MNDSPEED

M02049-15

3.3/5V Limiting Amplifier for Applications to 6.144 Gbps

The M02049-15 is an integrated high-gain limiting amplifier. Featuring CML outputs, the M02049-15 is usable in applications to 6.144 Gbps. Full output swing is achieved even at minimum input sensitivity. The M02049-15 can operate with a 3.3V or 5V supply.

Rate select is supported for SFP applications and/or to achieve optimum sensitivity at data rates \leq 1.25 Gbps. When rate select is high, optimum sensitivity is achieved at 2.5 Gbps and operation up to 6.144 Gbps is possible with reduced sensitivity.

The M02049-15 also includes two analog RSSI outputs proportional to either the average or peak to peak input signal and a programmable signal-level detector allowing the user to set thresholds at which the logic outputs are enabled. The M02043-15 is pin compatible with the M02049-15 and offers the same performance but does not include the rate select function.

Other available solutions: M02050-15 3.3/5V Limiting Amplifier for Applications to 2.5 Gbps (PECL outputs) M02040-15 3.3/5V Limiting Amplifier for Applications to 2.125 Gbps (PECL outputs) M02043-15 3.3/5V Limiting Amplifier for Applications to 6.144 Gbps (CML outputs)

1.25 Gbps and 4.25 Gbps SFP reference designs available on Mindspeed.com

Applications

- 2.5 Gbps STM-16/0C-48 SDH/SONET
- 1.06, 2.12 and 4.24 Gbps Fibre Channel
- 1.25 Gbps Ethernet
- 1.25 Gbps SDH/SONET
- 2.67 Gbps SDH/SONET with FEC
- Supports all CPRI data rates: 614.4, 1228.8, 2457.6, 3072.0, 4915.2
 and 6144.0 Mbit/s
- Features
- Operates with a 3.3V or 5V supply
- 2.6 mV typical input sensitivity at 2.5 Gbps
- CML outputs
- Rate Selection for \leq 1.25 Gbps operation
- Average Receive power monitor output (RSSI_{AVG})
 - Peak-to-peak Receive power monitor output (RSSI_{PP})
 - On-chip DC offset cancellation circuit
 - Low power (< 90 mW)
 - Programmable CML Output Amplitude Level
 - Output Jam Function
 - 16 pin 3x3 QFN package

Ordering Information

Part Number	Package	Operating Temperature			
M02049-15	16 pin, 3mm x 3mm QFN	–40 °C to 85 °C			
M02049G-15*	16 pin, 3mm x 3mm QFN, RoHS compliant	–40 °C to 85 °C			
M02049-15EVM	Evaluation board with M02049-15 device	–40 °C to 85 °C			
* The letter "G" designator after the part number indicates that the device is RoHS-compliant. Refer to www.mindspeed.com for additional information.					

Revision History

Revision	Level	Date	ASIC Revision	Description
J	Release	March 2010	-15	Added CPRI data rates to front page, specifications and typical eye diagrams.
Н	Release	October 2006	-15	Added M02049G-15 part number in ordering information. Modified Input AC coupling capacitor information in section 4.1.3.
G	Release	July 2006	-15	Corrected an error in the DC specifications. Minimum CML High swing Output Amplitude now correctly reads 300 mV.
F	Release	August 2005	-15	Correct Jam connection in block diagram and typical applications figures. Correct I _{REF} figure (reference current generation).

M02049-15 Typical Eye Diagram

M02049-15 Pin Configuration

1.1 Absolute Maximum Ratings

These are the absolute maximum ratings at or beyond which the IC can be expected to fail or be damaged. Reliable operation at these extremes for any length of time is not implied.

NOTE: The package bottom should be adequately grounded to ensure correct thermal performance, and it is recommended that vias are inserted through to a lower ground plane.

