
Using the Serial 7-Segment Display




Introduction
The Serial 7-Segment Display is an easy-to-use 4-digit display that is
controlled using a serial interface. Instead of using up a dozen-or-so of your
microcontroller’s pins to control the LEDs, all you need is one. Using either
a serial, I C, or SPI interface, you can control all digits, decimal points, the
colon, and the apostrophe.

Top and bottom views of the display.

The goal of this tutorial is to get you familiar with the Serial 7-Segment
Display. We’ll cover hardware set-up, assembly, and example interface
circuits/code. Given the popularity of Arduino, the examples will make use
of the ubiquitous development platform/language.

This tutorial also covers the 7-Segment Shield. If you have the 7-Segment
Shield, we recommend going to its tab first and beginning your journey
there. The board is very easy to use since you can just plug it straight into
an Arduino Uno compatible board and you can use the same exact code
examples as the Serial 7-Segment Display which are covered in this
tutorial.

Required Materials

Aside from the display itself, you’ll need an Arduino (or one of its variants)
to send the serial data. In the Arduino’s stead, you could use an FTDI
Basic, or any device capable of sending TTL serial data.

You’ll also need some way to connect between the display and Arduino.
You could use a combination of male headers and breadboard. Or, you
could just go with a few pieces of wire.

Tools

In order to make use of the Serial 7-Segment Display, you’ll need to solder
to at least a few of its pins. That means you’ll need at least a basic
soldering iron as well as solder. Check out our how to solder tutorial for
help, if this is you first time soldering.

Before You Begin

2

Page 1 of 18

Before reading about how to hook up the Serial 7-Segment Display, it’ll help
to be familiar with some of these concepts. Consider reading through these
tutorials before continuing on:

• Binary - The data sent to the display comes in “packets” of bytes. In
order to control the decimals or individual segments, knowledge of
binary will be important.

• How to Solder - To connect to the display, you’ll have to solder either
wire, headers, or another connector to it.

• Serial Communication - This is the simplest of the three
communication standards used to talk to the display.

• I C Communication - I C is a two-wire serial interface. An alternative
to serial for talking to the display.

• SPI Communication - SPI is a three (or four) wire serial interface.
The third serial option for controlling the LED.

• What is an Arduino? - In this example, we’ll use an Arduino to control
the LED. If you’re not sure what that is, definitely check out this
tutorial.

Hardware Overview
This page covers the hardware end of the Serial 7-Segment Display (let’s
shorten that to S7S from here on). Everything from the pin-out, to powering
the display is covered here.

To begin, we should mention, the display comes in an assortment of color
options: red, green, blue, yellow, and white.

The Pin-Out

The S7S has a lot of pins broken out in just about every-which direction.
Relax! You’ll actually only need to connect to about 3-5 of those pins. Most
of the pins can be broken down into categories based on the interface for
which they’re used. This image should do most of the explaining:

It’ll be your choice to decide which of the three serial interfaces you’d like to
use to connect to the display. Using a basic serial input, you’ll only need to
connect to the RX pin. I C requires two pins, and SPI requires three.

Regardless of which interface you choose to send data, there are two pins
to which you must connect: the power pins! VCC and GND.

Powering the Serial 7-Segment Display

To get a S7S up and running, you’ll first need to figure out how to power the
thing. The S7S can be powered from a variety of voltage supplies. It can
operate at anywhere from 3.0V to 5.5V. Keep in mind that the supply
voltage will affect how bright the display is – higher voltages increasing the
maximum brightness.

2 2

2

Page 2 of 18

The display’s supply voltage is unregulated. So don’t give it any crazy-high
voltages, anything over 6.0V will harm the display. Be nice to your S7S!

If you’re using an Arduino, you could power the S7S off either the 5V or
3.3V headers. Don’t forget to connect ground (GND) as well.

Serial Interfaces

The “Serial” in the Serial 7-Segment Displays is something of a
generalization. Apt…but this display actually offers three different serial
methods of interfacing: Serial UART, SPI and I C. Each of these interfaces
offer their own benefits and disadvantages. A big difference between each
of the communication protocols is the number of pins each requires. They
also each add their own level of complexity on the firmware end (though,
with Arduino, libraries really simplify the task).

