
November 2015 DocID14574 Rev 13 1/41

STM32F10xx8 STM32F10xxB
Errata sheet

STM32F101x8/B, STM32F102x8/B and STM32F103x8/B
medium-density device limitations

Silicon identification

This errata sheet applies to the revisions B, Z, Y, 1, 2, 3 and X of the STMicroelectronics
medium-density STM32F101xx access line and STM32F103xx performance line products,
and to revision Y, 1, 2 and X of the STM32F102xx USB access line devices.
These families feature an ARM® 32-bit Cortex®-M3 core, for which an errata notice is also
available (see Section 1 for details).

The full list of root part numbers is shown in Table 2.

The products are identifiable as shown in Table 1:

• by the Revision code marked below the order code on the device package

• by the last three digits of the Internal order code printed on the box label

Table 1. Device identification(1)

1. The REV_ID bits in the DBGMCU_IDCODE register show the revision code of the device (see the
STM32F10xxx reference manual for details on how to find the revision code).

Order code Revision code(2) marked on device

2. Refer to Appendix A: Revision code on device marking for details on how to identify the Revision code on
the different packages.

STM32F101xxxx(3)

3. Are also concerned all devices with 32 KB of Flash memory that do not have the letter A in their order
code.

“B”, “Z”, “Y” or “1” or “2” or “3”or “X”

STM32F102xxxx(3) “Y” or “1” or “2” or “3” or “X”

STM32F103xxxx(3) “B”, “Z”, “Y” or “1” or “2” or “3” or “X”

Table 2. Device summary

Reference Part number

STM32F101xx
STM32F101C8, STM32F101R8, STM32F101V8, STM32F101T8

STM32F101RB, STM32F101VB, STM32F101CB

STM32F102xx
STM32F102C8, STM32F102R8

STM32F102CB, STM32F102RB

STM32F103xx
STM32F103C8, STM32F103R8, STM32F103V8, STM32F103T8

STM32F103RB STM32F103VB, STM32F103CB

www.st.com

http://www.st.com

Contents STM32F10xx8 STM32F10xxB

2/41 DocID14574 Rev 13

Contents

1 ARM® 32-bit Cortex®-M3 limitations . 7

1.1 Cortex-M3 limitations description for STM32F10xxx medium-
density devices . 8

1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register
when interrupted or faulted . 8

1.1.2 Cortex-M3 event register is not set by interrupts and debug 8

1.1.3 Cortex-M3 BKPT in debug monitor mode can cause DFSR mismatch . . 8

1.1.4 Cortex-M3 may freeze for SLEEPONEXIT single instruction ISR 9

1.1.5 Interrupted loads to SP can cause erroneous behavior 9

1.1.6 SVC and BusFault/MemManage may occur out of order 10

2 STM32F10xx8 and STM32F10xxB silicon limitations 11

2.1 Voltage glitch on ADC input 0 . 13

2.2 Flash memory read after WFI/WFE instruction . 13

2.3 Debug registers cannot be read by user software 13

2.4 Debugging Stop mode and system tick timer . 14

2.5 Debugging Stop mode with WFE entry . 14

2.6 Wakeup sequence from Standby mode when using more
than one wakeup source . 14

2.7 LSE start-up in harsh environments . 15

2.8 Alternate function . 16

2.8.1 USART1_RTS and CAN_TX . 16

2.8.2 SPI1 in slave mode and USART2 in synchronous mode 16

2.8.3 SPI1 in master mode and USART2 in synchronous mode 16

2.8.4 SPI2 in slave mode and USART3 in synchronous mode 17

2.8.5 SPI2 in master mode and USART3 in synchronous mode 17

2.8.6 I2C2 with SPI2 and USART3 . 17

2.8.7 I2C1 with SPI1 remapped and used in master mode 18

2.8.8 I2C1 and TIM3_CH2 remapped . 18

2.8.9 USARTx_TX pin usage . 18

2.9 PVD and USB wakeup events . 19

2.10 Compatibility issue with latest compiler releases 19

2.11 Boundary scan TAP: wrong pattern sent out after the
“capture IR” state . 19

DocID14574 Rev 13 3/41

STM32F10xx8 STM32F10xxB Contents

2.12 Flash memory BSY bit delay versus STRT bit setting 20

2.13 I2C peripheral . 21

2.13.1 Some software events must be managed before the current byte is
being transferred . 21

2.13.2 Wrong data read into data register . 22

2.13.3 SMBus standard not fully supported . 23

2.13.4 Wrong behavior of I2C peripheral in master mode after a misplaced
Stop . 23

2.13.5 Mismatch on the “Setup time for a repeated Start condition” timing
parameter . 24

2.13.6 Data valid time (tVD;DAT) violated without the OVR flag being set 24

2.13.7 I2C analog filter may provide wrong value, locking BUSY flag and
preventing master mode entry . 26

2.14 SPI peripheral . 27

2.14.1 CRC still sensitive to communication clock when SPI is in slave mode
even with NSS high . 27

2.14.2 SPI CRC may be corrupted when a peripheral connected to the same
DMA channel of the SPI is under DMA transaction close to the end of
transfer or end of transfer -1 . 27

2.15 USART peripheral . 28

2.15.1 Parity Error flag (PE) is set again after having been cleared
by software . 28

2.15.2 Idle frame is not detected if receiver clock speed is deviated 28

2.15.3 In full duplex mode, the Parity Error (PE) flag can be cleared by writing
the data register . 28

2.15.4 Parity Error (PE) flag is not set when receiving in Mute mode using
address mark detection . 29

2.15.5 Break frame is transmitted regardless of nCTS input line status 29

2.15.6 nRTS signal abnormally driven low after a protocol violation 29

2.16 Timers . 30

2.16.1 Missing capture flag . 30

2.16.2 Overcapture detected too early . 30

2.16.3 General-purpose timer: regulation for 100% PWM 30

2.17 IWDG peripheral . 31

2.17.1 RVU and PVU flags are not cleared in Stop mode 31

2.18 LSI clock stabilization time . 31

2.19 USB packet buffer memory: over/underrun or
COUNTn_RX[9:0] field reporting incorrect number if APB1
frequency is below 13 MHz . 31

Contents STM32F10xx8 STM32F10xxB

4/41 DocID14574 Rev 13

Appendix A Revision code on device marking . 33

Revision history . 38

DocID14574 Rev 13 5/41

STM32F10xx8 STM32F10xxB List of tables

List of tables

Table 1. Device identification . 1
Table 2. Device summary . 1
Table 3. Cortex-M3 core limitations and impact on microcontroller behavior 7
Table 4. Summary of silicon limitations . 11
Table 5. Document revision history . 38

List of figures STM32F10xx8 STM32F10xxB

6/41 DocID14574 Rev 13

List of figures

Figure 1. LSE start-up using an additional resistor . 15
Figure 2. LFBGA100 top package view . 33
Figure 3. LQFP100 top package view . 34
Figure 4. LQFP64 top package view . 35
Figure 5. LQFP48 top package view . 36
Figure 6. VFQFPN36 and VFQFPN48 top package view . 37

DocID14574 Rev 13 7/41

STM32F10xx8 STM32F10xxB ARM® 32-bit Cortex®-M3 limitations

1 ARM® 32-bit Cortex®-M3 limitations

An errata notice of the STM32F10xxx core is available from the following web address:
http://infocenter.arm.com.