Symbol	Parameter	Rating	Units
V _{CC}	Power supply voltage (V _{CC} -GND)	-0.5 to +5.75	V
T _{STG}	Storage temperature	-65 to +150	0°
CMLP, CMLN	CML Output pins voltage	V _{CC} - 0.4 to V _{CC} + 0.4	V
DINP - DINN	Data input pins differential voltage	0.80	V
DINP, DINN	Data input pins voltage meeting DINP - DINN requirement	GND to V _{CC3} + 0.4	V
I(AMP _{SET})	Current into AMP _{SET} output	+0 to -160	μA
ST _{SET}	Signal detect threshold setting pin voltage	GND to V _{CC3} + 0.4	V
JAM	Output enable pin voltage	GND to V _{CC} + 0.4	V
LOS	Status Output pins voltage	GND to V _{CC} + 0.4	V
Rate_Sel	Rate Select input pin voltage	GND to V _{CC} + 0.4	V
I _{REF}	Current into Reference input	+0 to -120	μΑ
I(RSSI _{AVG})	Current into RSSIavg input	+0 to -3	mA
RSSI _{PP}	RSSI _{PP} pin voltage	GND to V _{CC3} + 0.4	V
I(LOS)	Current into Loss of Signal pin	+3000 to -100	μA

Table 1-1. Absolute Maximum Ratings

1.2 Recommended Operating Conditions

Table 1-2. Recommended Operating Conditions

Parameter	Rating	Units
Power supply: (V_{CC} -GND) (apply no potential to V_{CC3}) or (V_{CC3} -GND) (connect V_{CC} to same potential as V_{CC3})	+5V ± 7.5% or +3.3V ± 7.5%	V
Junction temperature	-40 to +110	°C
Operating ambient	-40 to +85	°C

1.3 DC Characteristics

 V_{CC} = +3.3V ± 7.5% or +5V ± 7.5%, T_A = -40°C to +85°C, unless otherwise noted. Typical specifications are for V_{CC} = 3.3V, T_A = 25°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{CC}	Supply Current	Outputs terminated into 50 Ω to V _{CC}				
		400 mV _{PP} differential	-	26.5 ⁽¹⁾	35	mA
		800 mV _{PP} differential	-	29.5 ⁽¹⁾	42	
V _{OUTL_0}	CML Output Low Voltage	Single ended, 50 Ω load to $V_{CC;}$	V _{CC} -0.26	V _{CC} -0.2	V _{CC} -0.18	V
		$R_{AMPSET} = 0 \Omega$; 10 mV _{PP} input				
V _{OUTH_0}	CML Output High Voltage	Single ended, 50 Ω load to $V_{CC;}$	V _{CC} -0.02	V _{CC} -0.01	V _{CC}	V
		$R_{AMPSET} = 0 \Omega$; 10 mV _{PP} input				
V _{AMP_0}	CML Low swing Output	Single ended, 50 Ω load to $V_{CC;}$	175	210	-	mV _{PP}
	Amplitude	$R_{AMPSET} = 0 \Omega$; 10 mV _{PP} input				
V _{OUTL_620}	CML Output Low Voltage	Single ended, 50 Ω load to $V_{CC;}$	V _{CC} -0.53	V _{CC} -0.41	V _{CC} -0.33	V
		R_{AMPSET} = 620 Ω ; 10 mV _{PP} input				
V _{OUTH_620}	CML Output High Voltage	Single ended, 50 Ω load to $V_{CC;}$	V _{CC} -0.08	V _{CC} -0.01	V _{CC}	V
		R_{AMPSET} = 620 Ω ; 10 mV _{PP} input				
V _{AMP_620}	CML High swing Output	Single ended, 50 Ω load to $V_{CC;}$	300	400	-	mV _{PP}
	Amplitude	R_{AMPSET} = 620 Ω ; 10 mV _{PP} input				
R _{IN} DIFF	Differential Input Resistance	Measured between DINP and DINN	90	110	130	Ω
R _{OUT} DIFF	Differential Output Resistance	Measured between CMLP and CMLN	175	210	245	Ω
V _{OH}	LOS Output High Voltage	External 4.7-10 k Ω pull up to V $_{\rm CC}$	2.75	V _{CC}	-	V
V _{OL}	LOS Output Low Voltage	External 4.7-10 k Ω pull up to V $_{\rm CC}$	0	-	0.4	V
V _{IH}	Logic Input High Voltage		2.7	-	V _{CC}	V
	JAM, RATE _{SEL}					