UART Serial

UART serial, or TTL serial, this may be the most basic serial
communication method on the S7S. If you’ve played around with Arduino,
you’ve probably used the hardware UART to relay information back to your
computer via the Serial Monitor. Or set up a software serial port using the
SoftwareSerial library. This form of serial communication is asynchronous,
meaning the data is transmitted without any help from a parallel clock
signal. This makes our job easier and harder. Easier in that we only need
one wire (RX) to communicate with the display. Harder in that extra
attention needs to be paid to making sure timing between bits is exact.

The S7S supports a range of very common baud rates, and defaults to
everyone’s favorite - 9600. The baud rate can be adjusted, if you please,
but the display will only allow for 8 data-bits, no parity, and 1 stop bit
(8N1).

Serial Peripheral Interface (SPI)

SPI is a synchronous serial communication method. It’s kind of like taking
the UART method above and adding a clock signal. This way we don’t have
to worry about what speed we send data (as long as it’s not too fast), but
we do require the use of two more pins.

SPI requires three wires for communication: data (SDI, that’s “Serial Data
In”), clock (SCK, “Serial Clock”) and slave-select (SS, with a bar over it
meaning it’s active low), which is also known as chip select (CS). A couple
caveat’s on this serial method: the maximum clock speed for the S7S is
250kHz. And, data is clocked in on the rising edge of the clock (when it
goes from 0V to 5V). It is also worth noting that the SPI connections on the
master device, the Arduino in this case, are typically labeled MISO (Master
In Slave Out) and MOSI (Master Out, Slave In). The MOSI line connects to
SDI on the S7S, whereas the MISO line connects to the SDO line.

Thanks to the slave-select pin, we can connect multiple SPI devices on a
single bus. You could even connect multiple S7S’s on the same bus,
provided each had its own dedicated select pin.

Inter-Integrated Circuit (I C)

2

2

Page 3 of 18

I C exists somewhere between SPI and UART serial. This serial method
requires only two pins – SDA (serial data) and SCL (serial clock). Instead of
using a chip select pin, like SPI, I C devices are given unique 7-bit
addresses. The I C address of the S7S is configurable, but defaults to
0x71.

Data on an I C bus goes both ways, so special acknowledge signals are
required to implement a form of handshaking. What I C lacks in a CS wire,
it more than makes up for in complexity of the data signal. Happily though,
there are many I C libraries – the Wire library for example on Arduino,
which makes I C data transfer simple.

Like SPI, I C gives you the advantage of being able to tie multiple devices
to the same bus. If you need to talk to four segments, program them with
unique addresses and link away!

Assembly
To interface other electronics to the display, you’ll need to solder to some of
the S7S’s pins. Before you do any soldering, though, think on how you want
to use the display. Do you plan on using one of the serial interfaces in
particular? Maybe you only need to solder to the power pins, and the few
pins which correspond to your preferred interface. Are you just prototyping
with the display? Are you mounting it in an project enclosure? Your
assembly method really depends on what your final goals for the display
are.

For many use cases, you’ll really only need the pins on the top header.
When I prototype with these displays, I like to solder some straight male
headers in, so I can stick it into a breadboard.

Of course, you could solder stranded or solid-core wires into the pins you
need. This is useful if you plan on mounting the display in an enclosure.

2

2

2

2

2

2

2

2

Page 4 of 18

If you intend to ever reprogram the display using an FTDI Basic, you might
find it useful to solder some right-angle male headers into the serial
programming header. This can be a bit tricky, as the display gets in the
way. I solder my right-angler’s on the curved side.

Finally, if you’ll be mounting the display, any 4-40 screw should be able to
find its way through those stand-off holes.

7-Segment Shield
If you’re looking for an even simpler form factor of the S7S, take a look at
the 7-Segment Shield display. The S7S Display Shield is an Arduino shield
designed to run on top of an Arduino Uno or an Arduino Uno compatible
board. It runs the same firmware as the OpenSegment and Serial
7-Segment displays and is controlled in the same manner. It is arguably the
easiest of the three to get up in running as all you have to do is populate
the standard Arduino headers, and then plug the shield into an Arduino Uno
compatible board. For more instructions on shield assembly, visit our shield
tutorial.

Similarities and Differences

Just like its brother boards, the serial 7-segment shield can be controlled
via SPI, I2C, and serial communication. You can choose which
communication protocol works best for your specific application leaving the
others open to interact with other pieces of hardware. It shares the same
command set, and all the same example Arduino sketches work for it as
well without needing to change a single line of code.

