $V_{T/\overline{SD}/OD}$ higher than the high level logic threshold by setting the pull-up resistor $R_{\overline{SD}}$ to 1 k Ω or 2.2 k Ω for 3.3 V or 5 V MCU power supplies, respectively.

Smart shutdown function

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS

Figure 9: Smart shutdown timing waveforms in case of overcurrent event

5 Application circuit example

Figure 10: Application circuit example

Application designers are free to use a different scheme according to the specifications of the device.

5.1 Guidelines

- Input signals HIN, LIN are active high logic. A 375 k Ω (typ.) pull-down resistor is builtin for each input. To avoid input signal oscillation, the wiring of each input should be as short as possible and the use of RC filters (R₁, C₁) on each input signal is suggested. The filters should be with a time constant of about 100 ns and placed as close as possible to the IPM input pins.
- The use of a bypass capacitor C_{VCC} (aluminum or tantalum) can reduce the transient circuit demand on the power supply. Also, to reduce high frequency switching noise distributed on the power lines, a decoupling capacitor C₂ (100 to 220 nF, with low ESR and low ESL) should be placed as close as possible to Vcc pin and in parallel with the bypass capacitor.
- The use of RC filter (R_{SF}, C_{SF}) is recommended because it avoids protection circuit malfunction. The time constant (R_{SF} x C_{SF}) should be set to 1 μs and the filter must be placed as close as possible to the C_{IN} pin.
- The SD is an input/output pin (open-drain type if it is used as output). A built-in

thermistor NTC is internally connected between the \overline{SD} pin and GND. The voltage V_{SD}-GND decreases as the temperature increases, due to the pull-up resistor R_{SD}. In order to keep the voltage always higher than the high level logic threshold, the pull-up resistor should be set to 1 k Ω or 2.2 k Ω for 3.3 V or 5 V MCU power supply,

respectively. The C_{SD} capacitor of the filter on SD should be fixed no higher than

3.3 nF in order to assure the \overline{SD} activation time $\tau 1 \leq 500$ ns. Besides, the filter

should be placed as close as possible to the SD pin.

- The decoupling capacitor C₃ (from 100 to 220 nF, ceramic with low ESR and low ESL), in parallel with each C_{boot}, filters high frequency disturbance. Both C_{boot} and C₃ (if present) should be placed as close as possible to the U, V, W and V_{boot} pins. Bootstrap negative electrodes should be connected to U, V, W terminals directly and separated from the main output wires.
- To avoid the overvoltage on Vcc pin, a Zener diode (D_{z1}) can be used. Similarly on the V_{boot} pin, a Zener diode (D_{z2}) can be placed in parallel with each C_{boot}.
- The use of the decoupling capacitor C₄ (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor C_{vdc} avoids surge destruction. Both capacitors C₄ and C_{vdc} should be placed as close as possible to the IPM (C₄ has priority over C_{vdc}).
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an optocoupler is possible.
- Low inductance shunt resistors have to be used for phase leg current sensing.
- In order to avoid malfunctions, the wiring on N pins, the shunt resistor and P_{WR_GND} should be as short as possible.
- The connection of SGN_GND to PWR_GND on one point only (close to the shunt resistor terminal) can reduce the impact of power ground fluctuation.

These guidelines ensure the specifications of the device for application designs. For further details, please refer to the relevant application note.

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS

50T-HLS,	0T-HLS, STGIPQ3H60T-HZS Application circuit example					
	Table 15: R	ecommended operating condition	ons			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vpn	Supply voltage	Applied among P-Nu, Nv, Nw		300	500	V
Vcc	Control supply voltage	Applied to Vcc-GND	13.5	15	18	V
V _{BS}	High-side bias voltage	Applied to V_{BOOTx} -OUT for x = U, V, W	13		18	V
t _{dead}	Blanking time to prevent arm-short	For each input signal	1.5			μs
fрwм	PWM input signal	-40 °C < T _c < 100 °C -40 °C < T _j < 125 °C			25	kHz
Tc	Case operation temperature				100	°C

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 N2DIP-26L type L no stand-off package information

Figure 11: N2DIP-26L type L no stand-off package outline

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Package information Table 16: N2DIP-26L type L no stand-off mechanical data

Table 16: N2DIP-26L type L no stand-off mechanical data					
Dim.	mm				
Dim.	Min.	Тур.	Max.		
A			3.80		
A1	0.45	0.75	1.05		
A2	4.00	4.10	4.20		
A3	1.70	1.80	1.90		
A4	1.70	1.80	1.90		
A5	8.10	8.40	8.70		
A6	1.75				
b	0.53		0.72		
b2	0.83		1.02		
с	0.46		0.59		
D	32.05	32.15	32.25		
D1	2.10				
D2	1.85				
D3	30.65	30.75	30.85		
E	12.35	12.45	12.55		
е	1.70	1.80	1.90		
e1	2.40	2.50	2.60		
eB1	14.25	14.55	14.85		
L	0.85	1.05	1.25		
Dia	3.10	3.20	3.30		

6.2 N2DIP-26L type Z no stand-off package information

STGIPQ3H60T-HLS, STGIPQ3H60T-HZS Package information Table 17: N2DIP-26L type Z no stand-off mechanical data

Table 17: N2DIP-26L type Z no stand-off mechanical data					
Dim.	mm				
Dini.	Min.	Тур.	Max.		
A			3.80		
A1	0.45	0.75	1.05		
A2	4.00	4.10	4.20		
A3	1.70	1.80	1.90		
A4	1.70	1.80	1.90		
A5	8.10	8.40	8.70		
A6	1.75				
b	0.53		0.72		
b2	0.83		1.02		
С	0.46		0.59		
D	32.05	32.15	32.25		
D1	2.10				
D2	1.85				
D3	30.65	30.75	30.85		
E	12.35	12.45	12.55		
е	1.70	1.80	1.90		
e1	2.40	2.50	2.60		
eB1	16.10	16.40	16.70		
eB2	21.18	21.48	21.78		
L	0.85	1.05	1.25		
Dia	3.10	3.20	3.30		

N2DIP-26L packing information 6.3 Figure 13: N2DIP-26L tube (dimensions are in mm) Scale 5:1 ſſ 8 2.90 56 R1.65 Nr. 15 units per t 9670 0 Pin stopper đ ន **ANTISTATIC** 5 I **10**.0 3 532±1 03 PVC 26.9 13.0 <u>1</u>05 ≘ 83.10 #45 ⊇|__ Л V A V 8 Sect.A-A Scale 3:1 4.8 = 0711

DocID028089 Rev 3

7 Revision history

Table 18: Document revision history

Date	Revision	Changes
08-Jul-2015	1	Initial release.
07-Oct-2015	2	Document status promoted from preliminary data to production data.
		Modified features on cover page
24-Mar-2017	3	Modified Figure 4: "Internal structure of SD and NTC"
		Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