 Table 1-3.
 DC Characteristics (1 of 2)

Table 1-3.DC Characteristics (2 of 2)

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
V _{IL}	Logic Input Low Voltage JAM, RATE _{SEL}		-	-	0.8	V
RSSIavg	Average received signal strength indicator range	± 15% accuracy	5	-	2000	μA
NOTES:		•				

1. RATE_{SEL} high (high bandwidth operation). Typical supply currents decrease by 1.5 mA in low rate mode.

1.4 AC Characteristics

 V_{CC} = +3.3V ± 7.5% or +5V ± 7.5%, T_A = -40°C to +85°C, input bit rate = 2.5 Gbps 2²³-1 PRBS, high rate mode (RATE_{SEL} = High) unless otherwise noted.

Typical specifications are for $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		1.25 Gbps, BER < 10 ⁻¹² , low rate mode (RATE _{SEL} = low)	-	1.9	2.5	mV
V _{IN(MIN)}	Differential Input Sensitivity	2.5 Gbps, BER < 10 ⁻¹²	-	2.6	3.5	mV
		3.3 Gbps, BER < 10 ⁻¹²	-	3.1	4.5	mV
		4.3 Gbps, BER < 10 ⁻¹²	-	4.1	5.8	mV
		6.144 Gbps, BER < 10 ⁻¹²	-	8.5	-	mV
V _{I(MAX)}	Input Overload	BER < 10 ⁻¹² , differential input 2.5 Gbps	1200	-	-	mV
		BER < 10 ⁻¹² , single-ended input, 2.5 Gbps	600	-	-	mV
v _n	RMS Input Referred Noise	RATE _{SEL} = high	_	185	-	μV_{RMS}
RSSIpp	Peak-to-peak received signal strength indicator range	Differential input signal range	4	-	100	mV
BW_{LF}	Small-Signal –3dB Low Frequency Cutoff	Excluding AC coupling capacitors	_	25	-	kHz
DJ	Deterministic Jitter (includes DCD)	K28.5 pattern at 4.3 Gbps, 10 mV _{PP} input	-	7	25	ps
RJ	Random Jitter	10 mV _{PP} input	-	3.7	-	ps _{RMS}
		20% to 80%; outputs terminated into 50 $\Omega;$ 10 mV_PP input				ps
t _r / t _f	Data Output Rise and Fall Times	RATE _{SEL} = High, Low Swing	-	60	-	
		RATE _{SEL} = High, High Swing	-	80	100	
		RATE _{SEL} = Low, 1.25 Gbps input, High Swing	-	130	180	
T _{RATESEL}	Rate select assert / deassert time	Rate select assert / deassert time Time from when rate select is asserted high or low until amplifier is performing at selected bandwidth		-	10	μS
V _{LOS}	LOS Programmable Range	Differential inputs	5	-	55	mV
HYS	Signal Detect Hysteresis	electrical; across LOS programmable range	2	3.5	5.5	dB
ASSERT _{LOW}	Low Input LOS Assert threshold	$R_{ST} = 7.50 \text{ k}\Omega$, differential input	3.5	4.9	-	mV _{PP}
	4		L	L	ļ	l