Page 5 of 18

Since all communication protocols are connected by default, there is the
option of disabling both the SPI or Serial communication streams. You only
need to disable these if they conflict with other devices you want to
communicate with, otherwise you can leave them alone. You can disable
SPI by desoldering the Chip Select pin (CS). You can disable Serial by
desoldering the shield’s receive pin (RX). These jumpers are located in the
top center of the picture below.

So what about I2C? Well while I2C can’t be disabled in the same manner, it
shouldn’t conflict with another I2C device on the same bus unless they
share the same address. In this case, you can reprogram the shield’s
firmware with a different I2C address. The shield’s I2C address is 0x71 by
default.

Super Quick Start Guide

1. Solder headers to the 7-Segment Shield Display.
2. Mate to an Arduino Uno compatible board.
3. Choose one of the basic example Arduino sketches and download it

from here.
4. Upload example sketch to your Arduino.
5. If 1-4 went correctly, your display should now be counting upwards.
6. Continue reading the Example coding sections of this tutorial to get a

better grasp of the code.

If you’re ready to take the plunge into creating your own sketches, feel free.
If you want a bit more explanation of one of the basic sketches, visit the
following coding sections of this tutorial. Simply plug in your shield to an
Arduino, and follow along.

Firmware Overview
All of the firmware found in this tutorial can be found on the S7S GitHub
page.

Before really delving into the examples, we should discuss what types of
data should be sent to the display. As mentioned in the hardware section,
the display provides for three serial modes of communication. In each serial
mode, data is sent to the display one byte at-a-time. The byte (as bytes go)
can be any value from 0 to 255. Data sent to the display will fall into one of
three categories: (1) displayable data, (2) command bytes, and (3)
command data bytes.

Displayable Data

Page 6 of 18

Displayable data is just that: data sent to the S7S with the intent of actually
being displayed. Displayable data bytes include any value from 0-15, and a
select few ASCII values.

Bytes of value 0-15 will display their hex equivalent (0-9, A-F) on the
display. ASCII values (for only the characters that can actually be
displayed) will generate an equivalent LED pattern. Not all characters are
displayable (the display does what it can with its limited resolution). Here’s
a table of byte values and the character’s displayed:

For example, to display 12Ab you could send a variety of 4-byte patterns:

• The actual byte values 1, 2, 10, and 11:
[0x01] [0x02] [0x0A] [0x0B]

• ASCII values for ‘1’, ‘2’, ‘a’, and ‘b’: [0x31] [0x32] [0x41] [0x42]
• Or any combination of binary and ASCII values could be used:

[0x01] [0x32] [0x41] [0x0B] , etc.

Cursor

Another controlling factor in displaying data is the cursor, which decides
where the next piece of received display data will be displayed. You can’t
see it, but it’s there. When the S7S starts up, it’ll set the cursor to the left-
most digit. Every displayable piece of data moves the cursor right one digit,

Page 7 of 18

until it wraps around from the fourth digit to the first. The above example
assumes the cursor is set at the left-most digit. If not, the display might
show 2Ab1, Ab12, or b12A.

Special Commands

Special commands exist to perform non-displayable actions on the
display. Actions like clearing the display, setting the cursor, and turning the
decimal points on/off are triggered using special commands. In some cases
special commands should be followed by a command data byte.

For a complete reference of the available commands, check out the Special
Commands section of the datasheet. Let’s cover some of the more useful
commands: clear display and cursor control.

Clear Display

The clear display command is a single byte of value 0x76. When this value
is received by the display two actions are performed: (1) everything on the
display is turned off (segments and decimal points), and (2) the cursor is
reset to the left-most digit. This command is useful in the example above, if
you want to guarantee that the cursor is at the left-most of the display when
display data begins coming in.

Cursor Control

The cursor control command is a good example of a command byte that
must be followed by a data byte. The cursor command is 0x79, but
immediately trailing that should be another byte representing which position
you want the cursor to take (e.g. 0 for left-most, 3 for right-most). For
example, to set the cursor to the third digit from the left, send 0x79
followed by 0x02 .