All the described limitations are minor and related to the revision r1p1-01rel0 of the Cortex-
M3 core. Table 3 summarizes these limitations and their implications on the behavior of
medium-density STM32F10xxx devices.

Table 3. Cortex-M3 core limitations and impact on microcontroller behavior

ARM ID
ARM

category
ARM

 summary of errata

Impact on
medium-density
STM32F10xxx

devices

752419 Cat 2 Interrupted loads to SP can cause erroneous behavior Minor

740455 Cat 2 SVC and BusFault/MemManage may occur out of order Minor

602117 Cat 2
LDRD with base in list may result in incorrect base register
when interrupted or faulted

Minor

563915 Cat 2 Event register is not set by interrupts and debug Minor

531064 impl SWJ-DP missing POR reset sync No

511864 Cat 3
Cortex-M3 may fetch instructions using incorrect privilege
on return from an exception

No

532314 Cat 3 DWT CPI counter increments during sleep No

538714 Cat 3 Cortex-M3 TPIU clock domain crossing No

548721 Cat 3 Internal write buffer could be active whilst asleep No

463763 Cat 3 BKPT in debug monitor mode can cause DFSR mismatch Minor

463764 Cat 3 Core may freeze for SLEEPONEXIT single instruction ISR Minor

463769 Cat 3
Unaligned MPU fault during a write may cause the wrong
data to be written to a successful first access

No

ARM® 32-bit Cortex®-M3 limitations STM32F10xx8 STM32F10xxB

8/41 DocID14574 Rev 13

1.1 Cortex-M3 limitations description for STM32F10xxx medium-
density devices

Only the limitations described below have an impact, even though minor, on the
implementation of STM32F10xxx medium-density devices.

All the other limitations described in the ARM errata notice (and summarized in Table 3
above) have no impact and are not related to the implementation of STM32F10xxx medium-
density devices (Cortex-M3 r1p1-01rel0).

1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register
when interrupted or faulted

Description

The Cortex-M3 Core has a limitation when executing an LDRD instruction from the system-
bus area, with the base register in a list of the form LDRD Ra, Rb, [Ra, #imm]. The
execution may not complete after loading the first destination register due to an interrupt
before the second loading completes or due to the second loading getting a bus fault.

Workarounds

1. This limitation does not impact the STM32F10xxx code execution when executing from
the embedded Flash memory, which is the standard use of the microcontroller.

2. Use the latest compiler releases. As of today, they no longer generate this particular
sequence. Moreover, a scanning tool is provided to detect this sequence on previous
releases (refer to your preferred compiler provider).

1.1.2 Cortex-M3 event register is not set by interrupts and debug

Description

When interrupts related to a WFE occur before the WFE is executed, the event register
used for WFE wakeup events is not set and the event is missed. Therefore, when the WFE
is executed, the core does not wake up from WFE if no other event or interrupt occur.

Workaround

Use STM32F10xxx external events instead of interrupts to wake up the core from WFE by
configuring an external or internal EXTI line in event mode.

1.1.3 Cortex-M3 BKPT in debug monitor mode can cause DFSR mismatch

Description

A BKPT may be executed in debug monitor mode. This causes the debug monitor handler
to be run. However, the bit 1 in the Debug fault status register (DFSR) at address
0xE000ED30 is not set to indicate that it was originated by a BKPT instruction. This only
occurs if an interrupt other than the debug monitor is already being processed just before
the BKPT is executed.

DocID14574 Rev 13 9/41

STM32F10xx8 STM32F10xxB ARM® 32-bit Cortex®-M3 limitations

Workaround

If the DFSR register does not have any bit set when the debug monitor is entered, this
means that we must be in this “corner case” and so, that a BKPT instruction was executed
in debug monitor mode.

1.1.4 Cortex-M3 may freeze for SLEEPONEXIT single instruction ISR

Description

If the Cortex-M3 SLEEPONEXIT functionality is used and the concerned interrupt service
routine (ISR) contains only a single instruction, the core becomes frozen. This freezing may
occur if only one interrupt is active and it is preempted by an interrupt whose handler only
contains a single instruction.
However, any new interrupt that causes a preemption would cause the core to become
unfrozen and behave correctly again.

Workaround

This scenario does not happen in real application systems since all enabled ISRs should at
least contain one instruction. Therefore, if an empty ISR is used, then insert an NOP or any
other instruction before the exit instruction (BX or BLX).

1.1.5 Interrupted loads to SP can cause erroneous behavior

Description

If an interrupt occurs during the data-phase of a single word load to the stack-pointer
(SP/R13), erroneous behavior can occur. In all cases, returning from the interrupt will result
in the load instruction being executed an additional time. For all instructions performing an
update to the base register, the base register will be erroneously updated on each
execution, resulting in the stack-pointer being loaded from an incorrect memory location.

The affected instructions are:

1. LDR SP,[Rn],#imm

2. LDR SP,[Rn,#imm]!

3. LDR SP,[Rn,#imm]

4. LDR SP,[Rn]

5. LDR SP,[Rn,Rm]

Workaround

As of today, there is no compiler generating these particular instructions. This limitation can
only occur with hand-written assembly code.

Both issues may be worked around by replacing the direct load to the stack-pointer, with an
intermediate load to a general-purpose register followed by a move to the stack-pointer.

Example: the following instruction "LDR SP, [R0]" can be replaced by

“LDR R2,[R0]

MOV SP,R2 "

ARM® 32-bit Cortex®-M3 limitations STM32F10xx8 STM32F10xxB

10/41 DocID14574 Rev 13

1.1.6 SVC and BusFault/MemManage may occur out of order

Description

If an SVC exception is generated by executing the SVC instruction while the following
instruction fetch is faulted, then the MemManage or BusFault handler may be entered even
though the faulted instruction which followed the SVC should not have been executed.

Workaround

A workaround is only required if the SVC handler will not return to the return address that
has been stacked for the SVC exception and the instruction access after the SVC will fault.
If this is the case then padding can be inserted between the SVC and the faulting area of
code, for example, by inserting NOP instructions.

DocID14574 Rev 13 11/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

2 STM32F10xx8 and STM32F10xxB silicon limitations

Table 4 gives quick references to all documented limitations.