Table 1-4.AC Characteristics (1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DEASSERT _{LOW}	Low Input LOS De-Assert threshold	R_{ST} = 7.50 kΩ, differential input	-	7.8	11.3	mV _{PP}
ASSERT _{MED}	Medium Input LOS Assert threshold	$R_{ST} = 6.81 \text{ k}\Omega$, differential input	8.4	11.7	-	mV _{PP}
DEASSERT _{MED}	Medium Input LOS De-Assert threshold	R_{ST} = 6.81 kΩ, differential input	_	17.0	24.6	mV _{PP}
ASSERT _{HI}	High Input LOS Assert threshold	$R_{ST} = 6.19 \text{ k}\Omega$, differential input	16.6	23.2	-	mV _{PP}
DEASSERT _{HI}	High Input LOS De-Assert threshold	$R_{ST} = 6.19 \text{ k}\Omega$, differential input	-	33.4	48.4	mV _{PP}
T _{LOS_ON}	Time from LOS state until LOS output is asserted ⁽¹⁾	LOS assert time after 1 V_{PP} input signal is turned off; signal detect level set to 10 mV	2.3	-	80	μS
T _{LOS_OFF} Time from non-LOS state until LOS LOS deassert time after input crosses signal detect level; signal detect set to 10 mV with applied input signal of 20 mV _{PP}			2.3	-	80	μS
NOTES:				1	1	
	$F_{\rm F}$ = 1 V _{PP} , typical times decrease as V					
2. With $V_{IN_DIFF} = 20 \text{ mVpp}$, typical times decrease as V_{IN_DIFF} increases.						

Table 1-4.AC Characteristics (2 of 2)

Figure 1-1. Data Input Requirements

NOTE: For single-ended input connections.

When connecting to the used input with AC-coupling, the unused input should be AC-coupled through 50Ω to the supply voltage of the TIA;

When connecting to the used input with DC-coupling, the unused input should be DC-coupled through 50Ω to a voltage equal to the common mode level of the used input.

MNDSPEED[®]

1.5 Typical Eye Diagrams

Figure 1-2. M02049 1.25 Gbps Low Swing in Low Rate Mode

Figure 1-3. M02049 2.5 Gbps Low Swing in High Rate Mode

Figure 1-4. M02049 1.25 Gbps High Swing in Low Rate Mode

Figure 1-5. M02049 2.5 Gbps High Swing in High Rate Mode

MNDSPEED

Figure 1-6. M02049 3.3 Gbps Low Swing in High Rate Mode

Figure 1-7. M02049 4.3 Gbps Low Swing in High Rate Mode

Figure 1-9. M02049 4.3 Gbps High Swing in High Rate Mode

MNDSPEED

Figure 1-10. M02049 6.144 Gbps Low Swing in High Rate Mode

Figure 1-11. M02049 6.144 Gbps High Swing in High Rate Mode

2.0 Pin Definitions

Pin Descriptions Table 2-1.

QFN Pin#	Name	Function	
1	AMP _{SET}	CML Output amplitude adjustment. Enables setting output swing of CML outputs from 400 mV _{PP} to 820 mV _{PP} differential with an external resistor to ground. When grounded, output swing is at the minimum level (400 mV _{PP} differential).	
2	V _{CC}	Power supply. Connect to either +5V or +3.3V.	
3	CMLN	Inverting data output.	
4	CMLP	Non-inverting data output.	
5	I _{REF}	Internal LOS reference current. Must be connected to ground through a 12.1 k Ω 1% resistor.	
6	ST _{SET}	Loss of signal threshold setting input. Connect a 1% resistor between this pin and V _{CC3} to set loss of signal threshold.	
7	V _{CC3}	Power supply input for 3.3V applications or the output of the internally regulated 3.3V voltage when V_{CC} = 5V. Connect directly to supply for 3.3V applications (internal regulator not in use). Do not connect to power supply if V_{CC} = 5V.	
8	RATE _{SEL}	Rate select. When low or floating, the device is in low-rate mode (data rates ≤ 1.25 Gbps) and has reduced bandwidth. When high, the device is in full-rate mode with full bandwidth. Internal 80 k Ω resistor to ground. Drive with a current limited source as described in Section 4.1.4.	
9	DINP	Non-inverting data input. Internally terminated with 50 Ω to V _{TT} (see Figure 3-2).	
10	DINN	Inverting data input. Internally terminated with 50 Ω to V _{TT} (see Figure 3-2).	
11	GND	Ground.	
12	RxAVG _{IN}	Average power monitor input. Connect to monitor output of TIAs that produce a current (sink) mirror replica of the photodiode current. Leave floating if not used.	
13	JAM	Output disable. When high, data outputs are disabled (with non-inverting output held high and inverting output held low). Connect to LOS output to disable outputs with loss of signal. Outputs are enabled when JAM is low or floating. Internal 150 k Ω resistor to ground.	
14	LOS	Loss of signal output. Goes high when input signal falls below threshold set by ST_{SET} . Open collector TTL with internal 80 k Ω pull-up resistor to V_{CC} .	
15	RSSI _{AVG}	Receiver average input power monitor. Provides a current source mirror of the current at RxAVG _{IN} . Connect resistor to ground to set the full scale voltage to the desired level at maximum average input power.	
16	RSSI _{PP}	Receiver peak-to-peak input voltage monitor. Provides a DC voltage (ground referenced) proportional to the peak-to-peak input voltage swing.	
17	Center Pad	Ground to PCB for thermal dissipation.	