Here’s a quick table of the commands, their command-byte value, and any
data-byte they may require:

Special
Command

Command
byte

Data byte
range

Data byte description

Clear display 0x76 None
Decimal control 0x77 0-63 1-bit per decimal
Cursor control 0x79 0-3 0=left-most, 3=right-most

Brightness
control

0x7A 0-255 0=dimmest, 255=brightest

Digit 1 control 0x7B 0-127 1-bit per segment
Digit 2 control 0x7C 0-127 1-bit per segment
Digit 3 control 0x7D 0-127 1-bit per segment
Digit 4 control 0x7E 0-127 1-bit per segment

Baud rate config 0x7F 0-11
See baud rate command in

datasheet
I C Address

config
0x80 1-126 New I C address

Factory reset 0x81 None

Enough conceptual stuff. Let’s get to some examples!

Example 1: Serial UART
Serial is a great communication method if you want to minimize wires. If
you’re linking the S7S up to an Arduino, I’d really recommend you make
use of the Software Serial library (included with Arduino) to communicate
with the display, rather than hooking up to the hardware serial pins (D0,

2
2

Page 8 of 18

D1). This will make sure there’s no bus contention, and, more importantly, it
makes sure your display doesn’t receive any data meant for solely your
Arduino.

This example will require three wires between the Arduino and S7S (two
power wires, one data). Hook it up like so:

Really, you can use any digital pin to serve as the Arduino’s software TX
pin. Just make sure you change it in the code. Speaking of the code
copy/past this, or you can download it from here:

Page 9 of 18

/* Serial 7­Segment Display Example Code
 Serial Mode Stopwatch
 by: Jim Lindblom
 SparkFun Electronics
 date: November 27, 2012
 license: This code is public domain.

 This example code shows how you could use software serial
 Arduino library to interface with a Serial 7­Segment Displa
y.

 There are example functions for setting the display's
 brightness, decimals and clearing the display.

 The print function is used with the SoftwareSerial library
 to send display data to the S7S.

 Circuit:
 Arduino ­­­­­­­­­­­­­­ Serial 7­Segment
 5V ­­­­­­­­­­­­­­­­­­­­ VCC
 GND ­­­­­­­­­­­­­­­­­­­­ GND
 8 ­­­­­­­­­­­­­­­­­­­­ RX
*/
#include <SoftwareSerial.h>

// These are the Arduino pins required to create a software se
iral
// instance. We'll actually only use the TX pin.
const int softwareTx = 8;
const int softwareRx = 7;

SoftwareSerial s7s(softwareRx, softwareTx);

unsigned int counter = 0; // This variable will count up to 6
5k
char tempString[10]; // Will be used with sprintf to create s
trings

void setup()
{
// Must begin s7s software serial at the correct baud rate.
// The default of the s7s is 9600.

 s7s.begin(9600);

// Clear the display, and then turn on all segments and deci
mals
clearDisplay(); // Clears display, resets cursor

 s7s.print("­HI­"); // Displays ­HI­ on all digits
setDecimals(0b111111); // Turn on all decimals, colon, apos

// Flash brightness values at the beginning
setBrightness(0); // Lowest brightness
delay(1500);
setBrightness(127); // Medium brightness
delay(1500);
setBrightness(255); // High brightness
delay(1500);

// Clear the display before jumping into loop
clearDisplay();

}

void loop()
{

Page 10 of 18

// Magical sprintf creates a string for us to send to the s7
s.
// The %4d option creates a 4­digit integer.
sprintf(tempString, "%4d", counter);

// This will output the tempString to the S7S
 s7s.print(tempString);
setDecimals(0b00000100); // Sets digit 3 decimal on

 counter++; // Increment the counter
delay(100); // This will make the display update at 10Hz.

}

// Send the clear display command (0x76)
// This will clear the display and reset the cursor
void clearDisplay()
{
 s7s.write(0x76); // Clear display command
}

// Set the displays brightness. Should receive byte with the v
alue
// to set the brightness to
// dimmest­­­­­­­­­­­­­>brightest
// 0­­­­­­­­127­­­­­­­­255
void setBrightness(byte value)
{
 s7s.write(0x7A); // Set brightness command byte
 s7s.write(value); // brightness data byte
}

// Turn on any, none, or all of the decimals.
// The six lowest bits in the decimals parameter sets a decim
al
// (or colon, or apostrophe) on or off. A 1 indicates on, 0 o
ff.
// [MSB] (X)(X)(Apos)(Colon)(Digit 4)(Digit 3)(Digit2)(Digit
1)
void setDecimals(byte decimals)
{
 s7s.write(0x77);
 s7s.write(decimals);
}

In that code there are example functions for setting the display’s brightness,
decimals, and clearing the display. Check out the functions and the
comments, for more details.