Table 4. Summary of silicon limitations

Links to silicon limitations

Section 2.1: Voltage glitch on ADC input 0

Section 2.2: Flash memory read after WFI/WFE instruction

Section 2.3: Debug registers cannot be read by user software

Section 2.4: Debugging Stop mode and system tick timer

Section 2.5: Debugging Stop mode with WFE entry

Section 2.6: Wakeup sequence from Standby mode when using more than one wakeup source

Section 2.7: LSE start-up in harsh environments

Section 2.8: Alternate
function

Section 2.8.1: USART1_RTS and CAN_TX

Section 2.8.2: SPI1 in slave mode and USART2 in synchronous mode

Section 2.8.3: SPI1 in master mode and USART2 in synchronous mode

Section 2.8.4: SPI2 in slave mode and USART3 in synchronous mode

Section 2.8.5: SPI2 in master mode and USART3 in synchronous mode

Section 2.8.6: I2C2 with SPI2 and USART3

Section 2.8.7: I2C1 with SPI1 remapped and used in master mode

Section 2.8.8: I2C1 and TIM3_CH2 remapped

Section 2.8.9: USARTx_TX pin usage

Section 2.9: PVD and USB wakeup events

Section 2.10: Compatibility issue with latest compiler releases

Section 2.11: Boundary scan TAP: wrong pattern sent out after the “capture IR” state

Section 2.12: Flash memory BSY bit delay versus STRT bit setting

Section 2.13: I2C
peripheral

Section 2.13.1: Some software events must be managed before the
current byte is being transferred

Section 2.13.2: Wrong data read into data register

Section 2.13.3: SMBus standard not fully supported

Section 2.13.4: Wrong behavior of I2C peripheral in master mode after a
misplaced Stop

Section 2.13.5: Mismatch on the “Setup time for a repeated Start
condition” timing parameter

Section 2.13.6: Data valid time (tVD;DAT) violated without the OVR flag
being set

Section 2.13.7: I2C analog filter may provide wrong value, locking
BUSY flag and preventing master mode entry

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

12/41 DocID14574 Rev 13

Section 2.14: SPI
peripheral

Section 2.14.1: CRC still sensitive to communication clock when SPI is
in slave mode even with NSS high

Section 2.14.2: SPI CRC may be corrupted when a peripheral
connected to the same DMA channel of the SPI is under DMA
transaction close to the end of transfer or end of transfer -1

Section 2.15: USART
peripheral

Section 2.15.1: Parity Error flag (PE) is set again after having been
cleared by software

Section 2.15.2: Idle frame is not detected if receiver clock speed is
deviated

Section 2.15.3: In full duplex mode, the Parity Error (PE) flag can be
cleared by writing the data register

Section 2.15.4: Parity Error (PE) flag is not set when receiving in Mute
mode using address mark detection

Section 2.15.5: Break frame is transmitted regardless of nCTS input line
status

Section 2.15.6: nRTS signal abnormally driven low after a protocol
violation

Section 2.16: Timers

Section 2.16.1: Missing capture flag

Section 2.16.2: Overcapture detected too early

Section 2.16.3: General-purpose timer: regulation for 100% PWM

Section 2.17: IWDG
peripheral

Section 2.17.1: RVU and PVU flags are not cleared in Stop mode

Section 2.18: LSI clock stabilization time

Section 2.19: USB packet buffer memory: over/underrun or COUNTn_RX[9:0] field reporting
incorrect number if APB1 frequency is below 13 MHz

Table 4. Summary of silicon limitations

Links to silicon limitations

DocID14574 Rev 13 13/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

2.1 Voltage glitch on ADC input 0

Description

A low-amplitude voltage glitch may be generated (on ADC input 0) on the PA0 pin, when the
ADC is converting with injection trigger. It is generated by internal coupling and
synchronized to the beginning and the end of the injection sequence, whatever the
channel(s) to be converted.

The glitch amplitude is less than 150 mV with a typical duration of 10 ns (measured with the
I/O configured as high-impedance input and left unconnected). If PA0 is used as a digital
output, this has no influence on the signal. If PA0 is used has a digital input, it will not be
detected as a spurious transition, providing that PA0 is driven with an impedance lower than
5 kΩ. This glitch does not have any influence on the remaining port A pin or on the ADC
conversion injection results, in single ADC configuration.

When using the ADC in dual mode with injection trigger, and in order to avoid any side
effect, it is advised to distribute the analog channels so that Channel 0 is configured as an
injected channel.

Workaround

None.

2.2 Flash memory read after WFI/WFE instruction

Conditions

• Flash prefetch on

• Flash memory timing set to 2 wait states

• FLITF clock stopped in Sleep mode

Description

If a WFI/WFE instruction is executed during a Flash memory access and the Sleep duration
is very short (less than 2 clock cycles), the instruction fetch from the Flash memory may be
corrupted on the next wakeup event.

Workaround

When using the Flash memory with two wait states and prefetch on, the FLITF clock must
not be stopped during the Sleep mode – the FLITFEN bit in the RCC_AHBENR register
must be set (keep the reset value).

2.3 Debug registers cannot be read by user software

Description

The DBGMCU_IDCODE and DBGMCU_CR debug registers are accessible only in debug
mode (not accessible by the user software). When these registers are read in user mode,
the returned value is 0x00.

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

14/41 DocID14574 Rev 13

Workaround

None.

2.4 Debugging Stop mode and system tick timer

Description

If the system tick timer interrupt is enabled during the Stop mode debug (DBG_STOP bit set
in the DBGMCU_CR register), it will wakeup the system from Stop mode.

Workaround

To debug the Stop mode, disable the system tick timer interrupt.

2.5 Debugging Stop mode with WFE entry

Description

When the Stop debug mode is enabled (DBG_STOP bit set in the DBGMCU_CR register)
this allows software debugging during Stop mode.

However, if the application software uses the WFE instruction to enter Stop mode, after
wakeup some instructions could be missed if the WFE is followed by sequential instructions.
This affects only Stop debug mode with WFE entry.

Workaround

To debug Stop mode with WFE entry, the WFE instruction must be inside a dedicated
function with 1 instruction (NOP) between the execution of the WFE and the Bx LR.

Example: __asm void _WFE(void) {

WFE

NOP

BX lr }

2.6 Wakeup sequence from Standby mode when using more
than one wakeup source

Description

The various wakeup sources are logically OR-ed in front of the rising-edge detector which
generates the wakeup flag (WUF). The WUF flag needs to be cleared prior to the Standby
mode entry, otherwise the MCU wakes up immediately.

If one of the configured wakeup sources is kept high during the clearing of WUF flag (by
setting the CWUF bit), it may mask further wakeup events on the input of the edge detector.
As a consequence, the MCU could not be able to wake up from Standby mode.

DocID14574 Rev 13 15/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

Workaround

To avoid this problem, the following sequence should be applied before entering Standby
mode:

1. Disable all used wakeup sources.

2. Clear all related wakeup flags.

3. Re-enable all used wakeup sources.

4. Enter Standby mode.

Be aware that, when applying this workaround, if one of the wakeup sources is still kept
high, the MCU will enter the Standby mode, but then it will wake up immediately generating
the power reset.

2.7 LSE start-up in harsh environments

Description

The LSE (Low Speed External) oscillator system has been designed to minimize the overall
power consumption of the STM32F1 microcontroller. It is extremely important to take
specific care in the design of the PCB to ensure this low power oscillator starts in harsh
conditions. In some PCB designs without coating, an induced low leakage may prevent the
LSE to start-up, regardless of the 32.768 KHz crystal used. This phenomenon is amplified in
humid environments that create frost on the OSC32_IN/OSC32_OUT tracks. This unwanted
behavior may happen only at the first back-up domain power-on of the device.

Workaround

It is recommended to mount an additional parallel feedback resistor (from 16 MΩ to 22 MΩ)
on board to help the oscillation start-up in all cases (see Figure 1). For more details on
compatible crystals and hardware techniques on PCB, refer to AN2867 application note.