MNDSPEED

Figure 2-1. M02049-15 Pinout - 16 Pin (3 x 3 mm) QFN Top View

3.1 Overview

The M02049-15 is an integrated high-gain limiting amplifier. Featuring CML outputs, the M02049-15 is usable in applications to 6.144 Gbps. Full output swing is achieved even at minimum input sensitivity. The M02049-15 can operate with a 3.3V or 5V supply.

Rate select is supported for SFP applications and/or to achieve optimum sensitivity at data rates \leq 1.25 Gbps. When rate select is high, optimum sensitivity is achieved at 2.5 Gbps and operation up to 6.144 Gbps is possible with reduced sensitivity.

The M02049-15 also includes two analog RSSI outputs proportional to either the average or peak to peak input signal and a programmable signal-level detector allowing the user to set thresholds at which the logic outputs are enabled.

Figure 3-1. Block Diagram Example

3.2 General Description

The M02049-15 is a high-gain limiting amplifier for applications up to 6.144 Gbps, and incorporates a limiting amplifier, an input signal level detection circuit and also a fully integrated DC-offset cancellation loop that does not require any external components. The M02049-15 features a CML output buffer and the user is provided with the flexibility to set the CML output amplitude levels.

The M02049-15 provides the user with the flexibility to set the signal detect threshold. Optional output buffer disable (squelch/jam) can be implemented using the JAM input.

3.2.1 Inputs

The data inputs are internally connected to V_{TT} via 50 Ω resistors, and generally need to be AC coupled. Referring to Figure 3-2, the nominal V_{TT} voltage is 2.85V because of the internal resistor divider to V_{CC3} , which means this is the DC potential on the data inputs. See the applications information section for further details on choosing the AC-coupling capacitor.

Figure 3-2. CML Data Inputs

3.2.2 DC Offset Compensation

The M02049-15 contains an internal DC autozero circuit that can remove the effect of DC offsets without using external components. This circuit is configured such that the feedback is effective only at frequencies well below the lowest frequency of interest. The low frequency cut off is typically 25 kHz.

3.2.3 CML Outputs

The basic CML output configuration is shown in Figure 3-3. The external resistor R_{AMPSET} controls the value of I_{TAIL} . The output swing is linearly proportional to the value of R_{AMPSET} . It is possible to set the output voltage swing linearly between 400 mVpp differential and 820 mVpp differential, when the outputs are properly terminated. See the applications information section for further details on setting the output swing amplitude.

3.2.4 Loss of Signal (LOS)

The M02049-15 features input signal level detection over an extended range. Using an external resistor, R_{ST} , between pin ST_{SET} and V_{CC3} (Figure 3-5) the user can program the input signal threshold. The signal detect status is indicated on the LOS output pin shown in Figure 3-4. The LOS signal is active when the signal is below the threshold value. The signal detection circuitry has the equivalent of 3.5 dB (typical) electrical hysteresis.