The sketch begins by cycling through a select few brightnesses, so you can
see what the display looks at its dimmest and brightest. Following that, it
turns into a stopwatch, making use of the s7s.print() function to send
data to the display via the software serial library.

Example 2: SPI
SPI is a useful communication method if you have more than one device to
hook up on a single bus. It requires more wires than basic serial, but it’s
more dependable because it’s a synchronous interface.

In this example, we’ll only use a single display. Realize, though, that you
could add more displays (or other SPI devices) to the same SPI bus, each
requiring only an additional SS pin per device.

Here’s the hardware setup:

Page 11 of 18

The SDI and SCK pins must remain where they are on the Arduino - those
are the hardware SPI pins. The SS pin could be moved to any digital pin, as
long as it’s changed in the code.

Speaking of code, copy/paste from below, or you can download it in a zip
file by clicking here.

Page 12 of 18

/* Serial 7­Segment Display Example Code
 SPI Mode Stopwatch
 by: Jim Lindblom
 SparkFun Electronics
 date: November 27, 2012
 license: This code is public domain.

 This example code shows how you could use the Arduino SPI
 library to interface with a Serial 7­Segment Display.

 There are example functions for setting the display's
 brightness, decimals and clearing the display.

 The SPI.transfer() function is used to send a byte of the
 SPI wires. Notice that each SPI transfer(s) is prefaced by
 writing the SS pin LOW and closed by writing it HIGH.

 Each of the custom functions handle the ssPin writes as wel
l
 as the SPI.transfer()'s.

 There's a custom function used to send a sequence of bytes
 over SPI ­ s7sSendStringSPI, which can be used somewhat lik
e
 the serial print statements.

 Circuit:
 Arduino ­­­­­­­­­­­­­­ Serial 7­Segment
 5V ­­­­­­­­­­­­­­­­­­­­ VCC
 GND ­­­­­­­­­­­­­­­­­­­­ GND
 8 ­­­­­­­­­­­­­­­­­­­­ SS
 11 ­­­­­­­­­­­­­­­­­­­­ SDI
 13 ­­­­­­­­­­­­­­­­­­­­ SCK
*/
#include <SPI.h> // Include the Arduino SPI library

// Define the SS pin
// This is the only pin we can move around to any available
// digital pin.
const int ssPin = 8;

unsigned int counter = 0; // This variable will count up to 6
5k
char tempString[10]; // Will be used with sprintf to create s
trings

void setup()
{
// ­­­­­­­­ SPI initialization
pinMode(ssPin, OUTPUT); // Set the SS pin as an output
digitalWrite(ssPin, HIGH); // Set the SS pin HIGH

 SPI.begin(); // Begin SPI hardware
 SPI.setClockDivider(SPI_CLOCK_DIV64); // Slow down SPI cloc
k
// ­­­­­­­­

// Clear the display, and then turn on all segments and deci
mals
clearDisplaySPI(); // Clears display, resets cursor

// Custom function to send four bytes via SPI
// The SPI.transfer function only allows sending of a singl

e
// byte at a time.

Page 13 of 18

s7sSendStringSPI("­HI­");
setDecimalsSPI(0b111111); // Turn on all decimals, colon, a

pos

// Flash brightness values at the beginning
setBrightnessSPI(0); // Lowest brightness
delay(1500);
setBrightnessSPI(255); // High brightness
delay(1500);

// Clear the display before jumping into loop
clearDisplaySPI();

}

void loop()
{
// Magical sprintf creates a string for us to send to the s7

s.
// The %4d option creates a 4­digit integer.
sprintf(tempString, "%4d", counter);

// This will output the tempString to the S7S
s7sSendStringSPI(tempString);

// Print the decimal at the proper spot
if (counter < 10000)
setDecimalsSPI(0b00000010); // Sets digit 3 decimal on

else
setDecimalsSPI(0b00000100);

 counter++; // Increment the counter
delay(10); // This will make the display update at 100Hz.*/

