

Specifications for UHF Connectors

UHF style connectors are inexpensive, general purpose connectors with non-constant impedance for use at 500 volts or less, and for use with low frequencies to 200Mhz for best performance, or to 500MHz but with diminished performance. These coaxial connectors are widely used in citizens band communications, CCTV, public address systems, mobile radio equipment, civil defense, ship to shore communications, antenna connections, landing systems, and ground control apparatus. UHF connectors use a 5/8-24 threaded coupling. They are available in a wide selection of sizes to fit various cable sizes.

S

MATERIALS			
Connector Parts	Material		
Connector Body and Parts	Brass		
Male Contact Pin	Brass		
Outer Contact	Brass		
Crimp Ferrule	Annealed Copper		
Insulators,	Delrin, Teflon		
Plating	Nickel		

ELECTRICAL		
Requirement	Performance	
Impedance	Non Constant	
Frequency Range	0-500MHz	
VSWR	1.25 Max.	
Working Voltage (At Sea level)	750V rms	
Insulation Resistance	5000 Megohm Min.	
Contact Resistance	5mW Max.	
Test Voltage	2000V rms	

MECHANICAL & ENVIRONMENTAL			
Requirement	Performance		
Durability	500 Matings		
	RG58 - 60 Lb. Min.		
Cable Retention (Cable Types)	RG59 - 75 Lb. Min.		
	RG8, 213 - 150 Lb. Min.		
Coupling Nut	45 lbs. Maximum		
Tamparatura Banga	Delrin: -55 to +85°C		
Temperature Range	Teflon: -55 to +200°C		

S

- Page 23 -

UHF Connectors

Crimp Plugs

UHF cable plugs are available in two-piece crimp and older versions. Several cable diameters are facilitated with these connectors for applicable applications. A reducing adapter is used for smaller cable sizes when using the solder types.

Part Number	PORT	Description	RG/U Cable	Fig. No.		
710A205F	N	Crimp Plug	58	106		
710A205G	N	Crimp Plug	59, 62	106		
710A908B	N	Twist/Solder Plug, PL259	8, 213	107		
770A508F	N	Reducing Adapter, UG175/U	58	108	Fig. 106	Fig. 107
770A508G	N	Reducing Adapter, UG176/U	58	108		
☑ RoHS compliant REQUEST QUOTE REQUEST			L#			
DRAWING						Fig. 108

Jacks

Two panel jack style are available as standard items. These panel jacks will facilitate any cable size by soldering the center conductor to the connector's solder-cup contact.

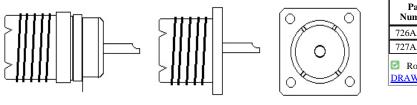


Fig. 110

Part Number	PORS		RG/U Cable	
726A508	N	Bulkhead Jack	Any	109
727A508	<u> </u>	Panel Jack, SO239 Type	Any	110

S

RoHS compliant REQUEST QUOTE DRAWING

REQUEST

Adapters

Fig. 109

Standard configurations of adapters are machined brass with attractive nickel plating. All contacts are gold plated brass (males) and phosphor bronze (females).

Part Number	PORTS	Description	Fig. No.
731A505	N	Male/Male	111

732A508 735A504 743A508 745A508 751A505	Female/Female Inline Female/Female, Bulkhea F/M/F "T" Adapter F/F/F "T" Adapter F/M Right Angle Adapte	114	
RoHS compliance RoHS complianc	,		Fig. 112
			Fig. 113
>			
	Fig. 114	Fig. 115	Fig. 116