 R_{ST} establishes a threshold voltage at the ST_{SET} pin as shown in Figure 3-5. Internally, the input signal level is monitored by the Level Detector (which also outputs the $RSSI_{PP}$ voltage). As described in the $RSSI_{PP}$ section, this

voltage is proportional to the input signal peak to peak value. The voltage at ST_{SET} is internally compared to the signal level from the Level Detector. When the Level Detect voltage is less than $V_{(STSET)}$, LOS is asserted and will stay asserted until the input signal level increases by a predefined amount of hysteresis. When the input level increases by more than this hysteresis above $V_{(STSET)}$, LOS is deasserted. See the applications information section for the selection of R_{ST} .

Note that ST_{SET} can be left open if the loss of signal detector function is not required. In this case LOS would be low.

3.2.5 Peak to Peak Received Signal Strength Indicator (RSSI_{PP})

The RSSI_{PP} output voltage is logarithmically proportional to the peak to peak level of the input signal. It is not necessary to connect an external capacitor to this output. Internally, the RSSI voltage is compared with a user selectable reference to determine loss of signal as described in the previous section.

MNDSPEED[®]_____

Figure 3-7. Typical RSSI_{PP} Transfer Function

MNDSPEED

Figure 3-8. Typical RSSI_{PP} Transfer Function (Low Input Level Range)

Figure 3-9. Typical RSSI_{PP} Transfer Function (Log Scale)

3.2.6 JAM Function

When asserted, the active high power down (JAM) pin forces the outputs to a logic "one" state. This ensures that no data is propagated through the system. The loss of signal detection circuit can be used to automatically force the data outputs to a high state when the input signal falls below the threshold. The function is normally used to allow data to propagate only when the signal is above the user's bit-error-rate requirement. It therefore inhibits the data outputs toggling due to noise when there is no signal present ("squelch").

In order to implement this function, LOS should be connected to the JAM pin shown in Figure 3-10, thus forcing the data outputs to a logic "one" state when the signal falls below the threshold.

3.2.7 Rate Select Function

When the RATE_{SEL} pin (shown in Figure 3-10) is driven high, the M02049-15 bandwidth is set to its maximum which allows the M02049-15 to operate at data rates up to 6.144 Gbps. When operating at data rates \leq 1.25 Gbps, then RATE_{SEL} should be left floating (do not tie low). This enables low-rate mode which reduces the bandwidth (and thus the noise level) of the part.

3.2.8 Average Received Signal Strength Indicator (RSSI_{AVG})

The RSSI_{AVG} output current is a mirrored version of the RxAVG_{IN} current from compatible TIAs. It sources rather than sinks the current making it compatible with DDMI type interfaces.

Figure 3-11. RSSI_{AVG} Output

3.2.9 Voltage Regulation

The M02049-15 contains an on-chip voltage regulator to allow both 5V and 3.3V operation. When used at 5V, the on-chip regulator is enabled and the digital inputs and outputs are compatible with TTL 5V logic levels.

4.1 Applications

- 2.5 Gbps STM-16/OC-48 SDH/SONET
- 1.06, 2.12 and 4.24 Gbps Fibre Channel
- 1.25 Gbps Ethernet
- 1.25 Gbps SDH/SONET
- 2.67 Gbps SDH/SONET with FEC

4.1.1 Reference Current Generation

The M02049-15 contains an accurate on-chip bias circuit that requires an external 12.1 k Ω 1% resistor, R_{REF} from pin I_{REF} to ground to set the LOS threshold voltage at ST_{SET} precisely.

MNDSPEED[®]

4.1.2 Connecting V_{CC} and V_{CC3}

For 5V operation, the V_{CC} pin is connected to an appropriate 5V \pm 7.5% supply. No potential should be applied to the V_{CC3} pin. The only connection to V_{CC3} should be R_{ST} as shown in Figure 3-5.

When $V_{CC} = 5V$ all logic outputs and the data outputs are 5V compatible while the CML data inputs are still referenced to 3.3V from the internal regulator (see Figure 3-2). For low power operation, V_{CC} and V_{CC3} should be connected to an appropriate 3.3V ± 7.5% supply. In this case all I/Os are 3.3V compatible.