}

// This custom function works somewhat like a serial.print.
// You can send it an array of chars (string) and it'll print
// the first 4 characters in the array.
void s7sSendStringSPI(String toSend)
{
digitalWrite(ssPin, LOW);
for (int i=0; i<4; i++)

 {
 SPI.transfer(toSend[i]);
 }
digitalWrite(ssPin, HIGH);

}

// Send the clear display command (0x76)
// This will clear the display and reset the cursor
void clearDisplaySPI()
{
digitalWrite(ssPin, LOW);

 SPI.transfer(0x76); // Clear display command
digitalWrite(ssPin, HIGH);

}

// Set the displays brightness. Should receive byte with the v
alue
// to set the brightness to
// dimmest­­­­­­­­­­­­­>brightest
// 0­­­­­­­­127­­­­­­­­255
void setBrightnessSPI(byte value)
{
digitalWrite(ssPin, LOW);

 SPI.transfer(0x7A); // Set brightness command byte

Page 14 of 18

 SPI.transfer(value); // brightness data byte
digitalWrite(ssPin, HIGH);

}

// Turn on any, none, or all of the decimals.
// The six lowest bits in the decimals parameter sets a decim
al
// (or colon, or apostrophe) on or off. A 1 indicates on, 0 o
ff.
// [MSB] (X)(X)(Apos)(Colon)(Digit 4)(Digit 3)(Digit2)(Digit
1)
void setDecimalsSPI(byte decimals)
{
digitalWrite(ssPin, LOW);

 SPI.transfer(0x77);
 SPI.transfer(decimals);
digitalWrite(ssPin, HIGH);

}

This example works a lot like the serial version. The s7s.print() functions
from the previous example are replaced by SPI transfers. Take note that
each time an SPI.transfer() occurs, it’s blanketed by two
digitalWrite() s to the SS pin. The SS pin must go LOW, to let the

display know that usable data is incoming. Once SS goes back to HIGH,
the display will know that data is no longer being sent to it.

Example 3: I2C
Finally, I C. I C is a really powerful communication method, but it’s also the
most complicated of the three discussed here. Happily, though, Arduino’s
got a great library (Wire) to handle all of the nasty I C stuff.

Only two data wires are required for I C – a data line (SDA) and a clock line
(SCL). Don’t forget power! Here’s how to hook it up:

There’s not any give in this pin configuration; you’ll have to use the
hardware I C pins. Older Arduinos may not have the devoted SDA and SCL
pins. They should still be there, on pins A4 and A5 respectively.

You may have noticed I C pins (as well as power pins) exist on both sides
of the S7S. These are useful if you want to link many S7S’s together on a
single I C bus. Thanks to I C’s addressing scheme, you could chain a large-
ish number of Serial 7-Segment displays using just these two I C pins.
Should be useful if you’re making a national debt clock!

Here’s some example code, using I C (download here). The functionality is
comparable to the last couple of example sketches:

2 2

2

2

2

2

2 2

2

2

Page 15 of 18

/* Serial 7­Segment Display Example Code
 I2C Mode Stopwatch
 by: Jim Lindblom
 SparkFun Electronics
 date: November 27, 2012
 license: This code is public domain.

 This example code shows how you could use the Arduino Wire
 library to interface with a Serial 7­Segment Display.

 There are example functions for setting the display's
 brightness, decimals, clearing the display, and sending a
 series of bytes via I2C.

 Each I2C transfer begins with a Wire.beginTransmission(addr
ess)
 where address is the 7­bit address of the device set to
 receive the data. Wire.write() sends a byte of data. I2C
 communication is closed with Wire.endTransmission().

 Circuit:
 Arduino ­­­­­­­­­­­­­­ Serial 7­Segment
 5V ­­­­­­­­­­­­­­­­­­­­ VCC
 GND ­­­­­­­­­­­­­­­­­­­­ GND
 SDA ­­­­­­­­­­­­­­­­­­­­ SDA (A4 on older 'duino's)
 SCL ­­­­­­­­­­­­­­­­­­­­ SCL (A5 on older 'duino's)
*/
#include <Wire.h> // Include the Arduino SPI library