Figure 1. LSE start-up using an additional resistor

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

16/41 DocID14574 Rev 13

2.8 Alternate function

In some specific cases, some potential weakness may exist between alternate functions
mapped onto the same pin.

2.8.1 USART1_RTS and CAN_TX

Conditions

• USART1 is clocked

• CAN is not clocked

• I/O port pin PA12 is configured as an alternate function output.

Description

Even if CAN_TX is not used, this signal is set by default to 1 if I/O port pin PA12 is
configured as an alternate function output.

In this case USART1_RTS cannot be used.

Workaround

When USART1_RTS is used, the CAN must be remapped to either another IO configuration
when the CAN is used, or to the unused configuration (CAN_REMAP[1:0] set to “01”) when
the CAN is not used.

2.8.2 SPI1 in slave mode and USART2 in synchronous mode

Conditions

• SPI1 and USART2 are clocked

• I/O port pin PA4 is configured as an alternate function output.

Description

USART2 cannot be used in synchronous mode (USART2_CK signal), if SPI1 is used in
slave mode.

Workaround

None.

2.8.3 SPI1 in master mode and USART2 in synchronous mode

Conditions

• SPI1 and USART2 are clocked

• I/O port pin PA4 is configured as an alternate function output.

Description

USART2 cannot be used in synchronous mode (USART2_CK signal) if SPI1 is used in
master mode and SP1_NSS is configured in software mode. In this case USART2_CK is
not output on the pin.

DocID14574 Rev 13 17/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

Workaround

In order to output USART2_CK, the SSOE bit in the SPI1_CR2 register must be set to
configure the pin in output mode.

2.8.4 SPI2 in slave mode and USART3 in synchronous mode

Conditions

• SPI2 and USART3 are clocked

• I/O port pin PB12 is configured as an alternate function output.

Description

USART3 cannot be used in synchronous mode (USART3_CK signal) if SPI2 is used in
slave mode.

Workaround

None.

2.8.5 SPI2 in master mode and USART3 in synchronous mode

Conditions

• SPI2 and USART3 are clocked

• I/O port pin PB12 is configured as an alternate function output.

Description

USART3 cannot be used in synchronous mode (USART3_CK signal) if SPI2 is used in
master mode and SP2_NSS is configured in software mode. In this case USART3_CK is
not output on the pin.

Workaround

In order to output USART3_CK, the SSOE bit in the SPI2_CR2 register must be set to
configure the pin in output mode,

2.8.6 I2C2 with SPI2 and USART3

Conditions

• I2C2 and SPI2 are clocked together or I2C2 and USART3 are clocked together

• I/O port pin PB12 is configured as an alternate function output

Description

• Conflict between the I2C2 SMBA signal (even if this function is not used) and
SPI2_NSS in output mode.

• Conflict between the I2C2 SMBA signal (even if this function is not used) and
USART3_CK.

• In these cases the I/O port pin PB12 is set to 1 by default if the I/O alternate function
output is selected and I2C2 is clocked.

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

18/41 DocID14574 Rev 13

Workaround

I2C2 SMBA can be used as an output if SPI2 is configured in master mode with NSS in
software mode.
I2C2 SMBA can be used in input mode if SPI2 is configured in master or slave mode with
NSS managed by software.
SPI2 cannot be used in any other configuration when I2C2 is being used.

USART3 must not be used in synchronous mode when I2C2 is being used.

2.8.7 I2C1 with SPI1 remapped and used in master mode

Conditions

• I2C1 and SPI1 are clocked.

• SPI1 is remapped.

• I/O port pin PB5 is configured as an alternate function output.

Description

Conflict between the SPI1 MOSI signal and the I2C1 SMBA signal (even if SMBA is not
used).

Workaround

Do not use SPI1 remapped in master mode and I2C1 together.

When using SPI1 remapped, the I2C1 clock must be disabled.

2.8.8 I2C1 and TIM3_CH2 remapped

Conditions

• I2C1 and TIM3 are clocked.

• I/O port pin PB5 is configured as an alternate function output.

Description

Conflict between the TIM3_CH2 signal and the I2C1 SMBA signal, (even if SMBA is not
used).

In these cases the I/O port pin PB5 is set to 1 by default if the I/O alternate function output is
selected and I2C1 is clocked. TIM3_CH2 cannot be used in output mode.

Workaround

To avoid this conflict, TIM3_CH2 can only be used in input mode.

2.8.9 USARTx_TX pin usage

Description

In USART receive-mode-only communication (TE = 0 in the USARTx_CR1 register), even
when the USARTx_TX pin is not being used, the corresponding I/O port pin cannot be used
to output another alternate function (in this mode the USARTx_TX output is set to 1 and
thus no other alternate function output can be used).

DocID14574 Rev 13 19/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

This limitation applies to all USARTx_TX pins that share another alternate function output.

Workaround

Do not use the corresponding I/O port of the USARTx_TX pin in alternate function output
mode. Only the input mode can be used (TE bit in the USARTx_CR1 has to be cleared).

2.9 PVD and USB wakeup events

Description

PVD and USB Wakeup, which are internally linked to EXTI line16 and EXTI line18,
respectively, cannot be used as event sources for the Cortex-M3 core. As a consequence,
these signals cannot be used to exit the Sleep or the Stop mode (exit WFE).

Workaround

Use interrupt sources and the WFI instruction if the application must be woken up from the
Sleep or the Stop mode by PVD or USB Wakeup.

2.10 Compatibility issue with latest compiler releases

Description

Compilers with improved optimizations for the STM32F10xxx have been recently released
on the market. Revisions Z and B of the medium-density STM32F10xxx devices
(STM32F10xx8/B) do not support some of the sequences associated with the high-level
optimizations done in these compilers. Revision Y and 1 are not affected by this limitation.

Workaround

This behavior is fully deterministic, and should be detected during firmware development or
the validation phase. Consequently, systems already developed, validated and delivered to
the field with previous silicon revisions are not affected.

For code update of revision Z and B devices already in the field, do not use these new
compilers. To date, compilers known to generate these sequences are:

• IAR EWARM rev 5.20 and later

• GNU rev 4.2.3 and later

For new developments associated with these compilers, revision Y or 1 of the
STM32F10xx8/B must be used.

2.11 Boundary scan TAP: wrong pattern sent out after the
“capture IR” state

Description

After the “capture IR” state of the boundary scan TAP, the two least significant bits in the
instruction register should be loaded with “01” for them to be shifted out whenever a next
instruction is shifted in.

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

20/41 DocID14574 Rev 13

However, the boundary scan TAP shifts out the latest value loaded into the instruction
register, which could be “00”, “01”, “10” or “11”.

Workaround

The data shifted out, after the capture IR state, in the boundary scan flow should therefore
be ignored and the software should check not only the two least significant bits (XXX01) but
all register bits (XXXXX).

2.12 Flash memory BSY bit delay versus STRT bit setting

Description

When the STRT bit in the Flash memory control register is set (to launch an erase
operation), the BSY bit in the Flash memory status register goes high one cycle later.

Therefore, if the FLASH_SR register is read immediately after the FLASH_CR register is
written (STRT bit set), the BSY bit is read as 0.

Workaround

Read the BSY bit at least one cycle after setting the STRT bit.

DocID14574 Rev 13 21/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

2.13 I2C peripheral

2.13.1 Some software events must be managed before the current byte is
being transferred

Description

When the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3 events are not managed before

the current byte is being transferred, problems may be encountered such as receiving an
extra byte, reading the same data twice or missing data.

Workarounds

When it is not possible to manage the EV7, EV7_1, EV6_1, EV6_3, EV2, EV8, and EV3
events before the current byte transfer and before the acknowledge pulse when changing
the ACK control bit, it is recommended to:

• Workaround 1

Use the I2C with DMA in general, except when the Master is receiving a single byte.

• Workaround 2

Use I2C interrupts and boost their priorities to the highest one in the application to
make them uninterruptible

• Workaround 3 (only for EV6_1 and EV6_3 events used in method 2)

EV6_1 event (used in master receiver 2 bytes):

Stretch SCL line between ADDR bit is cleared and ACK is cleared:

a) ADDR=1

b) Configure SCL I/O as GPIO open-drain output low

c) Clear ADDR by reading SR1 register followed by reading SR3

d) Program ACK=0

e) Configure SCL I/O as Alternate Function open drain

EV6_3 event (used in master receiver 1 byte):

Stretch SCL line between ADDR bit is cleared and STOP bit programming:

a) ADDR=1

b) Program ACK=0

c) Configure SCL I/O as GPIO open-drain output low

d) Clear ADDR by reading SR1 register followed by reading SR3

e) Program STOP=1

f) Configure SCL I/O as Alternate Function open drain

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

22/41 DocID14574 Rev 13

2.13.2 Wrong data read into data register

In Master Receiver mode, when closing the communication using method 2, the content of
the last read data can be corrupted. The following two sequences are concerned by the
limitation:

• Sequence 1: Transfer sequence for master receiver when N = 2:

a) BTF = 1(Data N-1 in DR and Data N in shift register)

b) Program STOP = 1,

c) Read DR twice (Read Data N-1 and Data N) just after programming the STOP.

• Sequence 2: Transfer sequence for master receiver when N > 2:

a) BTF = 1 (Data N-2 in DR and Data N-1 in shift register)

b) Program ACK = 0,

c) Read DataN-2 in DR.

d) Program STOP = 1,

e) Read DataN-1.

If the user software is not able to read the data N-1 before the STOP condition is generated
on the bus, the content of the shift register (data N) will be corrupted (data N is shifted 1-bit
to the left).

Workarounds

• Workaround 1

Stretch the SCL line by configuring SCL I/O as a general purpose I/O, open-drain
output low level, before the SET STOP in sequence 1 and before the READ Data N-2
in séquence 2. Then configure back the SCL I/O as alternate function open-drain after
the READ Data N-1. The sequences become:

Sequence 1:

a) BTF = 1(Data N-1 in DR and Data N in shift register)

b) Configure SCL I/O as GPIO open-drain output low

c) Program STOP = 1

d) Read Data N-1

e) Configure SCL I/O as Alternate Function open drain

f) Read Data N

DocID14574 Rev 13 23/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

Sequence 2:

a) BTF = 1 (Data N-2 in DR and Data N-1 in shift register)

b) Program ACK = 0

c) Configure SCL I/O as GPIO open-drain output low

d) Read Data N-2 in DR.

e) Program STOP = 1,

f) Read Data N-1.

g) Configure SCL I/O as Alternate Function open drain

• Workaround 2

Mask all active interrupts between the SET STOP and the READ data N-1 for
sequence 1; and between the READ data N-2, the SET STOP and the READ data N-1
for Sequence 2.

• Workaround 3

Manage I2C RxNE events with DMA or interrupts with the highest priority level, so that
the condition BTF = 1 never occurs.

2.13.3 SMBus standard not fully supported

Description

The I2C peripheral is not fully compliant with the SMBus v2.0 standard since It does not
support the capability to NACK an invalid byte/command.

Workarounds

A higher-level mechanism should be used to verify that a write operation is being performed
correctly at the target device, such as:

1. Using the SMBAL pin if supported by the host

2. the alert response address (ARA) protocol

3. the Host notify protocol

2.13.4 Wrong behavior of I2C peripheral in master mode after a misplaced
Stop

Description

If a misplaced Stop is generated on the bus, the peripheral cannot enter master mode
properly:

• If a void message is received (START condition immediately followed by a STOP): the
BERR (bus error) flag is not set, and the I2C peripheral is not able to send a start
condition on the bus after the write to the START bit in the I2C_CR2 register.

• In the other cases of a misplaced STOP, the BERR flag is set. If the START bit is
already set in I2C_CR2, the START condition is not correctly generated on the bus and
can create bus errors.

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

24/41 DocID14574 Rev 13

Workaround

In the I²C standard, it is allowed to send a Stop only at the end of the full byte (8 bits +
acknowledge), so this scenario is not allowed. Other derived protocols like CBUS allow it,
but they are not supported by the I²C peripheral.

In case of a noisy environment in which unwanted bus errors can occur, it is recommended
to implement a timeout to ensure that after the START control bit is set, the SB (start bit) flag
is set. In case the timeout has elapsed, the peripheral must be reset by setting the SWRST
bit in the I2C_CR2 control register. It should also be reset in the same way if a BERR is
detected while the START bit is set in I2C_CR2.

2.13.5 Mismatch on the “Setup time for a repeated Start condition” timing
parameter

Description

In case of a repeated Start, the “Setup time for a repeated Start condition” (named Tsu;sta in
the I²C specification) can be slightly violated when the I²C operates in Master Standard
mode at a frequency between 88 kHz and 100 kHz.

The issue can occur only in the following configuration:

• in Master mode

• in Standard mode at a frequency between 88 kHz and 100 kHz (no issue in Fast-mode)

• SCL rise time:

– If the slave does not stretch the clock and the SCL rise time is more than 300 ns (if
the SCL rise time is less than 300 ns the issue cannot occur)

– If the slave stretches the clock

The setup time can be violated independently of the APB peripheral frequency.

Workaround

Reduce the frequency down to 88 kHz or use the I²C Fast-mode if supported by the slave.

2.13.6 Data valid time (tVD;DAT) violated without the OVR flag being set

Description

The data valid time (tVD;DAT, tVD;ACK) described by the I²C standard can be violated (as
well as the maximum data hold time of the current data (tHD;DAT)) under the conditions
described below. Moreover, if the data register is written too late and close to the SCL rising
edge, an error can be generated on the bus (SDA toggles while SCL is high). These
violations cannot be detected because the OVR flag is not set (no transmit buffer underrun
is detected).

This issue can occur only under the following conditions:

• In Slave transmit mode

• With clock stretching disabled (NOSTRETCH=1)

• If the software is late in writing the DR data register, but not late enough to set the OVR
flag (the data register is written before the SCL rising edge).

DocID14574 Rev 13 25/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

Workaround

If the master device allows it, use the clock stretching mechanism by programming the bit
NOSTRETCH=0 in the I2C_CR1 register.

If the master device does not allow it, ensure that the software writes to the data register fast
enough after TXE or ADDR events. For instance, use an interrupt on the TXE or ADDR flag
and boost its priority to the higher level, or use DMA. Use this "NOSTRETCH" mode with a
slow I2C bus speed.

Note: The first data byte to transmit must be written in the data register after the ADDR flag is
cleared, and before the next SCL rising edge, so that the time window for writing the first
data byte in the data register is less than tLOW.

If this is not possible, a workaround can be used:

Clear the ADDR flag

Wait for the OVR flag to be set

Clear OVR and write the first data byte.

Then the time window for writing the next data byte will be the time to transfer one byte. In
this case, the master must discard the first received data byte.

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

26/41 DocID14574 Rev 13

2.13.7 I2C analog filter may provide wrong value, locking BUSY flag and
preventing master mode entry

Description

The I2C analog filters embedded in the I2C I/Os may be tied to low level, whereas SCL and
SDA lines are kept at high level. This can occur after an MCU power-on reset, or during
ESD stress. Consequently, the I2C BUSY flag is set, and the I2C cannot enter master mode
(START condition cannot be sent). The I2C BUSY flag cannot be cleared by the SWRST
control bit, nor by a peripheral or a system reset. BUSY bit is cleared under reset, but it is
set high again as soon as the reset is released, because the analog filter output is still at low
level. This issue occurs randomly.

Note: Under the same conditions, the I2C analog filters may also provide a high level, whereas
SCL and SDA lines are kept to low level. This should not create issues as the filters output
will be correct after next SCL and SDA transition.

Workaround

The SCL and SDA analog filter output is updated after a transition occurs on the SCL and
SDA line respectively. The SCL and SDA transition can be forced by software configuring
the I2C I/Os in output mode. Then, once the analog filters are unlocked and output the SCL
and SDA lines level, the BUSY flag can be reset with a software reset, and the I2C can enter
master mode. Therefore, the following sequence must be applied:

1. Disable the I2C peripheral by clearing the PE bit in I2Cx_CR1 register.

2. Configure the SCL and SDA I/Os as General Purpose Output Open-Drain, High level
(Write 1 to GPIOx_ODR).

3. Check SCL and SDA High level in GPIOx_IDR.

4. Configure the SDA I/O as General Purpose Output Open-Drain, Low level (Write 0 to
GPIOx_ODR).

5. Check SDA Low level in GPIOx_IDR.

6. Configure the SCL I/O as General Purpose Output Open-Drain, Low level (Write 0 to
GPIOx_ODR).

7. Check SCL Low level in GPIOx_IDR.

8. Configure the SCL I/O as General Purpose Output Open-Drain, High level (Write 1 to
GPIOx_ODR).

9. Check SCL High level in GPIOx_IDR.

10. Configure the SDA I/O as General Purpose Output Open-Drain , High level (Write 1 to
GPIOx_ODR).

11. Check SDA High level in GPIOx_IDR.

12. Configure the SCL and SDA I/Os as Alternate function Open-Drain.

13. Set SWRST bit in I2Cx_CR1 register.

14. Clear SWRST bit in I2Cx_CR1 register.

15. Enable the I2C peripheral by setting the PE bit in I2Cx_CR1 register.

DocID14574 Rev 13 27/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

2.14 SPI peripheral

2.14.1 CRC still sensitive to communication clock when SPI is in slave mode
even with NSS high

Description

When the SPI is configured in slave mode with the CRC feature enabled, the CRC is
calculated even if the NSS pin deselects the SPI (high level applied on the NSS pin).

Workaround

The CRC has to be cleared on both Master and Slave sides between the slave deselection
(high level on NSS) and the slave selection (low level on NSS), in order to resynchronize the
Master and Slave for their respective CRC calculation.

To procedure to clear the CRC is the following:

1. disable the SPI (SPE = 0)

2. clear the CRCEN bit

3. set the CRCEN bit

4. enable the SPI (SPE = 1)

2.14.2 SPI CRC may be corrupted when a peripheral connected to the same
DMA channel of the SPI is under DMA transaction close to the end of
transfer or end of transfer -1

Description

In the following conditions, the CRC may be frozen before the CRCNEXT bit is written,
resulting in a CRC error:

• SPI is slave or master.

• Full duplex or simplex mode is used.

• CRC feature is enabled.

• SPI is configured to manage data transfers by software (interrupt or polling).

• A peripheral, mapped on the same DMA channel as the SPI, is executing DMA
transfers.

Workaround

If the application allows it, you can use the DMA for SPI transfers.

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

28/41 DocID14574 Rev 13

2.15 USART peripheral

2.15.1 Parity Error flag (PE) is set again after having been cleared
by software

Description

The parity error flag (PE) is set at the end of the last data bit. It should be cleared by
software by making a read access to the status register followed by reading the data in the
data register.

Once the PE flag is set by hardware, if it is cleared by software before the middle of the stop
bit, it will be set again. Consequently, the software may jump several times to the same
interrupt routine for the same parity error.

Workaround

Before clearing the Parity Error flag, the software must wait for the RXNE flag to be set.

2.15.2 Idle frame is not detected if receiver clock speed is deviated

Description

If the USART receives an idle frame followed by a character, and the clock of the transmitter
device is faster than the USART receiver clock, the USART receive signal falls too early
when receiving the character start bit, with the result that the idle frame is not detected
(IDLE flag is not set).

Workaround

None.

2.15.3 In full duplex mode, the Parity Error (PE) flag can be cleared by writing
the data register

Description

In full duplex mode, when the Parity Error flag is set by the receiver at the end of a
reception, it may be cleared while transmitting by reading the USART_SR register to check
the TXE or TC flags and writing data in the data register.

Consequently, the software receiver can read the PE flag as '0' even if a parity error
occurred.

Workaround

The Parity Error flag should be checked after the end of reception and before transmission.

DocID14574 Rev 13 29/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

2.15.4 Parity Error (PE) flag is not set when receiving in Mute mode using
address mark detection

Description

The USART receiver is in Mute mode and is configured to exit the Mute mode using the
address mark detection. When the USART receiver recognizes a valid address with a parity
error, it exits the Mute mode without setting the Parity Error flag.

Workaround

None.

2.15.5 Break frame is transmitted regardless of nCTS input line status

Description

When CTS hardware flow control is enabled (CTSE = 1) and the Send Break bit (SBK) is
set, the transmitter sends a break frame at the end of current transmission regardless of
nCTS input line status.

Consequently, if an external receiver device is not ready to accept a frame, the transmitted
break frame is lost.

Workaround

None.

2.15.6 nRTS signal abnormally driven low after a protocol violation

Description

When RTS hardware flow control is enabled, the nRTS signal goes high when a data is
received. If this data was not read and a new data is sent to the USART (protocol violation),
the nRTS signal goes back to low level at the end of this new data.

Consequently, the sender gets the wrong information that the USART is ready to receive
further data.

On USART side, an overrun is detected which indicates that some data has been lost.

Workarounds

Note: These workarounds are needed only if the other UART device has violated the protocol. In
most systems (no limitation on the other device), the USART works fine and no workaround
is needed.

Workaround 1: After data reception and before reading the data in the data register, the
software takes control of the nRTS pin using the GPIO registers and keeps it high as long as
needed. If the application knows the USART is not ready and that further data received
reception from the other device may be discarded, it keeps the nRTS pin at high level. It
then releases the nRTS pin when the USART is ready to continue reception.

Workaround 2: Ensure that the received data is always read in a time window less than the
duration of the 2nd data reception. One solution would be to handle all data reception by
DMA.

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

30/41 DocID14574 Rev 13

2.16 Timers

These limitations apply only to TIM1, TIM2, TIM3, TIM4 and TIM5.

2.16.1 Missing capture flag

Description

In capture mode, when a capture occurs while the CCRx register is being read, the capture
flag (CCxIF) may be cleared without the overcapture flag (CCxOF) being set. The new data
are actually captured in the capture register.

Workaround

An external interrupt can be enabled on the capture I/O just before reading the capture
register (in the capture interrupt), and disabled just after reading the captured data. Possibly,
a missed capture will be detected by the EXTI peripheral.

2.16.2 Overcapture detected too early

Description

In capture mode, the overcapture flag (CCxOF) can be set even though no data have been
lost.

Conditions

If a capture occurs while the capture register is being read, an overcapture is detected even
though the previously captured data are correctly read and the new data are correctly stored
into the capture register.

The system is at the limit of an overcapture but no data are lost.

Workaround

None.

2.16.3 General-purpose timer: regulation for 100% PWM

Description

When the OCREF_CLR functionality is activated, the OCxREF signal becomes de-asserted
(and consequently OCx is deasserted / OCxN is asserted) when a high level is applied on
the OCREF_CLR signal. The PWM then restarts (output re-enabled) at the next counter
overflow.

But if the PWM is configured at 100% (CCxR > ARR), then it does not restart and OCxREF
remains de-asserted.

Workaround

None.

DocID14574 Rev 13 31/41

STM32F10xx8 STM32F10xxB STM32F10xx8 and STM32F10xxB silicon limitations

2.17 IWDG peripheral

2.17.1 RVU and PVU flags are not cleared in Stop mode

Description

The RVU and PVU flags in the IWDG_SR register are set by hardware after a write access
to the IWDG_RLR or the IWDG_PR registers, respectively. If MCU enters Stop mode
immediately after the write access, the RVU and PVU flags are not cleared by hardware.
Consequently the next time the application attempts to write to the IWDG_RLR or the
IWDG_PR registers, it waits in an infinite loop for the RVU and PVU flags to be cleared and
the IWDG generates a reset after the programmed time-out period.

Workaround

The application has to wait until the RVU and PVU flags in the IWDG_SR register are
cleared before entering Stop mode.

2.18 LSI clock stabilization time

Description

When the LSIRDY flag is set, the clock may still be out of the specified frequency range (fLSI
parameter, see LSI oscillator characteristics in the product datasheet).

Workaround

To have a fully stabilized clock in the specified range, a software temporization of 100 µs
should be added.

2.19 USB packet buffer memory: over/underrun or
COUNTn_RX[9:0] field reporting incorrect number if APB1
frequency is below 13 MHz

Description

The USB peripheral’s packet buffer memory is expected to operate at a minimum APB1
frequency of 8 MHz.

It may however happen that, when OUT transactions are sent by the Host with a data
payload size exactly equal to the maximum packet size already programmed in the
COUNTn_RX packet buffer memory (via the BLSIZE and NUM_BLOCK[4:0] fields), the
packet and all bytes from the Host are correctly received and stored into the packet buffer
memory, but, the COUNTn_RX[9:0] field indicates an incorrect number (one byte less).

Workaround

This limitation concerns applications that check the exact number of bytes received in the
packet buffer memory. In order to avoid that these applications interpret a Host error and so,
stall the OUT endpoint even if no data reception error actually occurred, it is recommended
to:

STM32F10xx8 and STM32F10xxB silicon limitations STM32F10xx8 STM32F10xxB

32/41 DocID14574 Rev 13

1. increase the APB1 frequency to a minimum of 13 MHz, or

2. increase the APB1 frequency to a minimum of 10 MHz. Then program
USB_COUNTn_RX (via the BLSIZE and NUM_BLOCK[4:0] fields) to have more than
the number of bytes in the maximum packet size allocated for reception in the packet
buffer memory

DocID14574 Rev 13 33/41

STM32F10xx8 STM32F10xxB Revision code on device marking

Appendix A Revision code on device marking

Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6 show the marking compositions for the
LFBGA100, LQFP100, LQFP64, LQFP48, VFQFPN36 and VFQFPN48 packages,
respectively. Only the Additional field containing the Revision code is shown.

Figure 2. LFBGA100 top package view

Revision code on device marking STM32F10xx8 STM32F10xxB

34/41 DocID14574 Rev 13

Figure 3. LQFP100 top package view

Additional information field
including Revision code

ai14998b

WeekYear

Date code = Year+Week

DocID14574 Rev 13 35/41

STM32F10xx8 STM32F10xxB Revision code on device marking

Figure 4. LQFP64 top package view

a

ai14996c

Additional information field
including Revision code

ARM logo

ST logo

WeekYear

Date code = Year+Week

Revision code on device marking STM32F10xx8 STM32F10xxB

36/41 DocID14574 Rev 13

Figure 5. LQFP48 top package view

DocID14574 Rev 13 37/41

STM32F10xx8 STM32F10xxB Revision code on device marking

Figure 6. VFQFPN36 and VFQFPN48 top package view

Revision history STM32F10xx8 STM32F10xxB

38/41 DocID14574 Rev 13

Revision history

Table 5. Document revision history

Date Revision Changes

28-Mar-2008 1 Initial release.

07-Apr-2008 2
Section 2.2: Flash memory read after WFI/WFE instruction on
page 13 added.

Workaround specified in Section 2.8.1: USART1_RTS and CAN_TX.

23-May-2008 3

The errata sheet also applies to Revision Y devices.

Section 2.1: PD0 and PD1 use in output mode, Section 2.2: ADC
auto-injection channel and Section 2.3: ADC combined injected
simultaneous+interleaved removed from errata sheet.

Section 2.3: Debug registers cannot be read by user software on
page 13 added. Small text changes.

18-Jul-2008 4 Section 2.9: PVD and USB wakeup events added.

01-Oct-2008 5

This errata sheet also applies to STM32F102xx medium-density
devices. Though medium-density devices with 32 Kbyte of Flash
were removed, the errata sheet still applies to devices whose
commercial code does not contain an “A”.

Section 2.10: Compatibility issue with latest compiler releases
added.

Figure 2: LFBGA100 top package view added. Figure 4: LQFP64 top
package view and Figure 5: LQFP48 top package view corrected.

11-Feb-2009 6

Section 1: ARM® 32-bit Cortex®-M3 limitations specified (Table 3:
Cortex-M3 core limitations and impact on microcontroller behavior
added limitations described).

Added limitations:

– Boundary scan TAP: wrong pattern sent out after the “capture IR”
state

– Flash memory BSY bit delay versus STRT bit setting

– I2C peripheral

– Timers

– LSI clock stabilization time

Table 4: Summary of silicon limitations on page 11 added.

DocID14574 Rev 13 39/41

STM32F10xx8 STM32F10xxB Revision history

11-Jan-2010 7

Added limitations:

– Section 2.8.9: USARTx_TX pin usage

– Section 2.13.4: Wrong behavior of I2C peripheral in master mode
after a misplaced Stop

– Section 2.13.5: Mismatch on the “Setup time for a repeated Start
condition” timing parameter

– Section 2.13.6: Data valid time (tVD;DAT) violated without the OVR
flag being set

– Section 2.14.1: CRC still sensitive to communication clock when
SPI is in slave mode even with NSS high

– Section 2.19: USB packet buffer memory: over/underrun or
COUNTn_RX[9:0] field reporting incorrect number if APB1
frequency is below 13 MHz

Date code added to Figure 2 to Figure 6.

21-Jun-2010 8

Added Section 2.4: Debugging Stop mode and system tick timer

Added Section 2.5: Debugging Stop mode with WFE entry

Added Section 2.13.2: Wrong data read into data register

Updated Section 2.13.4: Wrong behavior of I2C peripheral in master
mode after a misplaced Stop

Added Section 2.15: USART peripheral

Updated Section 2.13.6: Data valid time (tVD;DAT) violated without
the OVR flag being set

22-Feb-2011 9

Updated workarounds in Section 2.13.1: Some software events must
be managed before the current byte is being transferred and
Section 2.13.2: Wrong data read into data register

Added section Section 2.15.6: nRTS signal abnormally driven low
after a protocol violation

17-Jun-2011 10

Added reference to revision code 1 in Table 1

Added Section 1.1.5: Interrupted loads to SP can cause erroneous
behavior

Section 1.1.6: SVC and BusFault/MemManage may occur out of
order

Added VFQFPN48 package to Figure 6

15-Nov-2011 11

Added reference to revision code 1 in Section 2.10: Compatibility
issue with latest compiler releases

Added Section 2.17: IWDG peripheral

Updated Section 2.15.6: nRTS signal abnormally driven low after a
protocol violation

Table 5. Document revision history (continued)

Date Revision Changes

Revision history STM32F10xx8 STM32F10xxB

40/41 DocID14574 Rev 13

07-Oct-2013 12

Added:

– Section 2.6: Wakeup sequence from Standby mode when using
more than one wakeup source

– Section 2.7: LSE start-up in harsh environments

– Section 2.13.7: I2C analog filter may provide wrong value, locking
BUSY flag and preventing master mode entry

– Section 2.14.2: SPI CRC may be corrupted when a peripheral
connected to the same DMA channel of the SPI is under DMA
transaction close to the end of transfer or end of transfer -1

Updated:

– Section : Silicon identification

– Table 1: Device identification: “Revision code marked on device”
column.

– Table 4: Summary of silicon limitations.

26-Nov-2015 13

Updated:

– Silicon identification

– Table 1: Device identification

Table 5. Document revision history (continued)

Date Revision Changes

DocID14574 Rev 13 41/41

STM32F10xx8 STM32F10xxB

41

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	Table 1. Device identification
	Table 2. Device summary
	1 ARM® 32-bit Cortex®-M3 limitations
	Table 3. Cortex-M3 core limitations and impact on microcontroller behavior
	1.1 Cortex-M3 limitations description for STM32F10xxx medium- density devices
	1.1.1 Cortex-M3 LDRD with base in list may result in incorrect base register when interrupted or faulted
	1.1.2 Cortex-M3 event register is not set by interrupts and debug
	1.1.3 Cortex-M3 BKPT in debug monitor mode can cause DFSR mismatch
	1.1.4 Cortex-M3 may freeze for SLEEPONEXIT single instruction ISR
	1.1.5 Interrupted loads to SP can cause erroneous behavior
	1.1.6 SVC and BusFault/MemManage may occur out of order

	2 STM32F10xx8 and STM32F10xxB silicon limitations
	Table 4. Summary of silicon limitations
	2.1 Voltage glitch on ADC input 0
	2.2 Flash memory read after WFI/WFE instruction
	2.3 Debug registers cannot be read by user software
	2.4 Debugging Stop mode and system tick timer
	2.5 Debugging Stop mode with WFE entry
	2.6 Wakeup sequence from Standby mode when using more than one wakeup source
	2.7 LSE start-up in harsh environments
	Figure 1. LSE start-up using an additional resistor

	2.8 Alternate function
	2.8.1 USART1_RTS and CAN_TX
	2.8.2 SPI1 in slave mode and USART2 in synchronous mode
	2.8.3 SPI1 in master mode and USART2 in synchronous mode
	2.8.4 SPI2 in slave mode and USART3 in synchronous mode
	2.8.5 SPI2 in master mode and USART3 in synchronous mode
	2.8.6 I2C2 with SPI2 and USART3
	2.8.7 I2C1 with SPI1 remapped and used in master mode
	2.8.8 I2C1 and TIM3_CH2 remapped
	2.8.9 USARTx_TX pin usage

	2.9 PVD and USB wakeup events
	2.10 Compatibility issue with latest compiler releases
	2.11 Boundary scan TAP: wrong pattern sent out after the “capture IR” state
	2.12 Flash memory BSY bit delay versus STRT bit setting
	2.13 I2C peripheral
	2.13.1 Some software events must be managed before the current byte is being transferred
	2.13.2 Wrong data read into data register
	2.13.3 SMBus standard not fully supported
	2.13.4 Wrong behavior of I2C peripheral in master mode after a misplaced Stop
	2.13.5 Mismatch on the “Setup time for a repeated Start condition” timing parameter
	2.13.6 Data valid time (tVD;DAT) violated without the OVR flag being set
	2.13.7 I2C analog filter may provide wrong value, locking BUSY flag and preventing master mode entry

	2.14 SPI peripheral
	2.14.1 CRC still sensitive to communication clock when SPI is in slave mode even with NSS high
	2.14.2 SPI CRC may be corrupted when a peripheral connected to the same DMA channel of the SPI is under DMA transaction close to the end of transfer or end of transfer -1

	2.15 USART peripheral
	2.15.1 Parity Error flag (PE) is set again after having been cleared by software
	2.15.2 Idle frame is not detected if receiver clock speed is deviated
	2.15.3 In full duplex mode, the Parity Error (PE) flag can be cleared by writing the data register
	2.15.4 Parity Error (PE) flag is not set when receiving in Mute mode using address mark detection
	2.15.5 Break frame is transmitted regardless of nCTS input line status
	2.15.6 nRTS signal abnormally driven low after a protocol violation

	2.16 Timers
	2.16.1 Missing capture flag
	2.16.2 Overcapture detected too early
	2.16.3 General-purpose timer: regulation for 100% PWM

	2.17 IWDG peripheral
	2.17.1 RVU and PVU flags are not cleared in Stop mode

	2.18 LSI clock stabilization time
	2.19 USB packet buffer memory: over/underrun or COUNTn_RX[9:0] field reporting incorrect number if APB1 frequency is below 13 MHz

	Appendix A Revision code on device marking
	Figure 2. LFBGA100 top package view
	Figure 3. LQFP100 top package view
	Figure 4. LQFP64 top package view
	Figure 5. LQFP48 top package view
	Figure 6. VFQFPN36 and VFQFPN48 top package view

	Revision history
	Table 5. Document revision history