4.1.3 Choosing an Input AC-Coupling Capacitor

When AC-coupling the input, the coupling capacitor should be of sufficient value to pass the lowest frequencies of interest, bearing in mind the number of consecutive identical bits and the input resistance of the part. For SONET data, a good rule of thumb is to chose a coupling capacitor that has a cut-off frequency less than 1/(10,000) of the input data rate. For example, for 2.5 Gbps data, the coupling capacitor should be chosen as:

 $f_{CUTOFF} \le (2.5 x 10^9 / 10 x 10^3) = 250 x 10^3$

The -3 dB cutoff frequency of the low pass filter at the input (TIA output R + LIA input R) is found as:

 $f_{3dB} = 1/(2 * \pi * (50\Omega + 50\Omega)* C_{AC})$

so solving for C where $f_{3dB} = f_{CUTOFF}$

 $C_{AC} = 1/(2 * \pi * 100\Omega * f_{CUTOFF}) EQ.1$

and in this case the minimum capacitor is 6 nF.

For Ethernet or Fibre Channel, there are less consecutive bits in the data, and the recommended cut-off frequency is 1/(1,000) of the input data rate. This results in a minimum capacitor of less than 1 nF for 2.125 Gbps Fibre Channel.

Multirate applications down to 155 Mbps

In this case, the input coupling capacitor needs to be large enough to pass $15 \text{ kHz} (155 \times 10^6/10,000)$ which results in a capacitor value of 0.1 μ F. However, because this low pass frequency is close to the 25 kHz low pass frequency of the internal DC servo loop, it is preferable to use a larger input coupling capacitor such as 1 μ F which provides an input cutoff frequency of 3.1 kHz. This separates the two poles sufficiently to allow them to be considered independent. This capacitor should also have a 10 nF capacitor in parallel to pass the higher frequency data (in the multirate application) without distortion.

In all cases, a high quality coupling capacitor should be used as to pass the high frequency content of the input data stream.

4.1.4 Using Rate Selection

When the RATE_{SEL} pin (shown in Figure 3-10) is driven high, the M02049-15 bandwidth is set to its maximum which allows the M02049-15 to operate at data rates up to 6.144 Gbps.

Because of the nature of the ESD structure on this pin, if it is driven by a device with I_{OL} or $I_{OH} > 2$ mA then a 1 k Ω to 10 k Ω resistor should be used in series with the RATE_{SEL} pin. If rate selection is not used and the part is configured for high bandwidth only, the RATE_{SEL} pin should be connected to V_{CC} using a 1 k Ω to 10 k Ω resistor. When operating at data rates \leq 1.25 Gbps, then RATE_{SEL} should be left floating (do not tie low). This enables low-rate mode which reduces the bandwidth (and thus the noise level) of the part.

4.1.5 Using RSSI_{AVG}

As shown in the typical applications circuit (Figure 4-1), when interfacing to a TIA that features a "MON" output such as the M02016 or M02013, the M02049-15 can reference the current sunk into the TIA "MON" output and produce a proportional current at the M02049-15 RSSI_{AVG} output. The current is sourced into resistor R_{EXT} to ground creating a voltage suitable for DDMI applications. R_{EXT} should be chosen as:

R_{EXT} = 1/(maximum current into RSSI_{AVG})EQ.2

This keeps the voltage at RSSI_{AVG} between 0 and 1V.

4.1.6 Setting the CML Output Swing Level

The CML output circuit is shown in Figure 3-3. It is basically a differential pair with a tail current of I_{TAIL} . The load of the differential pair is formed by the parallel combination of R_{OUT} and R_{LOAD} for high frequencies where the output AC-coupling capacitor can be considered as a short circuit (100 II 50 = 33.3 Ω). The single-ended output voltage swing is given by EQ.3:

V_{PP-SE} = I_{TAIL} x (R_{OUT} || R_{LOAD})EQ.3

The required minimum voltage swing sets I_{TAIL} and I_{TAIL} determines the output power consumption. The minimum voltage swing depends on the application. Therefore, M02049-15 provides the user the flexibility to optimize the

voltage swing and the output power consumption for the application by setting I_{TAIL} using an external resistor (R_{AMPSET}) shown in Figure 4-3. To select the required swing, use the following equation (EQ.4):