// Here we'll define the I2C address of our S7S. By default it
// should be 0x71. This can be changed, though.
const byte s7sAddress = 0x71;

unsigned int counter = 9900; // This variable will count up t
o 65k
char tempString[10]; // Will be used with sprintf to create s
trings

void setup()
{
 Wire.begin(); // Initialize hardware I2C pins

// Clear the display, and then turn on all segments and deci
mals
clearDisplayI2C(); // Clears display, resets cursor

// Custom function to send four bytes via I2C
// The I2C.write function only allows sending of a single
// byte at a time.
s7sSendStringI2C("­HI­");
setDecimalsI2C(0b111111); // Turn on all decimals, colon, a

pos

// Flash brightness values at the beginning
setBrightnessI2C(0); // Lowest brightness
delay(1500);
setBrightnessI2C(255); // High brightness
delay(1500);

// Clear the display before jumping into loop
clearDisplayI2C();

}

void loop()

Page 16 of 18

{
// Magical sprintf creates a string for us to send to the s7

s.
// The %4d option creates a 4­digit integer.
sprintf(tempString, "%4d", counter);

// This will output the tempString to the S7S
s7sSendStringI2C(tempString);

// Print the decimal at the proper spot
if (counter < 10000)
setDecimalsI2C(0b00000100); // Sets digit 3 decimal on

else
setDecimalsI2C(0b00001000);

 counter++; // Increment the counter
delay(100); // This will make the display update at 10Hz.*/

}

// This custom function works somewhat like a serial.print.
// You can send it an array of chars (string) and it'll print
// the first 4 characters in the array.
void s7sSendStringI2C(String toSend)
{
 Wire.beginTransmission(s7sAddress);
for (int i=0; i<4; i++)

 {
 Wire.write(toSend[i]);
 }
 Wire.endTransmission();
}

// Send the clear display command (0x76)
// This will clear the display and reset the cursor
void clearDisplayI2C()
{
 Wire.beginTransmission(s7sAddress);
 Wire.write(0x76); // Clear display command
 Wire.endTransmission();
}

// Set the displays brightness. Should receive byte with the v
alue
// to set the brightness to
// dimmest­­­­­­­­­­­­­>brightest
// 0­­­­­­­­127­­­­­­­­255
void setBrightnessI2C(byte value)
{
 Wire.beginTransmission(s7sAddress);
 Wire.write(0x7A); // Set brightness command byte
 Wire.write(value); // brightness data byte
 Wire.endTransmission();
}

// Turn on any, none, or all of the decimals.
// The six lowest bits in the decimals parameter sets a decim
al
// (or colon, or apostrophe) on or off. A 1 indicates on, 0 o
ff.
// [MSB] (X)(X)(Apos)(Colon)(Digit 4)(Digit 3)(Digit2)(Digit
1)
void setDecimalsI2C(byte decimals)
{
 Wire.beginTransmission(s7sAddress);
 Wire.write(0x77);

Page 17 of 18

 Wire.write(decimals);
 Wire.endTransmission();
}

Now SPI.transfer() s from the last example are replaced with
Wire.write() s. And instead of toggling a SS pin, we use
Wire.beginTransmission(address) and Wire.endTransmission() . Easy

enough!

Going Further
Now that you’re comfortable using one of the Serial 7-Segment Displays,
why not check out some of these related tutorials:

• Using the OpenSegment - The OpenSegment is the big brother to
the Serial 7-Segment Display. They run on the same firmware,
however the OpenSegment is about twice as big.

• Using GitHub - All of the Serial 7-Segment Display’s hardware design
and firmware files are open-source. They’re posted on github. Check
out this tutorial if need help downloading from github.

• Using GitHub to Share with SparkFun - Since this product is open-
source, we encourage our customers to use and modify our source
files. Then you can share them with us, and we can make the
product better!

Resources

For even more information, please check out the Serial 7-Segment’s github
repository. There you’ll find:

• Datasheet - A Wiki containing all of the information you should need
to use the display.

• Arduino Example Code galore - We went a little crazy with the test
code. You’ll find something useful here.

• Firmware - If you’re interested in modifying the behavior of the S7S,
definitely check out the firmware (written in Arduino).

◦ In addition to the firmware, you’ll also need to add the SevSeg
library to your Arduino install.

• Hardware - The Eagle files are hosted here. Do you want to make
your own version of the display? Go for it! This is an open-source
project.

Page 18 of 18

1/19/2016https://learn.sparkfun.com/tutorials/using-the-serial-7-segment-display/all