 $I_{TAIL}(mA) = 150 \ \mu A \ x \ ((650\Omega + R_{AMPSET})/16\Omega) \ EQ.4$

The minimum I_{TAIL} is 6mA and occurs when the AMPSET pin is directly connected to ground. The resulting voltage swing is approximately 200 mVpp, single-ended (= 6 mA x 33 Ω). This is sufficient for most applications. If it is necessary, the voltage swing can be increased at the expense of the power consumption by connecting an external resistor R_{AMPSET} between the AMP_{SET} pin and ground. The value of R_{AMPSET} can be calculated from EQ.4. A resistor of 620 Ω results in 12 mA tail current which delivers an approximate voltage swing of ~400 mVpp, single-ended (12 mA x 33 Ω).

4.1.7 Setting the Signal Detect Level

Using Figure 4-4, the value for R_{ST} is chosen to set the LOS threshold at the desired value. The resulting hysteresis is also shown in Figure 4-4.

From Figure 4-4, it is apparent that small variations in R_{ST} cause significant variation in the LOS threshold level, particularly for low input signal levels. This is because of the logarithmic relationship between the RSSI voltage and the input signal level. It is recommended that a 1% resistor be used for R_{ST} and that allowance is provided for LOS variation, particularly when the LOS threshold is near the sensitivity limit of the M02049-15.

Example R_{ST} resistor values are given in Table 4-1.

MNDSPEED[®]

<i>,</i> ,		51	
R _{ST} (kΩ)	VIN (mV pp) differential		
ICST (K22)	LOS Assert	LOS De-Assert	
7.50	4.9	7.8	
6.81	11.7	17.0	
6.19	23.2	33.4	
5.49	55.0	77.3	

 Table 4-1.
 Typical LOS Assert and De-assert Levels for Various 1% R_{ST} Resistor Values

Figure 4-4. Typical Loss of Signal Characteristic (Full Input Signal Range)

MNDSPEED[®]

Figure 4-5. Typical Loss of Signal Characteristic (Low Input Signal Range)

Figure 4-6. Typical Loss of Signal Characteristic (High Input Signal Range)

Applications Information

MNDSPEED[®]

Figure 4-7. Typical Loss of Signal Hysteresis Characteristic (Full Input Signal Range)

4.1.8 Using JAM

As shown in the typical applications circuit (Figure 4-1), the LOS output pin can optionally be connected to the Jam input pin. When LOS asserts the Jam function sets the data outputs to a fixed "one" state (CMLP is held high and CMLN is held low). This is normally used to allow data to propagate only when the signal is above the users' bit error rate (BER) requirement. It prevents the outputs from toggling due to noise when no signal is present.

From the LOS assert and deassert figures above (Figure 4-4 - Figure 4-6), when an input signal is below the LOS assert threshold, LOS asserts (LOS high) causing Jam to assert. When Jam asserts, the data outputs and the internal servo loop of the M02049-15 are disabled. If the input signal reaches or exceeds the LOS deassert threshold, LOS deasserts (LOS low) causing Jam to deassert, and hence enables the data outputs and the internal servo loop. If, however, the input signal is slowly increasing to a level that does not exceed the LOS deassert threshold (operating in the hysteresis region), the internal servo loop may not be fully established and this may cause partial enabling of the data outputs. To avoid this the input signal needs to fully reach or exceed the LOS deassert level to fully enable the data outputs.

5.0 Package Specification

Figure 5-1. Package Information

MNDSPEED°

www.mindspeed.com

General Information: Telephone: (949) 579-3000 Headquarters - Newport Beach 4000 MacArthur Blvd., East Tower Newport Beach, CA 92660

© 2010 Mindspeed Technologies[®], Inc. All rights reserved.

Information in this document is provided in connection with Mindspeed Technologies[®] ("Mindspeed[®]") products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Except as provided in Mindspeed's Terms and Conditions of Sale for such products or in any separate agreement related to this document, Mindspeed assumes no liability whatsoever. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale.