
CorePCIF v4.0

Handbook

Microsemi Corporation, Mountain View, CA 94043
© 2014 Microsemi Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200087-7

Release: February 2014

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Microsemi.

Microsemi makes no warranties with respect to this documentation and disclaims any implied warranties
of merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Microsemi assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Microsemi Corporation.

Trademarks
Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Core Versions . 6

CorePCIF Device Requirements . 6

Performance Statistics . 9

1 Functional Block Descriptions . 15
Functional Description . 15

CorePCIF Master Function . 18

CardBus Support . 20

CompactPCI Hot-Swap Support . 20

CorePCIF Backend Dataflow . 20

FIFO Recovery Logic . 21

2 Core Structure . 25

3 Tool Flows . 29
SmartDesign . 29

Synthesis in Libero IDE . 29

4 CorePCIF Parameters . 35
General Configuration Parameters . 35

PCI Configuration Space Parameters . 37

Master/DMA Parameters . 39

5 Core Interfaces . 43
PCI Bus Signals . 43

Backend System-Level Signals . 44

Backend Target and Master Dataflow Signals . 45

6 Timing Diagrams . 51
Burst Transfer at Maximum Transfer Rate . 55

Burst Transfer with a Slow PCI Master . 57

Burst Transfer with a Slow Backend . 59

Backend-Terminated (BUSY) Cycle at Transfer Start (Target) 73

Backend-Terminated (ERROR) Cycle at Transfer Start (Target) 75

PCI Interrupt Generation . 81

Direct DMA Transfers . 101

Hot-Swap Sequence . 103

7 PCI Configuration Space . 105
Target Configuration Space . 105
v4.0 3

Table of Contents CorePCIF v4.0
8 Testbench Operation . 117
Verification Testbench . 117

User Testbench . 121

9 Implementation Hints . 127
Clocking . 127

Clocking in SmartFusion2 . 127

Clock and Reset Networks . 129

Assigning Pin Layout Constraints . 129

Pin Assignments . 129

A PCI Pinout . 135

B Synthesis Timing Constraints . 137

C Place-and-Route Timing Constraints . 139

D Verification Testbench Tests . 141

E VHDL User Testbench Procedures . 143

F Verilog User Testbench Procedures . 145

G Ordering Information . 147
Ordering Codes . 147

H List of Document Changes . 149

I Product Support . 151
Customer Service . 151

Actel Customer Technical Support Center . 151

Actel Technical Support . 151

Website . 151

Contacting the Customer Technical Support Center . 151

Index . 153
4 v4.0

Introduction

CorePCIF connects memory, FIFO, and processor subsystem resources to the main system via the PCI bus. CorePCIF
is intended for use with a wide variety of peripherals where high-performance data transactions are required. Figure 1
depicts typical system applications using the core. Though CorePCIF can handle any transfer rate, most applications
will operate with zero wait states. When required, wait states can be inserted automatically by a slower peripheral.

CorePCIF can implement Target and/or Master functions. The Target function allows the PCI bus to access memory
devices attached to the CorePCIF backend. The Master function allows CorePCIF to move data between the backend
or internal registers and the PCI bus using the internal DMA engine. The DMA engine can be programmed either from
the PCI bus or directly from the backend.

CorePCIF can be customized. A variety of parameters are provided to easily change features such as memory and I/O
sizes along with the PCI vendor and device IDs. A single top-level core has parameters that enable and disable
functions, allowing a minimal-size core to be implemented for the required functionality. The core consists of four basic
units: the Target controller, the Master controller, the DMA controller, and the backend controller. The backend
controller provides the necessary control for the I/O or memory subsystem, allowing external (to the core) memory and
FIFOs to be directly connected to the core.

Figure 1 · CorePCIF System Block Diagram

MEM_ADDRESS BUS

MEM_DATA BUS

CorePCIF
Target+Master

Controller

Memory
Subsystem

Memory Control Signals

Master Bridge Target

FRAMEN

IRDYN

STOPN

DEVSELN

TRDYN

SERRN

IDSEL

AD

PAR

CBE

PERRN

INTAN

CLK

RSTN

PCI Bus

B
ac

ke
n

d
C

o
n

tr
o

lle
r

REQN

GNTN

REQ64N

ACK64N

PAR64

System CPU
Master Control Signals
v4.0 5

Introduction CorePCIF v4.0
Core Versions
This handbook applies to CorePCIF v3.6. The release notes provided with the core list known discrepancies between
this handbook and the core release associated with the release notes.

CorePCIF Device Requirements
CorePCIF includes Target and/or Master functions. The core also has an option for a built-in DMA controller.

There are eight implementations available for the core. The SMALL32 implementation is the smallest Target core
possible but does not support zero-wait-state transfers; TARG32 does support zero-wait-state transfers. MAST32 is the
smallest Master-only core possible. TARGDMA32 implements a typical Target and Master function. TARGMAST32
implements a fully configured core. The remaining four implementations are 64-bit versions of the 32-bit
implementations. Table 1 describes example implementations.

Table 1 · Example Implementations

Implementation Description

SMALL32
32-bit Target-only core with a single base address register (BAR). The slow read function is enabled. Interrupts,
BAR overflow, and hot-swap features are disabled.

TARG32
32-bit Target-only core with a single 64 kB BAR. The FIFO recovery logic is not implemented. BAR overflow
logic and hot-swap features are disabled.

MAST32
32-bit Master-only core with a single 64 kB BAR. The FIFO recovery logic is not implemented. Direct DMA is
enabled.

TARGDMA32

32-bit Target and Master function with a single 64 kB BAR. DMA registers are accessible from the PCI side and
are memory-mapped in the second BAR. The FIFO recovery logic is not implemented. BAR overflow logic and
hot-swap features are disabled. Backend access to the DMA registers is not implemented. Direct DMA is
disabled.

TARGMAST32

32-bit Target and Master function with five memory BARs that have variable sizes from 64 kB to 1 GB. The
DMA registers are memory-mapped to the sixth BAR. All of the memory BARs include the FIFO recovery
logic. The Expansion ROM address registers are also implemented. BAR overflow logic and hot-swap features
are enabled. Backend access to the DMA registers is also implemented. Direct DMA is enabled.

TARG64
64-bit Target-only core with a single 64 kB BAR. The FIFO recovery logic is not implemented. BAR overflow
logic and hot-swap features are disabled. Direct DMA is disabled.

MAST64
64-bit Master-only core with a single 64 kB BAR. The FIFO recovery logic is not implemented. Direct DMA is
disabled.

TARGDMA64

64-bit Target and Master function with a single 64 kB memory. DMA registers are accessible from the PCI side
and are memory-mapped in the second BAR. The FIFO recovery logic is not implemented. BAR overflow logic
and hot-swap features are disabled. Backend access to the DMA registers is not implemented. Direct DMA is
disabled.

TARGMAST64

64-bit Target and Master function with five memory BARs that have variable sizes from 64 kB to 1 GB. The
DMA registers are memory-mapped to the sixth BAR. All of the memory BARs include the FIFO recovery
logic. The Expansion ROM address registers are also implemented. BAR overflow logic and hot-swap features
are enabled. Backend access to the DMA registers is also implemented. Direct DMA is enabled.
6 v4.0

CorePCIF v4.0 Utilization Statistics
Utilization Statistics
Table 2 and Table 3 on page 8 give the CorePCIF device utilization for both 32-bit and 64-bit implementations. The
numbers in these tables are typical and will vary based on the actual core configuration and the synthesis tools used.

CorePCIF device utilization and performance varies, depending on which features are implemented. The core has
approximately 50 configuration parameters. Table 2 (32-bit) and Table 3 on page 8 (64-bit) give example utilizations for
typical implementations. The exact parameter settings are detailed in Table 4-4 on page 39.

Table 2 · 32-Bit CorePCIF Device Utilization

Implementation Family
Cells or Tiles

Memory Blocks Device Utilization
Combinatorial Sequential Total

SMALL32

Fusion®
IGLOO®/e

ProASIC®3/E
ProASIC3L

544 177 721 0 AFS600 5%

TARG32 661 203 864 2 AGLE600 6%

MAST32 1,434 383 1,817 2 AGL600 13%

TARGDMA32 1,594 369 1,963 2 A3PE600 14%

TARGMAST32 2,698 658 3,356 2 A3P600 24%

SMALL32

SmartFusion2

405 275 680 0 M2S050T 1%

TARG32 555 359 914 1 M2S050T 2%

MAST32 975 519 1494 1 M2S050T 3%

TARGDMA32 977 523 1500 1 M2S050T 2%

TARGMAST32 1576 797 2373 1 M2S050T 4%

SMALL32

ProASICPLUS®

658 215 873 0 APA150 14%

TARG32 716 208 924 4 APA150 15%

MAST32 1,479 422 1,901 4 APA150 31%

TARGDMA32 1,644 377 2,021 4 APA300 25%

TARGMAST32 3,020 697 3,717 4 APA300 45%

SMALL32

RTAX-S

350 178 528 0 RTAX250S 12%

TARG32 465 244 709 0 RTAX250S 17%

MAST32 799 422 1,221 0 RTAX250S 29%

TARGDMA32 867 414 1,281 0 RTAX250S 30%

TARGMAST32 2,562 2,206 4,768 0 RTAX1000S 26%

SMALL32

Axcelerator®

381 180 561 0 AX500 7%

TARG32 453 210 663 1 AX500 8%

MAST32 830 393 1,223 1 AX500 15%

TARGDMA32 874 380 1,254 1 AX500 16%

TARGMAST32 1,677 653 2,330 1 AX500 29%

SMALL32

RTSX-S

387 221 608 0 RT54SX32S 21%

TARG32 491 282 773 0 RT54SX32S 27%

MAST32 1,134 507 1,641 0 RT54SX32S 57%

TARGDMA32 966 465 1,431 0 RT54SX72S 24%

TARGMAST32 1,359 834 2,193 0 RT54SX72S 36%
v4.0 7

Introduction CorePCIF v4.0
SMALL32

SX-A

385 222 607 0 A54SX32A 21%

TARG32 494 285 779 0 A54SX32A 27%

MAST32 1,111 507 1,618 0 A54SX32A 56%

TARGDMA32 959 460 1,419 0 A54SX72A 24%

TARGMAST32 1,352 834 2,186 0 A54SX72A 36%

Table 3 · 64-Bit CorePCIF Device Utilization

Implementation Family
Cells or Tiles

Memory Blocks Device Utilization
Combinatorial Sequential Total

TARG64
Fusion

IGLOO/e
ProASIC3/E
ProASIC3L

930 315 1,245 4 AFS600
AGLE600
AGL600
A3PE600
A3P600

9%

MAST64 1,686 498 2,184 4 16%

TARGDMA64 1,852 484 2,336 4 17%

TARGMAST64 2,989 772 3,761 4 27%

TARG64

SmartFusion2

643 516 1159 2 M2S050T 2%

MAST64 1167 735 1902 2 M2S050T 3%

TARGDMA64 1186 743 1929 2 M2S050T 3%

TARGMAST64 1822 1021 2843 2 M2S050T 5%

TARG64

ProASICPLUS

961 319 1,280 8 APA150 21%

MAST64 1,770 542 2,312 8 APA150 38%

TARGDMA64 1,962 500 2,462 8 APA150 40%

TARGMAST64 3,173 814 3,987 8 APA300 49%

TARG64

RTAX-S

634 387 1,021 0 RTAX250S 24%

MAST64 1,002 565 1,567 0 RTAX250S 37%

TARGDMA64 1,087 553 1,640 0 RTAX1000S 9%

TARGMAST64 3,524 3,858 7,382 0 RTAX1000S 41%

TARG64

Axcelerator

642 317 959 2 AX500 12%

MAST64 1,021 502 1,523 2 AX500 19%

TARGDMA64 1,087 493 1,580 2 AX500 20%

TARGMAST64 1,874 765 2,639 2 AX500 33%

Table 2 · 32-Bit CorePCIF Device Utilization (Continued)

Implementation Family
Cells or Tiles

Memory Blocks Device Utilization
Combinatorial Sequential Total
8 v4.0

CorePCIF v4.0 Performance Statistics
Performance Statistics
Table 4 and Table 7 on page 13 give the device speed grades required to meet either 33 MHz or 66 MHz PCI operation
for the 32-bit and 64-bit cores for the three operating environments supported by Actel. Not all families support 64-bit
or 66 MHz operation.

TARG64

SX-A

693 456 1,149 0 A54SX32A 40%

MAST64 1,095 682 1,777 0 A54SX72A 29%

TARGDMA64 1,201 645 1,846 0 A54SX72A 31%

TARGMAST64 1,711 1,200 2,911 0 A54SX72A 48%

Table 3 · 64-Bit CorePCIF Device Utilization

Implementation Family
Cells or Tiles

Memory Blocks Device Utilization
Combinatorial Sequential Total

Table 4 · Device Speed Grade Requirements

Family Commercial Industrial Military

33 MHz 32-bit

Fusion STD STD

IGLOO/e STD STD

ProASIC3/E/L STD STD

ProASICPLUS STD STD STD

RTAX-S N/A N/A STD

Axcelerator STD STD STD

RTSX-S N/A N/A –1

SX-A STD STD STD

SmartFusion2 STD STD

IGLOO2 STD STD
v4.0 9

Introduction CorePCIF v4.0
33 MHz 64-bit

Fusion STD STD

IGLOO/e STD STD

ProASIC3/E/L STD STD

ProASICPLUS STD STD STD

RTAX-S N/A N/A STD

Axcelerator STD STD STD

RTSX-S N/A N/A N/A

SX-A STD STD STD

SmartFusion2 STD STD

IGLOO2 STD STD

66 MHz 32-bit

Fusion –2 –2

IGLOO/e N/A N/A

ProASIC3/E –2 –2 N/A

ProASICPLUS N/A N/A N/A

RTAX-S (RTAX250S) N/A N/A –1

RTAX-S (RTAX1000S to RTAX4000S) N/A N/A N/A

Axcelerator (AX125 to AX500) –1 –1 –1

Axcelerator (AX1000 to AX2000) –2 –2 –2

RTSX-S N/A N/A N/A

SX-A N/A N/A N/A

SmartFusion2 –1 –1 N/A

IGLOO2 –1 –1 N/A

Table 4 · Device Speed Grade Requirements (Continued)

Family Commercial Industrial Military
10 v4.0

CorePCIF v4.0 Performance Statistics
The PCI specification timing requirements are given in Table 5.

Note: In SmartFusion2, timing closure at 66MHz is highly impacted by the other aspects of the design and resource
allocation. For highly congested designs it may not be possible in some cases to achieve a 66MHz solution. Priority
should be given to closing timing on the CorePCIF before moving onto other areas of the design.

66 MHz 64-bit

Fusion –2 –2

IGLOO/e N/A N/A

ProASIC3/E –2 –2 N/A

ProASICPLUS N/A N/A N/A

RTAX-S (RTAX250S) N/A N/A –1

RTAX-S (RTAX1000S to RTAX4000S) N/A N/A N/A

Axcelerator (AX125 to AX500) –1 –1 –1

Axcelerator (AX1000 to AX2000) –2 –2 –2

RTSX-S N/A N/A N/A

SX-A N/A N/A N/A

SmartFusion2 –1 –1 N/A

IGLOO2 –1 –1 N/A

Table 5 · PCI Bus Timing

Signals
Setup Hold Clock to Out

33 MHz 66 MHz 33 MHz 66 MHz 33 MHz 66 MHz

Bussed Signals 7 ns 3 ns 0 ns 0 ns 11 ns 6 ns

Non-Bussed Signals (e.g., GNTN) 10 ns 5 ns 0 ns 0 ns 11 ns 6 ns

Table 4 · Device Speed Grade Requirements (Continued)

Family Commercial Industrial Military
v4.0 11

Introduction CorePCIF v4.0
I/O Requirements
Table 6 gives the I/O requirements for CorePCIF. The number of device I/O pins required for the PCI interface varies,
depending on the bus width as well as whether the core supports Target and/or Master functions. The number of
backend device I/O pins that the core requires depends on the core interface. For instance, a device that implements a
PCI-to-serial communication channel may only require a single device I/O pin, whereas a PCI-to-memory interface
may require many I/O pins. Table 6 shows the maximum number of I/O pins, assuming all the core backend pins are
connected to device I/O pins.

Table 6 · CorePCIF I/O Requirements

Core

I/O Count

PCI
Backend Total

Min. Max. Min. Max.

32-bit Target 48 1 146 49 194

64-bit Target 88 1 219 89 307

32-bit Master with backend interface 49 1 162 50 211

64-bit Master with backend interface 88 1 235 89 323

32-bit Target and Master 50 1 146 51 196

64-bit Target and Master 89 1 219 90 308

32-bit Target and Master with backend interface 50 1 162 51 212

64-bit Target and Master with backend interface 89 1 235 90 324
12 v4.0

CorePCIF v4.0 Electrical Requirements
Electrical Requirements
CorePCIF supports both the 3.3 V and 5.0 V PCI specifications when operating at 33 MHz; at 66 MHz, the PCI bus
must operate at 3.3 V. The SX-A and RTSX-S families have I/O buffers that directly support 5.0 V operation. Other
families in 5.0 V PCI environments may require external voltage level translator devices, or may not be supported. See
Table 7 for details.

CorePCIF also supports CardBus functionality. Contact Actel Technical Support for advice on silicon that supports the
CardBus electrical specifications.

Table 7 · Supported Electrical Environments

Clock Speed Family
PCI Voltage with

Direct FPGA Connection
PCI Voltage with
Level Translators

33 MHz

Fusion 3.3 3.3 and 5.0

IGLOO/e 3.3 3.3 and 5.0

ProASIC3/E/L 3.3 3.3 and 5.0

ProASICPLUS 3.3 3.3 and 5.0

RTAX-S 3.3 3.3 and 5.0

Axcelerator 3.3 3.3 and 5.0

RTSX-S 3.3 and 5.0 3.3 and 5.0

SX-A 3.3 and 5.0 3.3 and 5.0

SmartFusion2 3.3 3.3 and 5.0

66 MHz

Fusion 3.3 3.3

IGLOO/e 3.3 3.3

ProASIC3/E 3.3 3.3

ProASICPLUS Not supported Not supported

RTAX-S 3.3 3.3

Axcelerator 3.3 3.3

RTSX-S Not supported Not supported

SX-A Not supported Not supported

SmartFusione 3.3 3.3 and 5.0
v4.0 13

1
Functional Block Descriptions

Functional Description
CorePCIF consists of three major functional blocks, shown in Figure 1-1. These blocks are the Target Controller,
Master Controller, and Datapath. With both a Target and Master, all three blocks are required. Otherwise, only the
Datapath and either the Target or Master function are required.

Figure 1-1 · CorePCIF Block Diagram

Target Controller
The Target controller implements the PCI Target function. It contains two sub-blocks: the PCI configuration space and
the address decoder logic. The configuration block implements a "type 0" PCI configuration space, supporting up to six
base address registers and the Expansion ROM register.

The actual registers implemented are described in Table 7-1 on page 105.

The address decoder block monitors the PCI bus for address cycles and compares the address with the base address
registers configured in the configuration space. A match signals the datapath controller to start a PCI cycle.

Master Controller
The Master controller implements the PCI Master function. It contains three sub-blocks: the DMA registers, DMA
controller, and backend access logic. The DMA register block implements the four 32-bit registers that control the
DMA controller. These registers can be programmed either from the PCI bus or from the backend.

The DMA controller implements a PCI-compliant Master function that can burst up to 232 bytes of data without
intervention. The controller will stop a DMA burst automatically if the backend runs out of data, and restart when data
is available.

Target Controller

Master Controller

Datapath

Data Handshake

Backend Control

Data

PCI Bus

Backend
and FIFO

Controller

Internal Data
Storage

128 Words

PCI
Datapath

Datapath
Controller

Address
Decoder and
Select Logic

PCI
Configuration

DMA
Registers

Backend
Access

DMA
Controller

CorePCIF
v4.0 15

The backend access block allows a processor connected to the core backend to access the DMA registers and initiate a
DMA transfer.

Datapath
The datapath block provides the data control and storage path between the backend and the PCI bus. It contains four
sub-blocks: the PCI datapath, the PCI datapath controller, the backend and FIFO controller, and the internal data
storage memory.

The PCI datapath controller is responsible for controlling the PCI control signals and coordinating the data transfers
with the backend controller for both Target and Master operations.

The PCI datapath block selects which data should be routed to the PCI bus. Data may come from the PCI
configuration block, the DMA register block, or the internal data storage. The datapath block also generates and verifies
the PCI parity signals.

The backend controller implements the FIFO control logic. This interfaces to the user’s backend logic and moves data
from the backend interface into the internal storage. It also includes logic that monitors how much data is actually
transferred on the PCI bus. The backend controller can recover data that has not actually been transferred, such as when
a Master transfer is terminated with a disconnect without data.

Internal Data Storage
CorePCIF includes a 64-word internal memory block that is used to store data being moved from the backend to the
PCI bus. Data being transferred from the PCI bus to the backend is not stored internally in the core.

This data storage performs two functions. First, it implements a four-word FIFO that decouples the PCI data transfers
from the backend data transfers, thereby increasing throughput. Second, it provides storage for the FIFO recovery logic
used to prevent data loss when the backend is connected to a standard FIFO.

Each of the seven supported BARs (six BARs and the Expansion ROM) is allocated eight words of memory. BAR 0 is
allocated locations 0–7, BAR 1 is allocated 8–15, etc. The Expansion ROM is allocated locations 48–55, and the
remaining eight locations are not used. Each word is 32 bits wide for 32-bit implementations and 64 bits wide for 64-bit
implementations.

For the Axcelerator, ProASICPLUS, ProASIC3, and ProASIC3E families, the data storage is implemented using FPGA
memory resources. For SX-A and RTSX-S families, the storage is implemented using FPGA logic resources. For the
RTAX-S family, the storage can be implemented using FPGA logic resources or memory resources. Each BAR will
require at least 256 logic modules to implement the storage. Storage is only required for the enabled BARs.

When the SLOW_READ parameter is set, the internal data storage is not implemented, eliminating the need for
FPGA memory resources. Instead, the data throughput rate is reduced to prevent data loss.
16 v4.0

CorePCIF Target Function
CorePCIF Target Function
The CorePCIF Target function acts as a slave on the PCI bus. The Target controller monitors the bus and checks for
hits to the configuration space or the address space defined in its BARs. When a hit is detected, the Target controller
notifies the backend and then acts to control the flow of data between the PCI bus and the backend.

Supported Target Commands
Table 1-1 lists the PCI commands supported in the CorePCIF Target implementation.

I/O Read (0010) and Write (0011)

The I/O Read command is used to read data mapped into I/O address space. The I/O Write command is used to write
data mapped into I/O address space. In this case, the write is qualified by the byte enables.

Memory Read (0110) and Write (0111)

The Memory Read command is used to read data in memory-mapped address space. The Memory Write command is
used to write data mapped into memory address space. In this case, the write is qualified by the byte enables.

Memory Read Multiple (1100) and Memory Read Line (1110)

The Memory Read Multiple and Memory Read Line commands are treated in the same manner as a Memory Read
command. Typically, the bus master will use these commands when data is prefetchable.

Memory Write and Invalidate (1111)

The Memory Write and Invalidate command is treated in the same manner as a Memory Write command.

Table 1-1 · Supported PCI Target Commands

CBEN[3:0] Command Type Supported

0000 Interrupt Acknowledge No

0001 Special Cycle No

0010 I/O Read Yes

0011 I/O Write Yes

0100 Reserved –

0101 Reserved –

0110 Memory Read Yes

0111 Memory Write Yes

1000 Reserved –

1001 Reserved –

1010 Configuration Read Yes

1011 Configuration Write Yes

1100 Memory Read Multiple Yes

1101 Dual Address Cycle No

1110 Memory Read Line Yes

1111 Memory Write and Invalidate Yes
v4.0 17

Configuration Read (1010) and Write (1011)

The Configuration Read command is used to read the configuration space of each device. The Configuration Write
command is used to write information into the configuration space. The device is selected if its IDSEL signal is asserted
and AD[1:0] are set to '00'. Additional address bits are defined as follows:

• AD[7:2] contain one of 64 DWORD addresses for the configuration registers.

• AD[10:8] indicate which device of a multi-function agent is addressed. The core does not support multi-function
devices, and these bits should be '000'.

• AD[31:11] are ignored.

The core supports burst configuration read and write cycles.

Disconnects and Retries
The CorePCIF Target will perform either single-DWORD or burst transactions, depending on the request from the
system Master. If the backend is unable to deliver data quickly enough, the Target will respond with either a PCI retry or
disconnect, with or without data. If the system Master requests a transfer that the backend is not able to perform, a
Target abort can be initiated by the backend.

CorePCIF Master Function
The Master function in CorePCIF is designed to do the following:

• Arbitrate for the PCI bus

• Initiate a PCI cycle

• Pass dataflow control to the Target controller

• End the transfer when the DMA count has been exhausted

• Allow the backend hardware to stop and start DMA cycles

Master transfers can be initiated directly from the backend interface, or another PCI device may program the DMA
engine to initiate a PCI transfer.

Backend Interface
Through the backend interface (BE_REQ, BE_GNT, BE_ADDRESS, etc.), an external processor can access the
DMA Master control registers and initiate a Master transfer. This interface also allows the complete PCI configuration
space to be accessed so the core can be self-configured by a backend processor. This is required when the core is used to
implement the PCI device responsible for configuring the PCI bus. A hardware lock (BE_CFGLOCK) is provided for
safety reasons to prevent the backend from changing the values in the PCI configuration space.

Supported Master Commands
The CorePCIF Master controller is capable of performing configuration, I/O, memory, and interrupt acknowledge
cycles. Data transfers can be up to 232 bytes.

The Master controller will attempt to complete the transfer using a maximum-length PCI burst unless the maximum
burst length bits are set in the control register. If the addressed Target is unable to complete the transfer and performs a
retry or disconnect, the Master control will restart the transfer and continue from the last known good transfer. If a
Target does not respond (no DEVSELn asserted) or responds with a Target abort cycle, the Master controller will abort
the current transaction and report it as an error in the control register.
18 v4.0

CorePCIF Master Function
DMA Master Registers
There are four 32-bit registers used to control the function of the CorePCIF Master. The first register is the PCI address
register. The second register is the RAM or backend address register. These two registers provide the source/destination
addressing for all data transfers. The third register contains the number of words to be transferred, and the final control
register defines the type and status of a Master transfer. These registers are cleared on reset. They are defined in detail in
Table 7-15 on page 111 through Table 7-21 on page 113.

The DMA registers can be accessed from either the PCI or the backend interface. The address locations for the DMA
registers are listed in Table 1-2. When these registers are accessible from the PCI bus, they can be memory-, I/O-, or
configuration-mapped. The DMA_REG_LOC, DMA_REG_BAR, and BACKEND parameters control access to these
registers.

The complete configuration space can be read when BAR access to these registers is enabled, but writing can be done
only to the four DMA control registers.

When the BACKEND parameter is set, the four registers and the complete PCI configuration space can be accessed via
the backend (Table 1-2).

Master Transfers
The CorePCIF Master function supports full DMA transfers to and from the backend interface and initiates direct PCI
transfers.

When normal DMA transfers are used, CorePCIF writes each data word to or fetches it from memory through its
backend interface. This allows data to be transferred directly from the PCI bus to or from backend memory blocks. In
some circumstances, this is inefficient, especially if a processor connected to the backend simply wants to carry out a
single-word PCI read or write. In this case, the processor writes the data word to a known location in its memory map.
It then programs the DMA controller to perform a single-word DMA transfer. The DMA controller accesses the
memory location to obtain the data value; this may require the processor to stop operating while the PCI core accesses
the memory to complete the PCI transfer.

When direct DMA transfers are enabled, the processor simply writes the PCI address and data into the core and starts
the transfer by writing to the control register, setting the DMA_BAR value to '111'. The core then fetches the data value
or writes it to the internal register during the PCI transfer. Access to the backend memory is not required to complete
the DMA transfer.

Direct DMA transfer supports only 32-bit transfers. When using 64-bit versions of the core, the 64-bit transfer mode
select bit in the DMA control register should not be set if Direct DMA mode is enabled.

Master Byte Commands
CorePCIF can either transfer multiple whole DWORDs (QWORDs for 64-bit transfers) or perform a single DWORD
or QWORD transfer with one or more byte enables active.

When multiple words are to be transferred—the DMA transfer length register is greater than four bytes (eight bytes for
64-bit)—the byte enable bits in the DMA control register should be programmed to all ones. All four or eight (64-bit)
bytes will be transferred in each data cycle.

Table 1-2 · DMA Register Addresses

Register Name Address

PCI address 50h

RAM address or data register 54h

DMA transfer length 58h

DMA control register 5Ch
v4.0 19

If a partial-word read or write is required, the DMA transfer length register should be programmed to four bytes (or
eight for 64-bit) and the correct bits set in the byte enable bits in the DMA control register. The DMA engine will
transfer a single word, setting the appropriate byte enable bits on both the backend and the PCI interface.

If a non-aligned DMA transfer is required, three separate DMA operations should be performed. The first DMA
transfer should be configured to transfer a single DWORD with just the initial bytes enabled. The second DMA should
transfer the remaining complete DWORDs with all bytes enabled. A third DMA transfer should transfer the final
DWORD with just the remaining bytes enabled. For example, a transfer starting at address 3 and ending at address 12
would require three operations. The first DMA transfer would enable byte 3 only, the second transfer would transfer two
DWORD addresses to bytes 4 through 11, and the third DMA transfer would enable byte 0 and transfer address 12.

CardBus Support
CorePCIF directly supports CardBus functional requirements. Two top-level parameters, CIS_UPPER and
CIS_LOWER, specify the 32-bit configuration space setting for the CIS pointer. CIS_UPPER sets the upper 16 bits,
and CIS_LOWER sets the lower 16 bits.

The CIS address space must be mapped to one of the BARs or the Expansion ROM. It may not be mapped to
configuration space, which means the lower three bits of the CIS pointer (i.e., the lower three bits of CIS_LOWER)
must not be set to '000'. This allows the user to implement the CIS address space as one of the external backend BAR
memory spaces.

When CardBus support is enabled, the IDSEL core input is disabled. CardBus does not require IDSEL to be active for
configuration cycles.

CompactPCI Hot-Swap Support
CorePCIF supports the CompactPCI Hot-Swap PICMG 2.1 R2.0 standard; additional inputs and outputs are
provided to support this standard. When enabled, the core includes the hot-swap capabilities register in the
configuration space and a state machine that implements the hardware connection process defined in the PICMG Hot-
Swap specification. The insertion and extraction sequences are shown in Figure 6-56 on page 103 and Figure 6-57 on
page 104.

CorePCIF Backend Dataflow
CorePCIF has a very flexible backend interface that supports various transfer rates as well as FIFOs. To decouple the
backend data transfers from the PCI transfers, CorePCIF implements an eight-stage FIFO for each BAR. During
normal operation, the FIFO stores up to four data words, the remaining four locations being used for the FIFO recovery
mechanism. This is implemented using FPGA memory resources in all families except SX-A, RTSX-S, and RTAX-S.

Burst Transfers
CorePCIF is capable of bursting data from the PCI bus to the backend or vice versa. During transfers to the backend,
the WR_BE_RDY and WR_BE_NOW signals are used to control the dataflow. When the backend asserts
WR_BE_RDY, the core is allowed to write data to the backend by asserting WR_BE_NOW. A separate
WR_BE_NOW signal is provided for each byte.

For transfers from the backend, RD_STB_IN and RD_STB_OUT control the dataflow. When both of these signals are
active, data is transferred from the backend into the core.
20 v4.0

FIFO Recovery Logic
Byte-Controlled Transfers
CorePCIF supports both write- and read-controlled byte transfers to the backend. When data is written to the backend,
four (eight for 64-bit operations) write strobes (WR_BE_NOW) are provided, indicating which bytes should be
written.

When data is read from the backend interface, the BYTE_ENN and BYTE_VALN signals can be used to control the
byte reads. The backend should wait until BYTE_VALN is active (LOW) and then use the four (eight for 64-bit)
BYTE_ENN signals (active low) to control the data read. Using the BYTE_VALN signal prevents the core from
bursting data every clock cycle; in that case, data will be transferred once every four clock cycles at best.

Dataflow Control
CorePCIF allows the backend to stop data transfers in Master and Target mode, and to initiate transfers in Master
mode. In Target mode, the BUSY signal can be used to terminate a data transfer so it will be retried. The ERROR signal
can be used to simply terminate a transfer.

Likewise, in Master mode, the STOP_MASTER signal can be used to terminate a data transfer. The
WR_BUSY_MASTER and RD_BUSY_MASTER signals can be used to delay a DMA transfer from starting. If
STOP_MASTER and RD_BUSY_MASTER are connected to a FIFO empty signal, the DMA engine will
automatically stop a DMA cycle when the FIFO becomes empty and restart it when the FIFO becomes non-empty.
This allows the core to move data from a FIFO to PCI memory without any host intervention.

FIFO Recovery Logic
The CorePCIF backend interface directly supports the connection of external FIFOs using internal FPGA FIFO
memories or external FIFO devices. To prevent data loss, CorePCIF includes optional FIFO recovery logic for each
BAR. In normal burst operations, the core reads data from the backend at the same time as previous data is being
transferred on the PCI bus. When the Master terminates the Target transfer, it is likely that data has been read from the
FIFO and not transferred on the PCI bus (Figure 6-5 on page 56). Without recovery logic, this data would be lost;
however, if the FIFO recovery logic is enabled (Figure 6-14 on page 63), the core stores this data until the next Target
access to the same BAR. Data loss also potentially occurs when the core is operating in Master mode. In this case, the
core also needs to recover data lost due to PCI cycles that are terminated with a disconnect without data cycle.

Figure 1-2 on page 22 and Figure 1-3 on page 22 show how to connect a FIFO to the backend interface, supporting
Target and Master transfers. In Target mode, the FIFO empty signal is used to assert the BUSY input while the FIFO is
empty and to assert RD_STB_IN when data is available.

In Master mode, the FIFO empty signal is used to assert the RD_BUSY_MASTER input while the FIFO is empty,
preventing a DMA cycle from starting, and to assert RD_STB_IN when data is available. The FIFO almost empty
signal is used to assert STOP_MASTER, which will cause the current DMA cycle to be terminated as soon as possible.
Additional data words may be read from the backend after STOP_MASTER has been asserted.
v4.0 21

If both Master and Target transfers will be used, the connections in both Figure 1-2 and Figure 1-3 should be
implemented.

Figure 1-2 · External FIFO Connection (Target mode)

Figure 1-3 · External FIFO Connection (Master mode)

CorePCIF

FIFOBAR_SELECT

READ
EMPTY

DATA_OUT

RD_CYC
RD_STB_OUT

RD_STB_IN

BUSY

MEM_DATA_IN

CorePCIF

FIFOBAR_SELECT

READ
EMPTY

ALMOST EMPTY

DATA_OUT

RD_CYC
RD_STB_OUT

RD_STB_IN

DMA_BAR
RD_BUSY_MASTER

STOP_MASTER

MEM_DATA_IN
22 v4.0

Example System Implementation
Example System Implementation
CorePCIF provides an extremely flexible PCI interface that can be configured in many ways. Figure 1-4 shows a PCI-
to-1553 interface. In this example, CorePCIF is configured as a Target with a single memory BAR used to access the
Core1553BRT memory.

Figure 1-4 · Simple Target Implementation

A more complex system is shown in Figure 1-5. In this case, the core supports both Target and Master operation.
Core8051 is connected to the backend interface, allowing it to initiate PCI cycles. Core8051 is used to control the AES
encryption core and the Core10/100 Ethernet interface. CorePCIF has two memory BARs configured. The first allows
the PCI interface to access the 8051 memory space, and the second reads data from the FIFO.

Figure 1-5 · Master and Target Implementation

PCI Bus

CorePCIF
Dual Port
Memory

Core1553BRT
1553B
Busses

PCI Bus

CorePCIF

Core8051

Memory

FIFO CoreAES Core10/100

Ethernet
v4.0 23

2
Core Structure

This chapter describes the internal core structure and associated source files.

As shown in Figure 2-1, the unshaded modules are common to all FPGA families; the shaded modules are specific to
each family. This is required to consistently meet the PCI timing constraints. The shaded modules are optimized
specifically for each of the supported logic families. The low-level technology cells are used in the higher-level modules.

Figure 2-1 · CorePCIF Structure

Table 2-1 on page 26 provides details for each of the common source modules and the functions they implement.
Table 2-2 on page 27 provides the details of the FPGA technology files. Table 2-2 on page 27 provides details of a few
high-level source files not directly used by the core but provided to create test databases.

COREPCIF

TARGET64 FIFOIFDMA DMA_REG

PARITY64ADD_PHASE64ADD_CNTR64 DATAPATH BURST64CONFIG

DATAPATH
REGISTERS

CBE_PAR
Low-Level Technology Cells

CORECLOCKSRAM64X32

Package
pci_components

Indicates module is specific to FPGA family.

cm8d
cm8dx
cm8dx3
del_buff
bibufpad
outbufpad

cm8dp
cm8dx2
cm8dxe
cm8x
mux4_8
inbufpad
v4.0 25

Table 2-1 · CorePCIF Common Source Files

Common Files Description

corepcif
This is the top level of the core. It includes all the top-level ports. Parameters will enable and disable the Target,
Master, and backend functions as well as switching between 32- and 64-bit operation.

pci_components
This is the VHDL package that contains the component declarations used within the core along with some common
type conversion functions.

fifoif This is the control logic that manages internal data storage and performs FIFO recovery cycles.

target64 This is the top level of the main PCI Target function.

burst64 This is the main control logic used to handle the PCI protocol and manage data transfers to and from the PCI bus.

add_cntr64 This is the main address counter that tracks both the current PCI and backend addresses.

add_phase64
This block compares the PCI address during an address phase to detect whether the configuration space or one of the
BARs on the Target is being addressed. It also contains the logic to detect BAR overflows so a Target disconnect can
be triggered.

config This block contains the registers required to implement PCI configuration space.

datapath
This block routes the data between the backend interface or memory buffer and the PCI bus. It provides a data storage
register used to recover when transferred data are stalled.

parity64
This block creates the top-level structure for parity generation and checking. The parity generation and checking is
done using the cbe_par module.

dma
This is the main Master control logic. It contains state machines and counters that control the DMA engine and
initiate PCI cycles.

dma_reg This module contains the four DMA control registers and the main DMA transfer counters.
26 v4.0

Table 2-2 · Technology-Specific Source Files

FPGA Specific Files Description

bibufpad This module contains a bidirectional I/O pad.

cbe_par
This block implements a PCI parity generator and checker. The 36-input parity tree is hand-optimized to
obtain the most efficient implementation for each FPGA family.

cm8d This is a low-level FPGA technology cell implementing a four-input multiplexer and register with clear.

cm8dp This is a low-level FPGA technology cell implementing a four-input multiplexer and register with preset.

cm8dx This is a low-level FPGA technology cell implementing a four-input multiplexer and register with clear.

cm8dx2
This is a low-level FPGA technology cell implementing a four-input multiplexer and register with clear, with
some inputs tied or shared.

cm8dx3
This is a low-level FPGA technology cell implementing a four-input multiplexer and register with clear, with
some inputs tied or shared.

cm8dxe
This is a low-level FPGA technology cell implementing a four-input multiplexer and register with enable and
clear.

cm8x This is a low-level FPGA technology cell implementing a four-input multiplexer.

coreclocks This module contains the global and clock buffers.

datapath_registers This module implements the datapath registers used to interface to the PCI bus.

del_buff
This module contains a delay element used to insert delays to control the PCI hold times. The amount of
inserted delay for all critical PCI input paths can be adjusted in this file.

family
This is a VHDL package or Verilog include file that sets the FPGA family to enable some family-specific
optimizations.

inbufpad This module contains an input I/O pad.

mux4_8 This is a low-level FPGA technology cell implementing eight four-input multiplexers.

outputpad This module contains an output I/O pad.

ram64x32 This module contains a 64×32 RAM using the appropriate FPGA memory blocks.

Table 2-3 · CorePCIF Miscellaneous Source Files

Miscellaneous Files Description

pcicoretest
This is a top-level wrapper module that creates a simple top-level design with just the PCI I/O pins used for
creating the example layout databases in the release. It connects all PCI interface signals to top-level ports, and
then all interface signals to the loopback module.

loopback
This module is used in the example database designs. It connects core backend output signals to input signals.
This removes the need for the backend signals to be connected to FPGA I/O pins when creating the example
designs, allowing the core to be placed and routed in small pinout packages.

pcicore_components This is a VHDL components package that contains the PCI core component declaration.
v4.0 27

3
Tool Flows

SmartDesign
CorePCIF is available for download to the SmartDesign IP Catalog, via the Actel Libero® Integrated Design
Environment (IDE) web repository. For information on using SmartDesign to instantiate, configure, connect, and
generate cores, refer to the Libero IDE online help.

The core can be configured using the configuration GUI within SmartDesign, as shown in Figure 3-1 on page 30
through Figure 3-3 on page 32. “General Configuration Parameters” on page 35 explains the configuration parameters
and their recommended values.

Synthesis in Libero IDE
To run Synthesis on the core, set the design root to the top of the project. This is a wrapper around the core that sets all
the generics appropriately.

Make sure the required timing constraints files are associated with the synthesis tool. There should be four timing
constraints files available, covering 33/66 MHz and 32-/64-bit operation:

pcitiming32_33_synplicity.sdc

pcitiming32_66_synplicity.sdc

pcitiming64_33_synplicity.sdc

pcitiming64_66_synplicity.sdc

Appendix B on page 137 details the timing constraints that are required.

Click the Synthesis icon in Libero IDE. The synthesis window appears, displaying the Synplicity® project. To run
Synthesis, click the Run icon.

To allow the core to be synthesized standalone within Libero IDE, an additional top-level module, PCICORETEST, is
also imported into Libero IDE. The top level only includes the PCI bus signals; all the core backend signals are
connected to a loopback module. This allows the core to synthesized and place-and-route performed in small-pin-count
packages so that utilization and performance can be verified without user logic being connected to the backend interface.
To use this top level, the design root must be set to PCICORETEST in Libero IDE.

Additionally, the PCISYSTEM or PCISYSTEM2 stimulus file can be moved to the HDL directory; these files add fully
functioning memory and FIFO to the backend of the core (Axcelerator, IGLOO/e, ProASIC3/E/L, and Fusion FPGA
families only), creating a single-chip PCI system (see “User Testbench” on page 121). To synthesize the PCISYSTEM
design, move the pcisystem, fifo, memory, ram2k8, and fifo512x32 files from the CorePCI stimulus directory to the HDL
source files directory in Libero IDE, and then set the design root to PCISYSTEM. For the PCISYSTEM2 design,
move the pcisystem2, memory, and ram2k8 files.
v4.0 29

Figure 3-1 · CorePCIF Configuration in SmartDesign
30 v4.0

Synthesis in Libero IDE
Figure 3-2 · CorePCIF Configuration in SmartDesign (continued)
v4.0 31

Figure 3-3 · CorePCIF Configuration in SmartDesign (continued
32 v4.0

Place-and-Route in Libero IDE
Place-and-Route in Libero IDE
Make sure required timing and physical constraints files are associated with the place-and-route tool. There should be
multiple timing and physical constraints files available, covering the PCI functions: 33/66 MHz and 32-/64-bit
operation as well as device package combinations.

T_pcitiming32_33_designer.sdc

T_pcitiming32_66_designer.sdc

T_pcitiming64_33_designer.sdc

T_pcitiming64_66_designer.sdc

TM_pcitiming32_33_designer.sdc

TM_pcitiming32_66_designer.sdc

TM_pcitiming64_33_designer.sdc

TM_pcitiming64_66_designer.sdc

M_pcitiming32_33_designer.sdc

M_pcitiming32_66_designer.sdc

M_pcitiming64_33_designer.sdc

M_pcitiming64_66_designer.sdc

M_pci32_pa3e_FG484.pdc

M_pci64_pa3e_FG484.pdc

TM_pci32_pa3e_FG484.pdc

TM_pci64_pa3e_FG484.pdc

T_pci32_pa3e_FG484.pdc

T_pci64_pa3e_FG484.pdc

For Target-only cores, the T_ files should be used; for Master-only cores, the M_ files should be used; and for Target
and Master operation, the TM_ files should be used.

32/64 selects 32- or 64-bit PCI operation.

33/66 selects 33 or 66 MHz PCI operation.

The supplied timing constraints files assume a typical configuration of the core. Some configurations may cause the
timing constraints files to cause an error when loaded by Designer. For example, if the ONCHIP_IDSEL function is
enabled, the IDSEL input is not used and Synthesis will remove the IDSEL input. When this occurs, Designer will
detect an error when it tries to set a timing constraint on the nonexistent IDSEL input. In this case, the timing
constraints on the IDSEL input should be removed from the SDC files.

If there is not a good match for your selected device and package, you should create your own physical constraints files,
following the rules in the “Implementation Hints” section on page 127.
v4.0 33

Having set the design root appropriately and run Synthesis, click the Layout icon in Libero IDE to invoke Designer.
CorePCIF requires no special place-and-route settings. Actel recommends you set the compile options given in Table 3-1.

Table 3-1 · Designer Compile Options

Device Family Compile Option(s)

ProASICPLUS No special requirements

Fusion

IGLOO/e

ProASIC3/E/L

Set pdc_abort_on_error “off ”

Set pdc_eco_display_unmatched_objects “off ”

Set demote_globals “off ” -promote_globals “off ”

Set combine_register “on” -delete_buffer_tree “off ”

Set report_high_fanout_nets_limit 10

Axcelerator Set combine_register = 1

RTAX-S Set combine_register = 1

SX-A No special requirements

RTSX-S No special requirements
34 v4.0

4
CorePCIF Parameters

CorePCIF is a highly configurable core. The configuration is controlled by approximately 50 top-level parameters.
These are listed in Table 4-1 to Table 4-4 on page 39.

General Configuration Parameters
Table 4-1 shows general configuration parameters for CorePCIF.

Table 4-1 · General Parameters

Name Values Description

FAMILY 8 to 21

Must be set to the required FPGA family:

8: SX-A
9: RTSX-S
11: Axcelerator
12: RTAX-S
14: ProASICPLUS

15: ProASIC3
16: ProASIC3E
17: Fusion
20: IGLOO
21: IGLOOe
22: ProASIC3L

MASTER 0 or 1 When 1, the PCI Master function with DMA controller is implemented.

TARGET 0 or 1 When 1, the PCI Target function is implemented.

PCI_FREQ 33 or 66 When 66, the 66 MHz bit in the PCI configuration space is set.

SLOW_READ 0 or 1
When 1, the core inserts either one or two wait states in all read transfers, eliminating the
requirement for internal data storage within the core. This parameter must not be set if the
FIFO recovery option is enabled.

PCI_WIDTH 32 or 64 Sets 32- or 64-bit PCI implementation.

DISABLE_WDOG 0 or 1

When 1, the data transfer watchdog inside the core is disabled. The core normally includes a
transfer watchdog that will terminate a PCI cycle if the backend logic fails to provide or accept
data within the time limits defined by the PCI specification. This function can be disabled in
embedded systems if longer access times are permitted.

DISABLE_BAROV 0 or 1

When 1, the core will not disconnect when a memory or I/O transfer overflows the BAR as
required by the PCI specification. Instead, the core will wrap the address and jump to the
beginning of the BAR space. Setting the parameter to 1 will reduce the number of logic
elements in the core. When the BAR overflow logic is enabled, the core may disconnect burst
transfers before they reach the upper limit of the BAR, depending on the transfer rate
controlled by IRDY and TRDY. This may require the PCI Master to perform several separate
PCI transfers before the top of memory is reached.

REMOVE_CAP_ID 0 or 1

When 1, the capability pointer and capability values in the PCI configuration space are all held
at 0. The interrupt and DMA control registers are still accessible at locations 48 and 50–5C hex.

When 0, the capability IDs are as described in Table 7-1 on page 105 and Table 7-2 on
page 106.
v4.0 35

INTERRUPT_MODE 0 to 2

Configures the PCI interrupt:

0: The interrupt register is implemented as per Table 7-15 on page 111 and Table 7-21 on
page 113.

1: The interrupt system is disabled.

2: The interrupt register (48h) is not implemented, and the EXT_INTn input directly drives
INTAn.

When Master functions are enabled (MASTER = 1), this parameter should be set to 0.

When INTERRUPT_MODE is set to 0 or 2, the interrupt disable and status bits in the
configuration space control and status registers are implemented and may be used to disable the
interrupt.

ENABLE_FIFOSTAT 0 to 1 When 1, the FIFO status register as per Table 7-16 on page 112 is implemented.

USE_REGISTERS 0 or 1
When 1, the internal RAM blocks are replaced with a register-based implementation.

For SX-A and RTSX-S, the internal RAM blocks are always replaced with registers.

MADDR_WIDTH 8 to 32

Specifies the width of the backend address bus. This should match the largest BAR address
width (Table 4-3 on page 38). For example, if 64 kB of address space are configured,
MADDR_WIDTH should be set to 16. If all BARs are less than 256 bytes,
MADDR_WIDTH should be set to 8. Values below 8 are not permitted.

Memory Size = 2MADDR_WIDTH

GENERATE_PCICLK 0 or 1 Set to 1 when the core is required to generate the PCI clock.

USE_GLOBAL_CLK 0, 1, or 2

Controls the sort of clock buffer used.

0: No buffer is used. The synthesis tool will insert a buffer.
1: A standard clock buffer is used.
2: When using AX/RTAX-S families, uses a CLKBUF instead of a HCLKBUF cell

Actel recommends setting this parameter to 1.

USE_GLOBAL_RESET 0 or 1
When 1, a global buffer is used to drive the internal reset network in the core. When 0, normal
routing resources are used, and due to the high fanout of the reset network, a buffer tree will be
created for it. Actel recommends that this parameter be set to 1.

USE_GLOBAL_TRDY 0 or 1
When 1 and MASTER = 1, a global buffer is used to drive the internal TRDY network in the
core. When 0, normal routing resources are used. Actel recommends that this parameter be set
to 1.

USE_GLOBAL_IRDY 0 or 1
When 1 and TARGET = 1, a global buffer is used to drive the internal IRDY network in the
core. When 0, normal routing resources are used. Actel recommends that this parameter be set
to 1.

ONCHIP_ARBITER 0 or 1
In some applications, the FPGA will be the system controller as well, and include the PCI
arbiter. When 1, this removes the pads from the REQN and GNTN I/Os, allowing
connection inside the FPGA and enabling the FRAMEN_OUT and IRDYN_OUT outputs.

Table 4-1 · General Parameters (Continued)

Name Values Description
36 v4.0

PCI Configuration Space Parameters
PCI Configuration Space Parameters

ONCHIP_IDSEL 0 to 31
In some applications, the FPGA will be the system controller as well, and include the IDSEL
decoding. When value is non-zero, the IDSEL input is directly driven by the AD (value)
output. When 0, IDSEL is driven from the IDSEL input.

STALL_MODE 0 or 1

Controls the speed of FRAME and IRDY assertion when STALL_MASTER is used.

0: FRAME will be asserted followed by IRDY two clocks later.
1: FRAME assertion will be delayed by an additional clock cycle and IRDY asserted one clock
later.

Note: IRDY assertion assumes that the data fetch from the backend has completed whilst

STALL_MASTER was asserted.

Table 4-2 · PCI Configuration Space Parameters

Name Values Description

VENDOR_ID 0 to 65,535
Sets the user vendor ID value in the PCI configuration space. The Actel Vendor ID is 4522
(11AAh) and may be used with permission. Actel will allocate a device ID and sub-vendor
ID on demand. Contact Technical Support to request this service.

DEVICE_ID 0 to 65,535 Sets the user device ID value in the PCI configuration space.

REVISION_ID 0 to 255 Sets the user revision ID value in the PCI configuration space.

BASE_CLASS 0 to 255 Sets the user base class value in the PCI configuration space.

SUB_CLASS 0 to 255 Sets the user subclass value in the PCI configuration space.

PROGRAM_IF 0 to 255 Sets the user program interface value in the PCI configuration space.

SUBVENDOR_ID 0 to 65,535 Sets the user subvendor ID value in the PCI configuration space.

SUBSYSTEM_ID 0 to 65,535 Sets the user subsystem ID value in the PCI configuration space.

CIS_UPPER 0 to 65,535 Sets the value of the upper 16 bits of the CardBus CIS pointer.

CIS_LOWER 0 to 65,535 Sets the value of the lower 16 bits of the CardBus CIS pointer.

ENABLE_HOT_SWAP 0 or 1 Enables the hot-swap register and functionality.

MINMAXLAT 0 to 65,535
Sets the minimum grant and maximum latency values at location 3Eh in the configuration
space.

CMD_INITVAL 0 to 65,335
Sets the value of the PCI command register at reset. For PCI compliance, this should be set
to zero.

Table 4-1 · General Parameters (Continued)

Name Values Description
v4.0 37

BAR Parameters
CorePCIF supports up to six BARs and the Expansion ROM address register. Enabling all the BARs will have a
significant effect on logic utilization. For the SX-A and RTSX-S families, only BAR 0 and BAR 1 can be used to access
backend memory. BAR 2 can be used to access the DMA registers. BARs 3 to 5 and the Expansion ROM are not
supported in the SX-A and RTSX-S families. Table 4-3 displays BAR parameters. The variable i can have a value from
0 to 5.

Table 4-3 · BAR Parameters

Name Values Description

BARi_ENABLE 0 to 2

0: BAR i is disabled.

1: BAR i is enabled without FIFO recovery.

2: BAR i is enabled with FIFO recovery.

BARi_ADDR_WIDTH 4 to 32

Specifies the width of the BAR. A value of 8 would create a 256-byte address space.

If the BAR is disabled, this should be set to 4.

BAR_SIZE = 2 BARi_ADDR_WIDTH

BARi_IS_IO 0 or 1
0: BAR i is configured as memory space.

1: BAR i is configured as I/O space.

BARi_PREFETCH 0 or 1

If BAR i is memory space, this bit controls the PREFETCH bit in the BAR.

0: Prefetch is disabled for BAR i.

1: Prefetch is enabled for BAR i.

This should be set to zero when the FIFO recovery logic is enabled.

BARi_64BIT 0 or 1
0: BAR i supports only 32-bit transfers.

1: BAR i supports 32- and 64-bit transfers (PCI_WIDTH must also be set to 64).

BARi_INITVAL
0 to

268,435,455

Specifies the reset value of the upper 28 bits of the BAR at reset. For PCI compliance, this
should be set to zero. If non-zero, BARi_INITVAL allows the core to respond to PCI
accesses without the BAR being programmed. If the BAR initialization value is required to
be 0x80001000, the parameter should be set to the required value divided by 16 (that is,
0x08000100).

The division is required because the value provided is used to set the upper 28 bits. The
lowest 4 bits are set depending on the BARi_IS_IO and BARi_PREFETCH values.

EXPR_ENABLE 0 to 1
0: Expansion ROM is disabled.

1: Expansion ROM is enabled.

EXPR_ADDR_WIDTH 4 to 32

Specifies the width of the Expansion ROM register. A value of 8 would create a 256-byte
address space.

If the Expansion ROM is disabled, this should be set to 4.

EXPR_64BIT 0 or 1

0: Expansion ROM supports only 32-bit transfers.

1: Expansion ROM supports 32- and 64-bit transfers (PCI_WIDTH must also be set to
64).
38 v4.0

Master/DMA Parameters
If a memory or I/O BAR is used for the DMA registers (DMA_REG_LOC set to 2 or 3, Table 4-4), the BAR specified
by DMA_REG_BAR (Table 4-4) should be configured as follows:

BARi_ENABLE = 1

BARi_ADDR_WIDTH = 8

BARi_IS_IO = 0 (memory BAR) or 1 (I/O BAR)

BARi_PREFETCH = 0

This BAR will be used solely to access the DMA control registers and configuration space. It cannot be used to access
user logic connected to the backend of the core.

Master/DMA Parameters

Table 4-4 · Master/DMA Parameters

Name Values Description

BACKEND 0 or 1

When 1, the backend interface to the DMA control registers is enabled. When 0, the DMA
registers can only be accessed from the PCI bus.

If BACKEND = 1 and DMA_REG_LOC > 0, the DMA control registers can be accessed from
both the PCI and backend interfaces.

DMA_REG_LOC 0 to 3

Configures how the DMA control registers are accessed from the PCI bus.

0: None – DMA registers can be read at locations 50-5F hex of the configuration space, but not
written. Register read/writes are expected to be from the backend interface. (The BACKEND
parameter must be set to 1 for backend access.)

1: Config – DMA registers are mapped to locations 50–5F hex of the configuration space.

2: MEM – DMA registers are mapped to configuration space and memory locations 50–5F hex
of the BAR set by DMA_REG_BAR.

3: I/O – DMA registers are mapped to configuration space and I/O locations 50–5F hex of the
BAR set by DMA_REG_BAR.

DMA_REG_BAR 0 to 5

Sets which BAR is used to access the DMA registers if DMA_REG_LOC is set to 2 or 3. The
BAR parameters must be set up to configure a 256-byte BAR, either memory- or I/O-mapped
with prefetch disabled. This BAR is in addition to other memory and I/O BARs being used. In
other words, the BAR used for DMA registers may not be shared with other memory and I/O
BARs used to access user logic connected to the core.

DMA_COUNT_WIDTH 8 to 32

Sets the width of the internal DMA counter. For example, if DMA_COUNT_WIDTH is set
to 12, the DMA engine can transfer up to 4,096 bytes of data.

Max Transfer Size = 2 DMA_COUNT_WIDTH

ENABLE_DIRECTDMA 0 or 1

Enables core support for direct DMA operations.

When 1, direct DMA mode is enabled, allowing the PCI data value to be read from and written
to an internal register rather than the backend interface.
v4.0 39

Default Core Parameter Settings
Table 4-5 details the parameter settings used to create the eight example builds in “Utilization Statistics” on page 7.

Table 4-5 · Default Build Parameters1

Parameter

S
M

A
L

L
3

2

T
A

R
G

32

M
A

S
T

3
2

T
A

R
G

 D
M

A
32

T
A

R
G

 M
A

S
T

32

T
A

R
G

64

M
A

S
T

6
4

T
A

R
G

 D
M

A
64

T
A

R
G

 M
A

S
T

64

TARGET 1 1 0 1 1 1 0 1 1

MASTER 0 0 1 1 1 0 1 1 1

BACKEND 0 0 1 0 1 0 1 0 1

SLOW_READ 1 0 0 0 0 0 0 0 0

PCI_WIDTH 32 32 32 32 32 64 64 64 64

PCI_FREQ 33 or 66 33 or 66 33 or 66 33 or 66 33 or 66 33 or 66 33 or 66 33 or 66 33 or 66

DISABLE_WDOG 1 0 1 0 0 0 1 0 0

DISABLE_BAROV 1 1 1 1 0 1 1 1 0

ENABLE_FIFOSTAT 0 0 0 1 0 0 0 0 1

ENABLE_HOT_SWAP 0 0 0 0 1 0 0 0 1

MADDR_WIDTH 16 16 16 16 20 16 16 16 20

USER_VENDOR_ID 4,522 4,522 4,522 4,522 4,522 4,522 4,522 4,522 4,522

USER_DEVICE_ID A different ID value is used for each build and family.

USER_REVISION_ID 30 30 30 30 30 30 30 30 30

USER_BASE_CLASS 255 255 255 255 255 255 255 255 255

USER_SUB_CLASS 0 0 0 0 0 0 0 0 0

USER_PROGRAM_IF 0 0 0 0 0 0 0 0 0

USER_SUBVENDOR_ID A different ID value is used for each build and family.

USER_SUBSYSTEM_ID A different ID value is used for each build and family.

CIS_UPPER 0 0 0 0 0 0 0 0 0

CIS_LOWER 0 0 0 0 0 0 0 0 0

BAR0_ENABLE 1 1 1 1 2 1 1 1 2

BAR0_ADDR_WIDTH 16 16 16 16 20 16 16 16 20

BAR0_ISIO 0 0 0 0 0 0 0 0 0

BAR0_PREFETCH 1 1 1 1 0 1 1 1 0

BAR0_64BIT 0 0 0 0 0 1 1 1 1

BAR1_ENABLE 0 0 0 0 2 0 0 0 2

Notes:

1. For SX-A and RTSX-S builds, only BAR 1 and BAR 2 are configured. All other BARs are disabled.

2. For RTAX-S builds, USE_REGISTERS is set to 1.
40 v4.0

Default Core Parameter Settings
BAR1_ADDR_WIDTH 4 4 4 4 16 4 4 4 16

BAR1_ISIO 0 0 0 0 0 0 0 0 0

BAR1_PREFETCH 0 0 0 0 0 0 0 0 0

BAR1_64BIT 0 0 0 0 0 1 1 1 1

BAR2_ENABLE 0 0 0 0 2 0 0 0 2

BAR2_ADDR_WIDTH 4 4 4 4 10 4 4 4 10

BAR2_ISIO 0 0 0 0 0 0 0 0 0

BAR2_PREFETCH 0 0 0 0 0 0 0 0 0

BAR2_64BIT 0 0 0 0 0 1 1 1 1

BAR3_ENABLE 0 0 0 0 2 0 0 0 2

BAR3_ADDR_WIDTH 4 4 4 4 10 4 4 4 10

BAR3_ISIO 0 0 0 0 0 0 0 0 0

BAR3_PREFETCH 0 0 0 0 0 0 0 0 0

BAR3_64BIT 0 0 0 0 0 1 1 1 1

BAR4_ENABLE 0 0 0 0 1 0 0 0 1

BAR4_ADDR_WIDTH 4 4 4 4 8 4 4 4 8

BAR4_ISIO 0 0 0 0 1 0 0 0 1

BAR4_PREFETCH 0 0 0 0 0 0 0 0 0

BAR4_64BIT 0 0 0 0 0 1 1 1 1

BAR5_ENABLE 0 0 0 0 1 0 0 0 1

BAR5_ADDR_WIDTH 4 4 4 4 8 4 4 4 8

BAR5_ISIO 0 0 0 0 0 0 0 0 0

BAR5_PREFETCH 0 0 0 0 0 0 0 0 0

BAR5_64BIT 0 0 0 0 0 1 1 1 1

EXPR_ENABLE 0 0 0 0 1 0 0 0 1

EXPR_ADDR_WIDTH 4 4 4 4 16 4 4 4 16

EXPR_64BIT 0 0 0 0 0 0 0 0 1

ENABLE_DIRECTDMA 0 0 1 0 1 0 1 0 1

DMA_REG_LOC 0 0 0 1 2 0 0 1 2

Table 4-5 · Default Build Parameters1 (Continued)

Parameter
S

M
A

L
L

3
2

T
A

R
G

32

M
A

S
T

3
2

T
A

R
G

 D
M

A
32

T
A

R
G

 M
A

S
T

32

T
A

R
G

64

M
A

S
T

6
4

T
A

R
G

 D
M

A
64

T
A

R
G

 M
A

S
T

64

Notes:

1. For SX-A and RTSX-S builds, only BAR 1 and BAR 2 are configured. All other BARs are disabled.

2. For RTAX-S builds, USE_REGISTERS is set to 1.
v4.0 41

DMA_REG_BAR 0 0 0 0 5 0 0 0 5

DMA_COUNT_WIDTH 0 0 16 12 16 0 16 12 16

CMD_INITVAL 0 0 0 0 0 0 0 0 0

BAR0_INITVAL 0 0 0 0 0 0 0 0 0

BAR1_INITVAL 0 0 0 0 0 0 0 0 0

BAR2_INITVAL 0 0 0 0 0 0 0 0 0

BAR3_INITVAL 0 0 0 0 0 0 0 0 0

BAR4_INITVAL 0 0 0 0 0 0 0 0 0

BAR5_INITVAL 0 0 0 0 0 0 0 0 0

REMOVE_CAPID 1 0 0 0 0 0 0 0 0

INTERRUPT_MODE 1 0 0 0 0 0 0 0 0

USE_REGISTERS2 0 0 0 0 0 0 0 0 0

USE_GLOBAL_CLK 1 1 1 1 1 1 1 1 1

USE_GLOBAL_RESET 1 1 1 1 1 1 1 1 1

GENERATE_PCICLK 0 0 0 0 0 0 0 0 0

ONCHIP_ARBITER 0 0 0 0 0 0 0 0 0

ONCHIP_IDSEL 0 0 0 0 0 0 0 0 0

STALL_MODE 0 0 0 0 0 0 0 0 0

Table 4-5 · Default Build Parameters1 (Continued)

Parameter
S

M
A

L
L

3
2

T
A

R
G

32

M
A

S
T

3
2

T
A

R
G

 D
M

A
32

T
A

R
G

 M
A

S
T

32

T
A

R
G

64

M
A

S
T

6
4

T
A

R
G

 D
M

A
64

T
A

R
G

 M
A

S
T

64

Notes:

1. For SX-A and RTSX-S builds, only BAR 1 and BAR 2 are configured. All other BARs are disabled.

2. For RTAX-S builds, USE_REGISTERS is set to 1.
42 v4.0

5
Core Interfaces

PCI Bus Signals
Table 5-1 lists the signals used in the PCI interface. The "Used On" column indicates which core configurations use
each signal. For example, REQN is only used on PCI Master cores (M), IDSEL is only used on PCI Target cores (T),
and PAR64 is only used on 64-bit cores. Note that the "Type" column describes the characteristics of the signal in the
PCI specification, not necessarily its usage in a particular core. For example, TRDYN is bidirectional for PCI Target/
Master cores but only an input to PCI Target cores.

Table 5-1 · PCI Bus Interface Signals

Name Type
Used
On

Description

PCICLK Bidirectional All 33 MHz or 66 MHz clock input or output for the PCI core

PCIRSTN Input All Active low asynchronous reset

IDSEL Input T Active high Target select used during configuration read and write transactions

AD Bidirectional All
Multiplexed 32-bit or 64-bit address and data bus. Valid address is indicated by FRAMEN
assertion.

CBEN Bidirectional All
Bus command and byte enable information. During the address phase, the lower four bits
define the bus command. During the data phase, they define the byte enables (active high).
This bus is 4 bits wide in 32-bit PCI systems and 8 bits wide in 64-bit systems.

PAR Bidirectional All Parity signal. Parity is even across AD[31:0] and CBE[3:0].

FRAMEN Bidirectional (STS) All
Active low signal indicating the beginning and duration of an access. While FRAMEN is
asserted, data transfers continue.

DEVSELN Bidirectional (STS) All Active low output from the Target indicating that it is the Target of the current access

IRDYN Bidirectional (STS) All
Active low signal indicating that the bus Master is ready to complete the current dataphase
transaction

TRDYN Bidirectional (STS) All
Active low signal indicating that the Target is ready to complete the current dataphase
transaction

STOPN Bidirectional (STS) All Active low signal from the Target requesting termination of the current transaction

PERRN Bidirectional (STS) All Active low parity error signal

SERRN Bidirectional (OD) T Active low system error signal. This signal reports PCI address parity errors.

REQN Output M Active low output used by the PCI Master controller to request bus ownership

GNTN Input M Active low input from the system arbiter indicating that the core may claim bus ownership

INTAN Bidirectional TAll Active low interrupt input and request

INTBN Input All Active low input interrupt

INTCN Input All Active low input interrupt

INTDN Input All Active low input interrupt

PAR64 Bidirectional 64
Upper parity signal. Parity is even across AD[63:32] and CBE[7:4]. This signal is not
required for 32-bit PCI systems.

REQ64N Bidirectional (STS) 64
Active low signal with the same timing as FRAMEN indicating that the Master requests a
data transfer over the full 64-bit bus. This signal is not required for 32-bit PCI systems.

Note: Active low signals are designated with a trailing uppercase N.
v4.0 43

Backend System-Level Signals
CorePCIF buffers the PCI clock and reset internally onto global networks. The outputs shown in Table 5-2 allow these
global networks to be used for additional user backend logic.

ACK64N Bidirectional (STS) 64
Active low output from the Target indicating that it is capable of transferring data on the full
64-bit PCI bus. This signal is driven in response to the REQ64N signal and has the same
timing as DEVSELN. This signal is not required in 32-bit PCI systems.

M66EN Bidirectional (OD) All

Active high signal indicating that the core supports 66 MHz operation. This output will be
driven LOW if the MHZ_66 parameter is NOT set. When it is set, the output is tristated.
If hot-swap is enabled, this is also used as an input to verify the PCI clock frequency during
hot-swap insertion cycles. The M66EN PCI signal pin should be pulled up with a 5 kΩ
resistor.

Table 5-1 · PCI Bus Interface Signals (Continued)

Name Type
Used
On

Description

Note: Active low signals are designated with a trailing uppercase N.

Table 5-2 · System-Level Signals

Name Type Width Description

CLK_OUT Output 1
Clock output. The core uses an internal clock buffer. This is the buffered version of the clock
and should be used for clocking any other logic in the FPGA that is clocked by the PCI clock
(see “Clocking” on page 127).

CLK_IN Input 1
When the GENERATE_PCICLK parameter is set, this input is used to drive the PCI clock
output, and also clocks the internal core logic. CLK_OUT should be used to clock additional
logic inside the FPGA (see “Clocking” on page 127).

RST_OUTN Output 1

Reset output. This is a buffered version of the PCI reset. If USE_GLOBAL_RESET = 1, a
global buffer drives the internal reset network in the core as well as this reset output. If
USE_GLOBAL_RESET = 0, a buffer tree is created and a reset output from the tree is fed to
the reset output. RST_OUTN should be used for resetting any other logic in the FPGA.

If the hot-swap function is enabled, this reset will also be asserted during a hot-swap insertion
or extraction cycle per the Hot-Swap Specification.

FRAMEN_OUT Output 1
Buffered version of the PCI FRAMEN signal intended for connection to a PCI arbiter. Care
must be exercised when using this output to avoid causing PCI setup timing issues.

IRDYN_OUT Output 1
Buffered version of the PCI IRDYN signal intended for connection to a PCI arbiter. Care must
be exercised when using this output to avoid causing PCI setup timing issues.

SERRN_OUT Output 1
Buffered version of the PCI SERRN signal. Allows the backend logic to know whether
SERRN has been asserted. Care must be exercised when using this output to avoid causing PCI
setup timing issues.

CFG_STATUS Output 16 Provides the current value of the PCI configuration status register (Table 7-7 on page 109).
44 v4.0

Backend Target and Master Dataflow Signals
Backend Target and Master Dataflow Signals
The signals in Table 5-3 are used for Target and Master data transfers between the core and the user’s backend logic. All
these inputs and outputs are synchronous to the PCI clock. Users should ensure that setup times are met across this
interface.

Table 5-3 · Dataflow Interface Signals

Name Type Width Description

BAR_SELECT Output 3

Active high bus indicating which BAR is being used for the current transaction. Values
'000' to '101' indicate BARs 0 to 5, '110' indicates the Expansion ROM, and '111'
indicates that no transaction is in progress. This output becomes valid on the same clock
cycle where DP_START is asserted and returns to '111' on the same clock cycle where
DP_DONE is asserted.

RD_CYC Output 1
Active high signal indicating a read transaction from the backend. This output becomes
valid on the same clock cycle where DP_START is asserted and returns to 0 on the same
clock cycle where DP_DONE is asserted.

WR_CYC Output 1
Active high signal indicating a write transaction from the backend. This output becomes
valid on the same clock cycle where DP_START is asserted and returns to 0 on the same
clock cycle where DP_DONE is asserted.

XFER_64BIT Output 1
Active high signal indicating that the transfer is a 64-bit transfer. This output becomes
valid on the same clock cycle where DP_START is asserted and returns to 0 on the same
clock cycle where DP_DONE is asserted.

DP_START Output 1
DP_START is an active high pulse indicating that a PCI transaction to the backend is
beginning. A DP_START will always be followed by a DP_DONE when the cycle
terminates.

DP_DONE Output 1
Active high pulse indicating that a PCI transaction to the backend has finished.
DP_DONE pulses will also occur when the core is inactive at a time when other PCI
devices complete their PCI access cycles.

RD_STB_IN Input 1

Active high read strobe indicating that the backend is ready to provide data to the core.
Data will only be transferred when both RD_STB_IN and RD_STB_OUT are active. If
the signal does not become active within the limits defined by the PCI bus, the read cycle
will be terminated and the PCI bus terminated with a disconnect without data.

RD_STB_OUT Output 1

Active high read strobe indicating that the core is ready to fetch data from the backend.
Data will only be read when both RD_STB_IN and RD_STB_OUT are active.

The core will read data from the MEM_DATA_IN bus on the next rising clock edge, i.e.,
while the strobes are active if RD_SYNC is LOW, or on the following clock edge if
RD_SYNC is HIGH.

WR_BE_RDY Input 1
Active high input indicating that the backend is ready to receive data from the core. If the
ready signal does not become active within the time limits defined by the PCI bus, a
disconnect without data will be initiated.

WR_BE_NOW Output 4/8

Active high output indicating that the data should be written to the backend device now.
Four write strobes are provided for 32-bit cores, one per byte. For example,
WR_BE_NOW[0] indicates that data bits 7:0 should be written. 64-bit cores provide
eight write strobes, one per byte.
v4.0 45

MEM_ADD Output N

Memory address bus, where N is defined by the parameter MADDR_WIDTH
(Table 4-1 on page 35). The lowest two bits of the address bus will contain the lowest two
bits of the PCI address bus. These address lines can be ignored for memory transfers but
may be used to verify the legality of I/O byte accesses.

MEM_DATA_IN Input 32/64
Data input, used for normal Target and Master data transfers as well as backend access to
the DMA control registers

MEM_DATA_OUT Output 32/64
Data output, used for normal Target and Master data transfers as well as backend access
to the DMA control registers

MEM_DATA_OE Output 1
Active high data enable for the lower 32 bits of MEM_DATA_OUT. This is intended as
an output enable if MEM_DATA_IN and MEM_DATA_OUT are connected to
bidirectional I/O pads to create a bidirectional MEM_DATA bus.

MEM_DATA_OE64 Output 1
Active high data enable for the upper 32 bits of MEM_DATA_OUT. This is intended as
an output enable if MEM_DATA_IN and MEM_DATA_OUT are connected to
bidirectional pads to create a bidirectional MEM_DATA bus.

BYTE_VALN Output 1 Active low strobe indicating that the BYTE_ENN outputs are valid.

BYTE_ENN Output 4/8

Active low byte enables. To achieve high throughput, CorePCIF normally reads all four
bytes of data independently of the byte enable requests from the PCI bus. If the backend
logic is required to support byte read operations, the backend should wait until
BYTE_VALN is active (LOW) and then use this bus as read byte enables. Using this
transfer mode will significantly slow throughput. These outputs can also be used to verify
the legality of an I/O byte access before asserting WR_BE_RDY by comparing with the
lowest two bits of MEM_ADDR. If an illegal I/O access is detected, the ERROR input
can be asserted to cause a Target abort.

RD_SYNC Input 1

When LOW, this signal indicates that the core will sample data on the rising clock edge
while RD_STB_OUT and RD_STB_IN are active. When HIGH, this signal indicates
that the core will sample data on the clock cycle after RD_STB_OUT and RD_STB_IN
are active. This should be set HIGH when synchronous memories are connected to the
backend interface.

RD_FLUSH Input 6

Only has an effect when the FIFO recovery logic is enabled. If active (HIGH) when
DP_START occurs, the internal FIFO will be flushed. RD_FLUSH[0] is used to flush
the internal FIFO on BAR 0, RD_FLUSH[1] flushes the BAR 1 FIFO, etc. When the
FIFOs are flushed, any data that was stored in the internal FIFO will be lost.

FIFO_EMPTYN Input 6

Only used when the FIFO recovery logic is enabled and ENABLE_FIFOSTAT = 1.
Active low input indicating that the external FIFO connected to the core is empty. The
core uses this to set the external FIFO empty bits in the FIFO status register (Table 7-16
on page 112). FIFO_EMPTYN[0] sets the bit for BAR 0, etc. (This input is not used by
any of the control logic in the core. It is only connected to the FIFO status register.)

Table 5-3 · Dataflow Interface Signals (Continued)

Name Type Width Description
46 v4.0

Backend Target Dataflow Signals
Backend Target Dataflow Signals
The additional signals in Table 5-4 are used only for Target data transfers between the core and the user’s backend logic.
These signals only function when the TARGET parameter is set. All these inputs and outputs are synchronous to the
PCI clock.

Table 5-4 · Target Mode Control Signals

Name Type Width Description

BUSY Input 1

Active high input indicating that the backend controller cannot complete the current transfer.
When BUSY is asserted, the core may perform a PCI retry, a disconnect without data, or a
disconnect with data cycle, depending on the state of the internal pipeline and the backend
WR_BE_RDY and RD_STB_IN signals.

ERROR Input 1
Active high signal that will force the PCI core to terminate the current transfer with a Target abort
cycle. Once asserted, ERROR must be held active until DP_DONE occurs.

EXT_INTN Input 1
Active low interrupt from the backend. When PCI interrupts are enabled, this will cause an
INTAN signal to be asserted.

INTAN_OUT Output 1
Active low output indicating the status of the PCI INTAN signal. This allows the backend logic to
respond to an interrupt from another PCI device that has asserted INTAN.
v4.0 47

Backend Master Dataflow Signals
The additional signals in Table 5-5 are used only for Master data transfers between the core and the user’s backend logic.
These signals only function when the MASTER parameter is set. All these inputs and outputs are synchronous to the
PCI clock.

Table 5-5 · Master Mode Signals

Name Type Width Description

MAST_ACTIVE Output 1

Indicates (active high) that the current transaction is a Master transaction initiated by the
DMA engine. MAST_ACTIVE becomes active one clock cycle before DP_START and
goes inactive one clock cycle before DP_DONE. This output can be delayed externally by
a clock cycle so it aligns with DP_START, DP_DONE, and the other backend control
signals if required.

MAST_BUSY Output 1
Indicates (active high) that the core is processing a DMA request. This signal becomes
active when the DMA request is set in the DMA control register and stays active until the
DMA completes.

DMA_BAR Output 3
Indicates which BAR the DMA engine wishes to access. This output can be used with
multiple FIFOs on the backend to multiplex their EMPTY/FULL signals to the
RD_BUSY_MASTER and WR_BUSY_MASTER inputs.

WR_BUSY_MASTER Input 1 When HIGH, a DMA write to the backend cycle will not be started.

RD_BUSY_MASTER Input 1 When HIGH, a DMA read from the backend cycle will not be started.

STOP_MASTER Input 1

When HIGH, an active DMA cycle will be stopped. Once asserted, this signal should be
held asserted until DP_DONE is asserted. It may continue to be held active after
DP_DONE has been asserted. If active when a DMA cycle starts, the core will transfer
one word on the PCI bus before terminating the PCI transfer.

After STOP_MASTER is asserted, it is possible that one or more data transfers to or
from the backend may occur. For backend write cycles, one more data transfer will always
occur. For backend read cycles, additional data transfers will happen if RD_STB_OUT
was active and RD_STB_IN was inactive the clock cycle before STOP_MASTER was
asserted.

Typically, a FIFO empty output will be directly connected to both the RD_STB_IN and
STOP_MASTER inputs.

STALL_MASTER Input 1

If HIGH when CorePCIF starts a DMA cycle on the backend, the core will assert
DP_START and delay asserting FRAME on the PCI bus until STALL_MASTER is
deasserted (LOW), which signifies that the backend's data is now ready. This can be used
to support backends that take many clock cycles to become ready. STALL_MASTER
must be asserted on the clock cycle after MAST_ACTIVE becomes active. This is the
same cycle in which DP_START occurs.

The operation of the STALL_MASTER input is described in detail in
“STALL_MASTER Operation” on page 94.
48 v4.0

Backend Master DMA Register Access Signals
Backend Master DMA Register Access Signals
The signals listed in Table 5-6 are used to allow the backend to access the internal Target configuration space and DMA
registers to initiate DMA Master transfers. These signals only function when the BACKEND parameter is set. The
interface supports byte-wide operations if required. All these inputs and outputs are synchronous to the PCI clock.

Table 5-6 · Backend DMA Register Access Signals

Name Type Width Description

BE_REQ Input 1
A request from the backend to the core to take control of the backend interface. This signal is
active high, and should be synchronous to the PCI clock.

BE_GNT Output 1

A grant from the core giving control to the backend logic.

When the BE_GNT signal is active and a transaction to the PCI Target controller occurs, the
PCI controller will respond with a retry cycle. If a PCI cycle is in progress when BE_REQ is
asserted, BE_GNT will not assert until completion of the current PCI cycle.

If the backend must take control during an active PCI transfer cycle, it may assert the STOP or
STOP_MASTER inputs, causing the current PCI cycle to terminate.

BE_READ Input 1
Active high synchronous read enable for the DMA registers. It will be ignored if BE_GNT is
inactive. During read cycles, there is a two-clock-cycle latency from BE_READ and
BE_ADDRESS to valid data on MEM_DATA_OUT.

BE_WRITE Input 4
Active high synchronous write enable for the DMA registers. One enable is provided for each of
the four bytes; BE_WRITE[0] active will write bits [7:0] and will be ignored if BE_GNT is
inactive.

BE_ADDRESS Input 8
Address input that addresses the 256-byte configuration space. The lower two bits are ignored.
The DMA registers are at addresses 50, 54, 58, and 5C hex.

BE_CFGLOCK Input 1

When 0, the complete internal configuration space can be read from and written to the backend
interface.

When 1, the main PCI configuration space (00–3F hex) can only be read; writes are prevented.
This prevents the backend interface from modifying the PCI configuration space and potentially
causing errors on the PCI bus. Writes to the DMA control registers are still allowed.
v4.0 49

Hot-Swap Interface
The signals in Table 5-7 are used to implement the interface between the CorePCIF hardware connection process and
the external physical connection process, as described in the PICMG 2.1 R2.0 Compact PCI Hot-Swap specification.
These signals only function when the HOT_SWAP_ENABLE parameter is set.

Table 5-7 · Hot-Swap Interface Signals

Name Type Width Description

HS_BDSELN Input 1
Active low signal indicating that the board is selected and all other pins are fully connected.
This input should be synchronous to the PCI clock.

HS_SWITCHN Input 1
Active low signal from the board ejector switch. This input should be synchronous to the PCI
clock and debounced outside the core.

HS_POWGOODN Input 1
Active low signal indicating that the power supply is within specification. This input should
be synchronous to the PCI clock.

HS_POWFAILN Input 1
Active low signal indicating that the power supply is outside specification or a fault has
occurred. This input should be synchronous to the PCI clock.

HS_ENUMN
Output
(OC)

1
Active low signal notifying the system host that the board either has been inserted or is about
to be extracted. This is an open-collector output and must be directly connected to an FPGA
I/O pin.

HS_LEDN Output 1 Active low signal to drive the external blue LED

HS_HEALTHYN Output 1
Active low signal indicating that the board is healthy and may be released from reset and
allowed onto the PCI bus
50 v4.0

6
Timing Diagrams

Figure 6-1 on page 52 through Figure 6-57 on page 104 show the backend timing diagrams for different core
operations. The timing diagrams are taken directly from core simulations. Table 6-1 summarizes the timing waveforms
included in this handbook. Should additional waveforms be required, customers are encouraged to run simulations of the
core. These can be done with the free, downloadable Evaluation version of the core.

The figures typically show three sets of waveforms for each transfer type: one write and two read cycles. The read
transfer is shown with a nonpipelined backend (RD_SYNC = 0) and a pipelined backend (RD_SYNC = 1). The
waveforms show 32-bit operation; 64-bit operation is identical to 32-bit operation. A single set of waveforms is shown
illustrating the 64-bit burst operation.

Table 6-1 · Example Waveforms

Description Figure(s)

Single-cycle read and write 6-1 to 6-3

Burst transfer at maximum transfer rate 6-4 to 6-6

Burst transfer with a slow PCI Master 6-7 to 6-9

Burst transfer with a slow backend 6-10 to 6-13

FIFO recovery operation 6-14 to 6-15

Byte-controlled transfers 6-16 to 6-18

64-bit burst transfer 6-19 to 6-21

Slow read transfers 6-22 to 6-23

Backend-terminated (BUSY) cycle at transfer start 6-24 to 6-25

Backend-terminated (ERROR) cycle at transfer start 6-26

Backend-terminated (BUSY) cycle during data burst 6-27 to 6-29

PCI configuration cycle 6-30 to 6-31

PCI interrupt generation 6-32

Simple DMA transfer 6-33 to 6-37

DMA cycle with a FIFO backend 6-38

STOP Master assertion during data burst 6-39 to 6-42

RD_BUSY_MASTER and WR_BUSY_MASTER operation 6-43 to 6-44

STALL_MASTER operation 6-45 to 6-48

DMA register access from the backend 6-49 to 6-53

DMA direct transfers 6-54 to 6-55

Hot-swap insertion and extraction 6-56 to 6-57
v4.0 51

Single-Cycle Read and Write
Figure 6-1 to Figure 6-3 on page 54 show basic single-cycle read and write accesses to the backend. The core will pulse
DP_START active and indicate whether it is a read or write cycle and which BAR is being accessed. BAR_SELECT
and RD_CYC/WR_CYC will become valid on the same clock cycle where DP_START is asserted and will remain
active until DP_DONE is asserted. They are deasserted on the clock cycle after DP_DONE. Although the PCI
interface requests only a single data word read, the core may read more than one word from the backend interface.

For read cycles, the core indicates that it is ready to read data by asserting RD_STB_OUT. The backend logic indicates
that it has data available by asserting RD_STB_IN. When both of these signals are active, the core will read data from
the backend. If RD_SYNC = 0, data is sampled on the clock edge during which the strobes are active (Figure 6-1).
When RD_SYNC = 1, data is sampled on the following clock edge (Figure 6-2 on page 53).

The PCI specification states that the maximum delay from FRAMEN assertion to the first data word transferred on the
PCI bus is 16 clock cycles. The core takes two clock cycles from the time FRAMEN is asserted to assert DP_START.
RD_STB_OUT is asserted one clock cycle later, and then an additional two clock cycles are required for the data to pass
back through the core.

The backend must assert RD_STB_IN within 11 clock cycles. If the backend does not assert RD_STB_IN within this
time, the core will automatically terminate the PCI transfer with a Target retry. When RD_SYNC = 1, an additional
cycle of delay is added at the backend interface, reducing the initial backend latency to 10 clock cycles.

Once a data burst has started, data must be transferred every eight clock cycles. If the backend fails to provide data at this
rate, the core will terminate the PCI cycle with a disconnect without data to maintain PCI compliance.

When the SX-A or RTSX-S families are used, the core inserts an additional clock cycle of latency internally. Thus, in
this case, the backend maximum initial latency is reduced by one clock cycle. This is summarized in Table 6-2 on
page 53.

Figure 6-1 · Backend Read Cycle (RD_SYNC = 0)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6

6 0

ADDR 0

0

0000 0004 0008

0 1 2
52 v4.0

Single-Cycle Read and Write
Figure 6-2 · Backend Read Cycle (RD_SYNC = 1)

For write cycles, the backend indicates that it is ready to accept data by asserting WR_BE_RDY. The core then
indicates that it is ready to accept data from the PCI bus by asserting TRDYN. When the core receives data from the
PCI bus, it asserts the WR_BE_NOW strobes at the same time that the address and data are valid. For 32-bit PCI
transfers, four WR_BE_NOW signals are provided and used to validate each byte. Thus, if the PCI Master performs a
byte write, only one of the four write strobes will be active when the write occurs.

cycle

clk

cben[3:0]

ad[31:0]

framen

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7

6 0

ADDR 0

0

0000 0004 0008 000C

0 1 2 3

Table 6-2 · Backend Initial Access Time Limits—
Delay Allowed from DP_START to RD_STB_IN or WR_BE_RDY (clock cycles)

Family
Read

Write
RDSYNC = 0 RDSYNC = 1

ProASIC3/E 11 10 13

ProASICPLUS 11 10 13

Axcelerator 11 10 13

RTAX-S 11 10 13

RTSX-S 10 9 13

SX-A 10 9 13
v4.0 53

Figure 6-3 · Backend Write Cycle

cycle

clk

framen

ad[31:0]

cben[3:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[15:0]

mem_data_out[31:0]

0 1 2 3 4 5 6 7 8 9

ADDR 0 1 2 3

7 0

0

F

0000 0004 0008 000C

0 1 2 3
54 v4.0

Burst Transfer at Maximum Transfer Rate
Burst Transfer at Maximum Transfer Rate
Figure 6-4 to Figure 6-6 on page 56 show basic backend burst read and write cycles. These transfers are similar to the
single-cycle transfers except that multiple words are transferred.

Figure 6-4 · Backend Burst Read Cycle (RD_SYNC = 0)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9

6 0

ADDR 0 1 2 3

0

0000 0004 0008 000C 0010 0014

0 1 2 3 4 5
v4.0 55

Figure 6-5 · Backend Burst Read Cycle (RD_SYNC = 1)

Figure 6-6 · Backend Burst Write Cycle

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11

6 0

ADDR 0 1 2 3

0

0000 0004 0008 000C 0010 0014 0018

0 1 2 3 4 5 6

cycle

clk

framen

ad[31:0]

cben[3:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[15:0]

mem_data_out[31:0]

0 1 2 3 4 5 6 7 8 9

ADDR 0 1 2 3

7 0

0

F

0000 0004 0008 000C

0 1 2 3
56 v4.0

Burst Transfer with a Slow PCI Master
Burst Transfer with a Slow PCI Master
Figure 6-7 to Figure 6-9 on page 58 show burst transfers with a PCI Master that transfers one word of data every three
clock cycles. The backend in this case is capable of transferring data every clock cycle. The core reads data from the
backend and stores it in the internal FIFO. Figure 6-7 shows seven data words being read from the backend (cycles three
to nine). These words are then transferred on the PCI bus at the rate governed by the PCI Master. The core stores a
maximum of five words internally. By cycle nine, the core has read seven words from the backend and transferred two
words on the PCI bus. It then stops reading data from the backend. When the number of words stored in the core drops
to four, the core starts reading data from the backend again.

Figure 6-8 on page 58 shows the same slow PCI Master reading data from the backend when RD_SYNC = 1. The main
difference here is that the core samples data on the clock edge following the strobe assertion. Since data is transferred a
clock cycle later, the internal FIFO fill level is different than in Figure 6-7.

In the case of write transfers, the backend logic continuously asserts WR_BE_RDY, indicating it is ready to accept data.
Data is then written to the backend every three clock cycles. The backend address increments after each write completes
(Figure 6-9 on page 58).

Figure 6-7 · Backend Read Cycle with Slow PCI Master (RD_SYNC = 0)

cycle

clk

framen

ad[31:0]

cben[3:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ADDR 0 1 2 3 4

6 0

0

000 004 008 00C 010 014 018 01C 020 024

0 1 2 3 4 5 6 7 8
v4.0 57

Figure 6-8 · Backend Burst Read Cycle with Slow PCI Master (RD_SYNC = 1)

Figure 6-9 · Backend Burst Write Cycle with Slow PCI Master

cycle

clk

cben[3:0]

ad[31:0]

framen

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

6 0

ADDR 0 1 2 3 4

0

000 004 008 00C 010 014 018 01C 020 024

0 1 2 3 4 5 6 7 8

cycle

framen

clk

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[15:0]

mem_data_out[31:0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

7 0 0 0 0 0

ADDR 0 1 2 3 4

0

F 0 F 0 F 0 F 0 F

0000 0004 0008 000C 0010

0 1 2 3 4
58 v4.0

Burst Transfer with a Slow Backend
Burst Transfer with a Slow Backend
Figure 6-10 to Figure 6-12 on page 61 show burst transfers with a backend that transfers one word of data every three
clock cycles. The PCI Master in this case is capable of transferring data every clock cycle. During these transfers, the
internal FIFO does not fill up, so the core keeps the RD_STB_OUT signal active, as it is ready to accept data. When
the backend asserts the RD_STB_IN signal, data is transferred to the core and then transferred on the PCI bus two
clock cycles later (three clock cycles for the SX-A and RTSX-S families).

Figure 6-10 · Backend Burst Read Cycle with Slow Backend (RD_SYNC = 0)

cycle

clk

framen

ad[31:0]

cben[3:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ADDR 0 1 2 3

6 0

0

0000 0004 0008 000C

0 1 2 3
v4.0 59

Figure 6-11 · Backend Burst Read Cycle with Slow Backend (RD_SYNC = 1)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

6 0

ADDR 0 1 2 3

0

0000 0004 0008 000C 0010

0 1 2 3 4
60 v4.0

Burst Transfer with a Slow Backend
During write transfers, the backend asserts its WR_BE_RDY signal when it is ready. This causes the core to assert
TRDYN and then, assuming that IRDYN was active on the PCI bus, causes WR_BE_NOW to be asserted on the
following clock edge. This allows the backend to control the transfer rate.

Figure 6-12 · Backend Burst Write Cycle with Slow Backend

cycle

clk

framen

ad[31:0]

cben[3:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[15:0]

mem_data_out[31:0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ADDR 0 1 2 3

7 0

0

F 0 F 0 F 0 F

0000 0004 0008 000C

0 1 2 3
v4.0 61

If WR_BE_RDY has been continuously asserted and is deasserted, two additional writes to the backend may occur. To
avoid these extra writes, the backend should only assert WR_BE_RDY for a single cycle and should not reassert it until
the write takes place (WR_BE_NOW is asserted). These additional writes are shown in Figure 6-13 in cycles 8 and 9.

Figure 6-13 · Backend Burst Write Cycle with Additional Writes after Ready Removed

cycle

clk

framen

ad[31:0]

cben[3:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[15:0]

mem_data_out[31:0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ADDR 0 1 2 3

7 0

0

F 0 F

0000 0004 0008 000C

0 1 2 3
62 v4.0

Burst Transfer with FIFO Recovery Enabled
Burst Transfer with FIFO Recovery Enabled
CorePCIF directly supports connection of external FIFOs. When FIFOs are connected to the core, special logic is
implemented inside the core to prevent data loss. As seen in Figure 6-10 on page 59 to Figure 6-12 on page 61, the core
reads ahead of the transfer on the PCI bus during a burst transfer so it can maintain high throughput. This is illustrated
in Figure 6-5 on page 56. The core actually transfers four words on the PCI bus but reads seven from the backend
interface. Without the optional FIFO recovery logic, these additional three words would be lost.

When the FIFO recovery mode is enabled, BARi_ENABLE = 2. The core will store these three words internally and
transfer them at the start of the next read cycle from the same BAR. Figure 6-14 shows an initial burst read cycle,
followed by a second read cycle that initially transfers data stored from the first transfer.

Figure 6-14 · FIFO Recovery Operation (RD_SYNC = 0)

During the first read cycle, as shown in Figure 6-14, the core reads six words from the backend but only transfers four
words on the PCI bus. The remaining two words, four and five, are stored in the core. On the second PCI burst read
cycle, the core reads the next data words, six and seven, from the backend before it stops to prevent its internal storage
from overflowing. At cycle five in the second PCI cycle, word four is transferred on the PCI bus. When the second PCI
cycle terminates, words eight and nine are left stored in the core.

When RD_SYNC = 1, a very similar pair of transfers occurs, but in this case, the first transfer actually reads seven words
and transfers four words on the bus, leaving three words stored in the core between the transfers.

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[7:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

6 0 6 0

ADDR 0 1 2 3 ADDR 4 5 6 7

0 7 0

00 04 08 0C 10 14 18 00 04 08 0C

0 1 2 3 4 5 6 7 8 9
v4.0 63

Figure 6-15 · FIFO Recovery Operation (RD_SYNC = 1)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

6 0 6 0

ADDR 0 1 2 3 ADDR 4 5 6 7

0 7 0

000 004 008 00C 010 014 018 01C 000 004 008 00C

0 1 2 3 4 5 6 7 8 9 10
64 v4.0

Byte-Controlled Transfers
Byte-Controlled Transfers
In most systems, the backend ignores the byte requests from the PCI Master and simply reads all four or eight bytes
from the backend. If required, the core can make the PCI byte enables available to the backend. This significantly
reduces the read bandwidth, as shown in Figure 6-16, where a data transfer takes place every five clock cycles. If
RD_STB_IN is asserted in the same clock cycle where BYTE_VALN is active, this can be reduced to four cycles.

The PCI Master sets the CBEN signals initially for each byte-controlled read transfer. These take one clock cycle to
propagate to the core backend on the BYTE_ENN output (active low). The core indicates the validity of these signals
by asserting the BYTE_VALN output (active low). At this point, the backend logic can perform its byte-controlled read
operation and assert RD_STB_IN. Two cycles later, the data appears on the PCI bus and the core asserts TRDYN.
Only now can the PCI Master start the next read cycle, updating the PCI CBEN lines for the next transfer, and the
whole process repeats.

Figure 6-16 · Backend Byte Read Cycle (RD_SYNC = 0)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

byte_enn[3:0]

byte_valn

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

6 E 0

ADDR 0 1 2 3

0

6 E 0

000 004 008 00C

0 1 2 3
v4.0 65

When RD_SYNC = 0, it will require a minimum of four clock cycles per transfer. When RD_SYNC = 1 (Figure 6-17),
this increases to five clock cycles per transfer. If ProASIC3/E technology is being used, it will take up to six clock cycles
per transfer.

Figure 6-17 · Byte Burst Read Cycle (RD_SYNC = 1)

cycle

clk

cben[3:0]

ad[31:0]

framen

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

byte_enn[3:0]

byte_valn

mem_add[15:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

6 E 0

ADDR 0 1 2 3

0

6 E 0

0000 0004 0008 000C

0 1 2 3
66 v4.0

Byte-Controlled Transfers
Byte-controlled write transfers do not suffer the same handicap as read transfers. The core always validates the write by
setting the four or eight WR_BE_NOW signals with each data transfer. Figure 6-18 shows a write transfer that writes
byte 0 on the first transfer and then all four bytes on the following transfers. Some systems may require that I/O accesses
be verified for legality, i.e., AD[1:0] and CBEN[3:0] are consistent. In this case, the backend should wait until
BYTE_VALN is active (LOW) and then verify MEM_ADD[1:0] and BYTE_VALN[3:0] for consistency (PCI
Specification 3.2.2.1). If okay, the backend should assert WR_BE_RDY or RD_STB_IN; otherwise, it should assert the
ERROR input to cause a Target abort.

Figure 6-18 · Byte Burst Write Cycle

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[15:0]

mem_data_out[31:0]

0 1 2 3 4 5 6 7 8

7 E 0

ADDR 0 1 2 3

0

1 F

0000 0004 0008 000C

0 1 2 3
v4.0 67

64-Bit Burst Transfer
When operating in 64-bit mode (Figure 6-19 through Figure 6-21 on page 70), the backend protocol is similar to that
for 32-bit operation. The main differences are that the data bus width increases to 64 bits and four additional write
strobes are provided along with four additional read byte strobes to support byte operations. Also, the address increments
by eight rather than by four after each data transfer.

Figure 6-19 · 64-Bit Burst Read Cycle (RD_SYNC = 0)

cycle

clk

framen

req64n

ack64n

cben[7:0]

ad[63:0]

par

par64

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

xfer_64bit

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[63:0]

rd_sync

0 1 2 3 4 5 6 7 8 9

F6 00

ADDR 1,0 3,2 5,4 7,6

0

0000 0008 0010 0018 0020 0028

1,0 3,2 5,4 7,6 9,8 B,A
68 v4.0

64-Bit Burst Transfer
Figure 6-20 · 64-Bit Burst Read Cycle (RD_SYNC = 1)

cycle

clk

framen

req64n

ack64n

cben[7:0]

ad[63:0]

par

par64

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[63:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10

F6 00

ADDR 1,0 3,2 5,4 7,6

0

000 008 010 018 020 028 030

1,0 3,2 5,4 7,6 9,8 B,A D,C
v4.0 69

Figure 6-21 · 64-Bit Burst Write Cycle

Operating Note

When configured with 64-bit functionality, the core should only be used in 64-bit environments. The core does not
implement the logic to allow a 64-bit core to function correctly when inserted into a 32-bit slot. The inclusion of this
logic would significantly increase the amount of FPGA resources the core requires.

cycle

clk

req64n

ack64n

framen

cben[7:0]

ad[63:0]

par

par64

devseln

irdyn

trdyn

stopn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[7:0]

mem_add[11:0]

mem_data_out[63:0]

0 1 2 3 4 5 6 7 8

F7 00

ADDR 1,0 3,2 5,4 7,6

0

0000 FF

000 008 010 018

1,0 3,2 5,4 7,6
70 v4.0

Slow Read Transfers
Slow Read Transfers
When the SLOW_READ parameter is set, CorePCIF transfers read data from the backend interface once every two
clock cycles when RD_SYNC = 0 and once every three clock cycles when RD_SYNC = 1, assuming the Master holds
IRDYN active, as shown in Figure 6-22 and Figure 6-23 on page 72. If the Master deasserts IRDYN, additional clock
cycles will be inserted between the data transfers. Write transfers operate as normal, and transfers every clock cycle are
supported.

Enabling the SLOW_READ function removes the need for the internal data buffer, and hence reduces the gate count
requirements of the core considerably, especially when the SX-A and RTSX-S families are used.

Figure 6-22 · Slow Read Transfer (RD_SYNC = 0)

cycle

clk

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11 12

6 0

ADDR 0 1 2 3

0

000 004 008 00C 010

0 1 2 3 4

framen
v4.0 71

Figure 6-23 · Slow Read Transfer (RD_SYNC = 1)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

dev seln

irdy n

trdyn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 0

ADDR 0 1 2 3

0

000 004 008 00C 010

0 1 2 3 4
72 v4.0

Backend-Terminated (BUSY) Cycle at Transfer Start (Target)
Backend-Terminated (BUSY) Cycle at Transfer Start (Target)
If the backend knows that it will not be able to fetch or accept a data transfer within the initial transfer period (Table 6-2
on page 53), it may immediately assert BUSY. This will cause the core to terminate the cycle with a retry (Figure 6-24).

Figure 6-24 · Backend-Terminated (BUSY) Cycle at Transfer Start

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

busy

error

mem_add[15:0]

0 1 2 3 4 5 6 7

6 0

ADDR

0

v4.0 73

If the backend does not assert the RD_STB_IN or WR_BE_RDY signal within the required time, the core will
automatically terminate the PCI cycle by asserting the STOPN signal (Figure 6-25).

Figure 6-25 · Backend Fails to Assert RD_STB_IN

cycle

clk

framen

ad[31:0]

cben[3:0]

par

devseln

irdyn

trdyn

stopn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

busy

error

mem_add[11:0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ADDR

6 0

0

74 v4.0

Backend-Terminated (ERROR) Cycle at Transfer Start (Target)
Backend-Terminated (ERROR) Cycle at Transfer Start (Target)
If the backend detects an illegal transfer, it may cause a Target abort by asserting the ERROR input (Figure 6-26). Once
ERROR is asserted, the backend is required to hold the ERROR input active until DP_DONE occurs.

Figure 6-26 · Backend-Terminated (ERROR) Cycle at Transfer Start

cycle

framen

clk

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

busy

error

mem_add[15:0]

0 1 2 3 4 5 6

6 0

ADDR

0

v4.0 75

Backend-Terminated (BUSY) Cycle during Data Burst (Target)
If the backend runs out of data during a burst transfer (a FIFO empties), the backend can terminate the transfer by
asserting BUSY. The core will then terminate the PCI cycle with a disconnect with or without data, depending on the
state of the internal data pipe. The core will delay asserting the PCI STOPN signal until the internal FIFO is empty. It
is recommended that the RD_STB_IN signal be deasserted once BUSY is asserted. Otherwise, the core will continue to
accept data from the backend and transfer it on the PCI bus.

If the backend does not assert the RD_STB_IN or WR_BE_RDY signals within the eight-clock-cycle requirement, the
PCI core will automatically terminate the PCI cycle.

Figure 6-27 · Backend Burst Read Cycle Terminated by BUSY (RD_SYNC = 0)

Once asserted, BUSY may be deasserted, as in Figure 6-27, or left asserted until the backend has data available. This
would cause any subsequent PCI cycles to be terminated with a retry.

cycle

clk

framen

ad[31:0]

cben[3:0]

par

devseln

irdyn

trdyn

stopn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

busy

error

mem_add[11:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9

ADDR 0 1

6 0

0

000 004

0 1
76 v4.0

Backend-Terminated (BUSY) Cycle during Data Burst (Target)
Figure 6-28 shows BUSY being asserted when RD_SYNC is active. Figure 6-29 on page 78 shows BUSY asserted
during a write cycle. In the case shown, the backend interface had previously indicated that it was ready to accept data by
asserting WR_BE_RDY before asserting BUSY, causing two data words to be written before the PCI cycle was
stopped.

Figure 6-28 · Backend Burst Read Cycle Terminated by BUSY (RD_SYNC = 1)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

busy

error

mem_add[15:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 4 5 6 7 8 9 10

6 0

ADDR 0 1

0

0000 0004

0 1
v4.0 77

Figure 6-29 · Backend Burst Write Cycle Terminated by BUSY

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

gntn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

busy

error

mem_add[11:0]

mem_data_out[31:0]

0 1 2 3 4 5 6 7 8

7 0

ADDR 0 1 2

0

F

000 004

0 1 2
78 v4.0

PCI Configuration Cycle
PCI Configuration Cycle
The core handles PCI configuration cycles without any backend involvement. The core does not allow configuration
space to be added to the backend logic.

During a configuration cycle, the DP_START and DP_DONE outputs will pulse when a configuration cycle occurs, and
the BAR_SELECT output will remain inactive. Figure 6-30 and Figure 6-31 on page 80 show the BAR_SELECT output
as inactive ('111').

Figure 6-30 · Configuration Read Cycle

cycle

clk

idsel

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

0 1 2 3 4 5 6

A 0

ADDR Config Data

0010
v4.0 79

Figure 6-31 · Configuration Write Cycle

cycle

clk

idsel

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[11:0]

mem_data_out[31:0]

0 1 2 3 4

B 0

ADDR 0

7

028

00000000
80 v4.0

PCI Interrupt Generation
PCI Interrupt Generation
To initiate an interrupt, the backend asserts the EXT_INTN input (Figure 6-32). Two cycles later, the PCI INTAN
interrupt signal is asserted.

Figure 6-32 · PCI Interrupt Generation and Acknowledge Sequence

When INTAN is asserted, the Master can read the Interrupt Status register to verify which device is driving INTAN
(cycles R0–R6). Once it has determined which device and the reason for the interrupt, it writes to the requesting
Interrupt Control/Status register to clear the interrupt request (cycles W0–W6).

The Interrupt Control/Status register can be accessed through the configuration space or through a memory BAR if the
DMA registers are mapped to memory space.

cycle

clk

idsel

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

dp_start

dp_done

rd_cyc

wr_cyc

ext_intn

intan

I0 I1 I2 R0 R1 R2 R3 R4 R5 R6 W0 W1 W2 W3 W4 W5 W6 W7

A 0 B 0

ADDR Int Register ADDR Int Register
v4.0 81

Simple DMA Transfer
Initially, a PCI Master writes to the four DMA control registers (cycles C0 to C7 in Figure 6-33). Three clock cycles
after the control register (CR) is written, the core asserts its PCI request signal REQN. When the PCI arbiter grants the
bus and the bus is idle, several clock cycles later the core initiates a PCI cycle asserting the MAST_ACTIVE output.
See cycle A2 in Figure 6-33.

Figure 6-33 · DMA Burst Read Cycle Including DMA Start Sequence

Initially, the core turns on its AD and CBE outputs at the same time that it initiates a backend cycle. The backend
transfer is very similar to a Target transfer, except that the MAST_ACTIVE output is valid during the transfer. The
BAR_SELECT output will be set to the value set in the DMA control register.

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

dma_bar[2:0]

mast_active

dp_start

dp_done

bar_select[2:0]

wr_cyc

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

C0 C1 C2 C3 C4 C5 C6 C7 A0 A1 A2 A3 0 1 2 3 4 5 6 7 8

B 0 7 0

ADDR PA RA TC CR ADDR 0 1 2 3

0

000 004 008 00C 010 014

0 1 2 3 4 5
82 v4.0

Simple DMA Transfer
The core delays asserting FRAMEN during this period to allow the backend interface to become ready. During this
period, the core puts the correct values on the AD and CBEN busses and sets the bus parity.

Figure 6-34 · DMA Burst Read Cycle (RD_SYNC = 0)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

mast_active

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

0 1 2 3 5

000 004 008 00C 010

A0 A1 A2 A3 4

014

6 7 8

7

ADDR

0

10 2 3

0

0 1 2 3 4 5

A4
v4.0 83

After FRAMEN has been asserted, the data transfer proceeds normally. The PCI specification requires a Master to
assert IRDYN within eight clock cycles of FRAMEN assertion. For read transfers, this means that the backend must
provide data within eight clock cycles of DP_START being asserted. When RD_SYNC = 0 or RD_SYNC = 1, the
backend only has seven clock cycles to assert RD_STB_IN and meet the PCI latency requirements (Figure 6-34 on
page 83 and Figure 6-35). For SX-A and RTSX-S implementations, this is reduced to six cycles. For write transfers, the
backend must assert WR_BE_NOW within eight clock cycles to meet the PCI requirements.

During the DMA startup period, the PCI arbiter may remove the bus grant before the core asserts FRAMEN. When
this occurs, the PCI core is required to terminate its DMA cycle. This is shown in Figure 6-37 on page 86, where the
grant is removed after one cycle.

The core provides four additional input signals that are used to control DMA transfers: WR_BUSY_MASTER,
RD_BUSY_MASTER, STOP_MASTER, and STALL_MASTER. STOP_MASTER allows a DMA transfer in
progress to be stopped. WR_BUSY_MASTER and RD_BUSY_MASTER prevent DMA writes to and reads from the
backend from starting. STALL_MASTER allows slow backends to meet the FRAME-to-IRDY assertion requirement
for PCI.

Figure 6-35 · DMA Burst Read Cycle (RD_SYNC = 1)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

mast_active

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

A0 A1 A2 A3 0 1 2 3 4 5 6 7 8 9

7 0

ADDR 0 1 2 3

0

000 004 008 00C 010 014 018 01C 020

0 1 2 3 4 5 6 7
84 v4.0

Simple DMA Transfer
Figure 6-36 · DMA Burst Write Cycle

During the DMA burst write cycles, it is normal for an additional write cycle, such as cycle nine in Figure 6-36, to take
place one clock cycle after MAST_ACTIVE has been deasserted. If necessary, MAST_ACTIVE can be delayed by a
clock cycle externally to generate a version that will still be active when the last write occurs.

cycle

clk

idsel

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

mast_active

dp_start

dp_done

dma_bar[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[11:0]

mem_data_out[31:0]

A0 A1 A2 A3 0 1 2 3 4 5 6 7 8 9

6 0

ADDR 0 1 2 3

F

000 004 008 00C

0 1 2 3
v4.0 85

Figure 6-37 · DMA Cycle with Grant Removal during Startup

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

mast_active

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

A0 A1 A2 A3 A4 A5 A6 A7 0 2 3 4 5 6 7 8

7 0

ADDR 0 1 2 3

0

000 004 008 00C 010 014

0 1 2 3 4 5
86 v4.0

DMA Operation with a FIFO Backend
DMA Operation with a FIFO Backend
Figure 6-38 shows a DMA Master transfer from a backend FIFO to the PCI bus. During the transfer, the Target asserts
STOPN, causing the Master to stop the transfer. During the first PCI cycle, the core reads data words 0 to 9 from the
backend but only transfers 0 to 4 on the PCI bus. During the second PCI cycle, the core reads data words 10 to 13 from
the backend, but transfers 5 to 9 on the PCI bus. These data words had been stored inside the core between data
transfers. Words 10 to 13 are stored inside the core and will be transferred during the next PCI cycle.

Figure 6-38 · DMA Cycle with a FIFO Backend

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

reqn

gntn

mast_active

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

rd_sync

mem_data_in[31:0]

mem_add[11:0]

A0 A1 A2 A3 0 1 2 3 4 5 6 7 8 9 A0 A1 A2 A3 0 1 2 3 4 5 6 7 8 9 10 11 12

7 0 7 0

0 1 2 3 4 5 5 6 7 8 9 10 11

0 7 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

000 004 008 00C 010 014 018 01C 020 024 028 014 018 01C 020
v4.0 87

STOP_MASTER Assertion during Data Burst
If the backend asserts STOP_MASTER when a DMA transfer is taking place, the core will stop the DMA transfer as
soon as possible, as shown in Figure 6-39 to Figure 6-41 on page 90. Due to PCI protocol requirements, the core may
need to transfer one or two additional words after STOP_MASTER has been asserted. The additional data is required
to complete the PCI transfer, as when the core deasserts FRAMEN and asserts IRDYN, valid data must be provided on
the bus. See cycle nine in Figure 6-39.

Figure 6-39 shows STOP_MASTER being asserted during a DMA read operation; in this case, no additional data is
required after STOP_MASTER is asserted. On cycles zero and one, the core reads two words of data. The first of these
words is transferred on the PCI bus on cycle four when the Target asserts TRDYN. During cycle five, the core needs to
deassert FRAMEN and assert IRDYN, since STOP_MASTER has been asserted. This can occur because the second
data word is stored in the core, allowing IRDYN to be asserted.

Figure 6-39 · STOP_MASTER Assertion during DMA Burst Read Cycle (RD_SYNC = 0)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

reqn

gntn

mast_active

stop_master

rd_busy_master

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

rd_sync

A0 A1 A2 A3 0 1 2 3 4 5 6

7 0

ADDR 0 1

0

0000 0004

0 1
88 v4.0

STOP_MASTER Assertion during Data Burst
Figure 6-40 · STOP_MASTER Assertion during DMA Burst Read Cycle (RD_SYNC = 1)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

reqn

gntn

mast_active

stop_master

rd_busy_master

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[15:0]

mem_data_in[31:0]

rd_sync

A0 A1 A2 A3 0 1 2 3 4 5 6

7 0

ADDR 0 1

0

0000 0004

0 1
v4.0 89

Figure 6-41 · STOP_MASTER Assertion during DMA Burst Write Cycle

In the DMA write case, the core will always need to transfer additional data after STOP_MASTER is asserted.
Depending on the state of the transfer, one or two additional words may be transferred after STOP_MASTER
assertion.

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

mast_active

stop_master

wr_busy_master

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[15:0]

mem_data_out[31:0]

A0 A1 A2 A3 0 1 2 3 4 5 6 7

6 0

ADDR 0 1

0

F

0000 0004

0 1
90 v4.0

STOP_MASTER Assertion during Data Burst
If STOP_MASTER is held asserted, the core will start a DMA cycle and terminate after one word has been transferred.
Figure 6-42 shows a DMA cycle being terminated by STOP_MASTER and a subsequent DMA cycle transferring a
single word. To prevent the DMA cycle in Figure 6-42 from starting, the RD_BUSY_MASTER and
WR_BUSY_MASTER inputs can be used.

Figure 6-42 · STOP_MASTER Held Asserted during DMA Burst Read

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

mast_active

stop_master

rd_busy_master

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_in

rd_stb_out

mem_add[11:0]

mem_data_in[31:0]

rd_sync

A0 A1 A2 A3 0 1 2 3 4 5 6 A1 A2 A3 0 1 2 3 4 5

7 0 7 0

ADDR 0 1 ADDR 2

0 7 0

000 004 008 00C

0 1 2 3
v4.0 91

RD_BUSY_MASTER and WR_BUSY_MASTER Operation
The RD_BUSY_MASTER and WR_BUSY_MASTER inputs can be used to prevent a DMA operation from starting
until the backend is able to accept or provide data. For instance, these inputs could be tied to FIFO empty and almost
full flags, respectively. In this case, DMA read transfers would not be started if an external FIFO were empty, and DMA
write transfers would not be started if an external FIFO were almost full.

If multiple memory interfaces are implemented, each with a FIFO, the DMA_BAR output indicates which BAR
memory space the DMA controller is accessing. The appropriate FIFO empty signal should be multiplexed onto the
RD_BUSY_MASTER input; likewise for WR_BUSY_MASTER.

Figure 6-43 shows a DMA read cycle in which RD_BUSY_MASTER is initially active. When it goes inactive (cycle
R0) the core starts the DMA cycle by asserting the PCI bus request in cycle R1. The DMA transfer then progresses
normally.

Figure 6-43 · RD_BUSY_MASTER Operation

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

stopn

reqn

gntn

mast_active

dp_start

dp_done

rd_cyc

bar_select[2:0]

rd_stb_in

rd_stb_out

rd_busy_master

mem_add[11:0]

mem_data_in[31:0]

rd_sync

R0 R1 A0 A1 A2 A3 0 1 2 3 4 5 6 7 8 9

7 0

ADDR 0 1 2 3

0

000 004 008 00C 010 014

0 1 2 3 4 5
92 v4.0

RD_BUSY_MASTER and WR_BUSY_MASTER Operation
Figure 6-44 shows the equivalent DMA write cycle. In this case, the DMA cycle starts when WR_BUSY_MASTER is
deasserted in cycle R0.

Figure 6-44 · WR_BUSY_MASTER Operation

These two inputs and STOP_MASTER can be used to start and stop a DMA transfer under hardware control. Once
the DMA control registers have been programmed, the DMA can be started by deasserting the Master busy signals. It
can be stopped by asserting the Master stop and busy inputs.

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

mast_active

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

wr_busy_master

mem_add[11:0]

mem_data_out[31:0]

R0 R1 A0 A1 A2 A3 0 1 2 3 4 5 6 7 8 9 10

6 0

ADDR 0 1 2 3

0

F

000 004 008 00C

0 1 2 3
v4.0 93

STALL_MASTER Operation
STALL_MASTER allows the backend to increase the number of clock cycles it is allowed from DP_START assertion
to RD_STB_IN or WR_BE_RDY assertion for DMA transfers. As described in “Simple DMA Transfer” on page 82,
the PCI specification requires a Master to assert IRDYN within eight clock cycles of FRAMEN, so the backend logic
must assert these inputs within eight cycles of DP_START.

When STALL_MASTER is asserted, the core will delay the assertion of FRAMEN while the backend becomes ready.
STALL_MASTER must be asserted on the clock cycle after MAST_ACTIVE becomes active, at the same time the
core asserts DP_START. The core will then assert FRAMEN two clock cycles after STALL_MASTER is deasserted
(with STALL_MODE = 0), and IRDYN will be asserted two clock cycles after RD_STB_IN is asserted. This allows
the backend to control the FRAMEN-to-IRDYN delay (see Figure 6-45 through Figure 6-47 on page 96).

Figure 6-45 · STALL_MASTER Assertion DMA Read Cycle (RD_SYNC = 0)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

mast_active

stall_master

dp_start

dp_done

rd_cyc

dma_bar[2:0]

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in

rd_sync

A0 A1 A2 A3 A4 A5 A6 A7 A8 0 1 2 3 4 5 6 7 8

7 0

ADDR 0 1 2 3

000 004 008 00C 010 014

0 1 2 3 4 5
94 v4.0

STALL_MASTER Operation
Figure 6-46 · STALL_MASTER Assertion DMA Read Cycle (RD_SYNC = 1)

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

stall_master

mast_active

dp_start

dp_done

rd_cyc

bar_select[2:0]

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

A0 A1 A2 A3 A4 A5 A6 A7 A8 0 1 2 3 4 5 6 7 8

7 0

ADDR 0 1 2 3

0

000 004 008 00C 010 014 018 01C

0 1 2 3 4 5 6 7
v4.0 95

Figure 6-47 · STALL_MASTER Assertion DMA Write Cycle

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

stall_master

mast_active

dp_start

dp_done

bar_select[2:0]

wr_cyc

wr_be_rdy

wr_be_now[3:0]

mem_add[11:0]

mem_data_out[31:0]

A0 A1 A2 A3 A4 A5 A6 A7 A8 0 1 2 3 4 5 6 7 8 9 10

6 0

ADDR 0 1 2 3

0

F

000 004 008 00C

0 1 2 3
96 v4.0

STALL_MASTER Operation
When STALL_MASTER is asserted, the likelihood that the PCI arbiter will remove the PCI bus grant signal during
the DMA startup sequence is greatly increased. The bus is idle while the core delays asserting FRAMEN, and the
arbiter may remove the bus grant if a higher priority device requests the bus. This will cause the core to terminate the
DMA cycle. DP_DONE will be asserted, as shown in Figure 6-48.

When GNTN is removed, the core aborts the current DMA cycle. The core will restart the cycle when the bus is
regranted. At that time, it will reread the data from the backend. The core will not reread the data if FIFO recovery
mode is enabled in the core. The core will continue to request the bus until it manages to start a cycle and FRAMEN is
asserted.

In some systems, this could prevent the core from being given sufficient bus access, preventing data from being
transferred at the expected rate.

STALL_MASTER must not be used to inject more than a 16-clock-cycle delay from DP_START to FRAMEN
assertion. Doing so would violate the PCI specification. The core should assert FRAMEN within 16 clock cycles of
GNTN assertion.

Figure 6-48 · STALL_MASTER Assertion and Cycle Aborted due to Loss of GNTN

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

stall_master

mast_active

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_data_in[31:0]

mem_add[11:0]

rd_sync

90 91 A0 A1 A2 A3 A4 A5 A6 A7 A0 A1 A2 A3 A4 A5 A6 A7 A0 A1 A2 A3 0 1 2 3 4 5 6 7

7 7 7 0 Z

ADDR ADDR ADDR 0 1 2 3

0 7 0 7 0

0 1 2 3 4 5

000000 004 008 00C 010 014
v4.0 97

DMA Register Access from the Backend
An interface is provided that allows the PCI configuration space and DMA registers to be accessed from the core
backend rather than from the PCI bus. When the backend needs to access these registers, it must arbitrate for control of
the core backend interface using the BE_REQ and BE_GNT handshake signals (Figure 6-49 to Figure 6-53 on
page 100). Once granted, it may access the DMA registers.

Figure 6-49 · DMA Register Single Write Cycle

Writes to the DMA register are accomplished by asserting BE_WRITE, valid address, and valid data at the same time.
Registers can be updated one at a time or in bursts by changing the address and data while keeping BE_WRITE
asserted. If required, BE_WRITE can be deasserted during a burst write. A separate 8-bit address bus, BE_ADDRESS,
is provided. The data input uses the normal MEM_DATA_IN input. Four separate BE_WRITE signals are provided,
one for each byte of the 32-bit wide registers.

Figure 6-50 · DMA Register Single Read Cycle

cycle

clk

be_req

be_gnt

be_address[7:0]

be_write

be_read

mem_data_in[31:0]

0 1 2 3

ADDR

DATA

cycle

clk

be_req

be_gnt

be_write

be_read

be_address[7:0]

mem_data_out[31:0]

0 1 2 4 5 6 7 8

ADDR

DATA
98 v4.0

DMA Register Access from the Backend
The registers may be read by asserting BE_READ and a valid address. Read data is pipelined with two cycles of delay
between valid address and valid data. The data output shares the MEM_DATA_OUT output.

While the backend has control of the backend, BE_GNT = 1. The core will issue Target retry requests if a PCI Master
attempts a Target access to the core. Therefore, the backend logic should not assert BE_REQ continuously; in that case,
another Master will not be able to access the Target functions.

Figure 6-51 · DMA Register Burst Write Cycle

Figure 6-52 · DMA Register Burst Read Cycle

cycle

clk

be_req

be_gnt

be_address[7:0]

be_write

be_read

mem_data_in[31:0]

0 1 2 3 4 5 6 7

50 54 58 5C

0 1 2 3

cycle

clk

be_req

be_gnt

be_write

be_read

be_address[7:0]

mem_data_out[31:0]

0 1 2 3 4 5 6 7 8 9 10

50 54 58 5C 60

0 1 2 3 4
v4.0 99

Figure 6-53 shows a DMA startup sequence from the backend interface. Initially, the backend requests access to the bus
by asserting BE_REQ. When granted, it writes to the four DMA registers (cycles B2–B5), writing to the control
register last. Three clock cycles after the write to the control register, the core asserts the PCI bus request and carries out
a normal DMA transfer.

Figure 6-53 · DMA Register Access and DMA Startup

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

be_req

be_gnt

be_address[7:0]

be_write

mast_active

dp_start

dp_done

bar_select[2:0]

rd_cyc

rd_stb_out

rd_stb_in

mem_add[11:0]

mem_data_in[31:0]

rd_sync

B0 B1 B2 B3 B4 B5 B6 A0 A1 A2 A3 0 1 2 3 4 5 6 7 8

7 0

ADDR 0 1 2 3

50 54 58 5C

0

004 00800C 010 014

PA RA TC CR 0 1 2 3 4 5
100 v4.0

Direct DMA Transfers
Direct DMA Transfers
CorePCIF supports direct DMA transfers. In this mode, the data used for the PCI transfer is read from or written to
one of the internal DMA registers rather than the backend interface. Figure 6-54 and Figure 6-55 on page 102 show a
PCI write cycle and a PCI read cycle.

Figure 6-54 · Direct DMA Write to the PCI Bus

cycle

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

be_req

be_gnt

be_address[7:0]

be_write

be_read

mast_active

dp_start

dp_done

rd_cyc

mem_data_in[31:0]

B0 B1 B2 B3 B4 B5 B6 28 29 A0 A1 A2 A3 0 1 2 3 4 5 6 7 8

7 0

ADDR 0

50 54 58 5C

ADDR DATA 4 CR
v4.0 101

In Figure 6-55, the DMA registers are written during cycles B2 to B5. The PCI address is written during cycle B2, and
the data values are written during cycle B3. Once the DMA control register is written (cycle B4), a DMA cycle is
initiated, as normal. When DP_START is asserted, the BAR_SELECT output remains at '111', similar to a Target
configuration cycle. The PCI cycle completes, with the data word being taken from the internal DMA control register.

Figure 6-55 shows the equivalent PCI read transfer. The data word is written into an internal DMA register. Also
shown is a second backend cycle (R0–R7) that reads the data word from the internal registers once the DMA cycle
completes.

Figure 6-55 · Direct DMA Read from the PCI Bus

cycle[7:0]

clk

framen

cben[3:0]

ad[31:0]

par

devseln

irdyn

trdyn

reqn

gntn

be_req

be_gnt

be_write

be_read

be_address[7:0]

mast_active

dp_start

dp_done

mem_data_in[31:0]

mem_data_out[31:0]

20 W0 W1 W2 W4 W5 W6 A0 A1A2 A3 0 1 2 3 4 5 6 7 R0 R1 R2 R3 R4 R5 R6 R7 R8

6 0

DATA

50 54 58 5C 50 54 58 5C 60

ADDR 4 CR

ADDR DATATC CR
102 v4.0

Hot-Swap Sequence
Hot-Swap Sequence
Figure 6-56 and Figure 6-57 on page 104 show the switching on of the hot-swap interface signals during an insertion
sequence and an extraction sequence.

Figure 6-56 · Hot-Swap Insertion Sequence

The HS_BDSELN signal becomes active at the start of the insertion sequence. This causes the core to exit the reset
condition, asserting its HS_ENUMN and HS_HEALTHYN outputs. Sometime later, the PCI Master reads the hot-
swap register to see why HS_ENUMN is active. In this case, bit 23 will be active, indicating an insertion. After this, the
PCI Master clears the insertion status bit, causing HS_ENUMN to become inactive. The PCI Master then sets up the
PCI configuration space.

clk
framen

ad[31:0]
cben[3:0]

devseln
irdyn
trdyn

dp_start
dp_done

hs_bdseln
hs_switchn
hs_enumn

hs_healthyn
hs_ledn

rst_outn
hs_powgoodn

hs_powfailn

HS HS CFG Data
A 0 B 0 B
v4.0 103

The extraction process is triggered by the HS_SWITCHN input being asserted. This causes the HS_ENUMN output
to be asserted. Sometime later, the PCI Master reads the hot-swap register to see why HS_ENUMN is active. In this
case, bit 22 will be active, indicating an extraction request. The PCI Master clears the extraction status bit, causing
HS_ENUMN to become inactive. As the board is removed, HS_BDSELN becomes active, causing the internal reset to
be asserted.

Figure 6-57 · Hot-Swap Extraction Sequence

clk

ad[31:0]

cben[3:0]

framen

devseln

irdyn

trdyn

dp_start

dp_done

hs_bdseln

hs_switchn

hs_powgoodn

hs_powfailn

hs_enumn

hs_ledn

hs_healthyn

rst_outn

HS HS

A 0 B 0
104 v4.0

7
PCI Configuration Space

Target Configuration Space
The PCI specification requires a 256-byte configuration space (header) to define various attributes of the PCI Target, as
shown in Table 7-1. All registers shown in bold are implemented. Reads of all other registers will return
zero. CorePCIF uses the capability pointer to extend the configuration space. One or two capability structures are

added. Vendor capability (ID = 9) is added along with optional hot-swap capability (ID = 6).

Table 7-1 · PCI Configuration Space

31–24 23–16 15–8 7–0
Address

Base PCI Configuration Space

Device ID Vendor ID 00h

Status Command 04h

Class Code Revision ID 08h

BIST Header Type Latency Timer Cache Line Size 0Ch

Base address #0 10h

Base address #1 14h

Base address #2 18h

Base address #3 1Ch

Base address #4 20h

Base address #5 24h

CardBus CIS Pointer (optional) 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM base address 30h

Reserved Capability Pointer 34h

Reserved 38h

Max. Latency Min. Grant Interrupt Pin Interrupt Line 3Ch
v4.0 105

For a Target-only core, the capability pointer points to a vendor capability structure at address 44h (Table 7-2). The next
pointer points to the optional hot-swap capability at address 40h. If hot-swap capability is not implemented, address 40h
will be zero, and the next pointer, at address 44h, will also be zero.

For Master cores, the capability pointer points to a vendor capability structure at 4Ch (Table 7-3), followed by the
optional hot-swap capability. If hot-swap capability is not implemented, address 40h will be zero, and the next pointer,
at address 4Ch, will also be zero.

Table 7-2 · Capability Structure (Target-only cores with hot-swap)

31–24 23–16 15–8 7–0
Address

Upper Configuration Space

Reserved Hot-Swap Next Pointer (00h) Capability ID (06h) 40h

Actel Capabilities Size (8) Next Pointer (40h) Capability ID (09h) 44h

Interrupt Control Register 48h

Reserved 4Ch

Reserved 50h

Reserved 54h

Reserved 58h

Reserved 5Ch

Table 7-3 · Capability Structure (Master cores with hot-swap)

31–24 23–16 15–8 7–0
Address

Upper Configuration Space

Reserved Hot-Swap Next Pointer (00h) Capability ID (06h) 40h

Reserved 44h

Reserved 48h

Actel Capabilities Size (20) Next Pointer (40h) Capability ID (09h) 4Ch

PCI Address 50h

Backend Address/Data Value 54h

Transfer Count 58h

DMA Control Register 5Ch
106 v4.0

Target Configuration Space
Read-Only Configuration Registers
The following read-only registers, listed also in Table 7-1 on page 105, have default values that are set by parameters.
See the PCI specification for further information on setting these values:

• Vendor ID

• Device ID

• Revision ID

• Class Code

• Subsystem ID

• Subsystem Vendor ID

• Maximum Latency and Minimum Grant

Table 7-4 · Capability Structure (Target-only cores with hot-swap and FIFO status)

31–24 23–16 15–8 7–0 Address

Upper Configuration Space

Reserved Hot-Swap Next Pointer (00h) Capability ID (06h) 40h

Actel Capabilities Size (12) Next Pointer (40h) Capability ID (09h) 44h

Interrupt Control Register 48h

FIFO Status Register 4Ch

Reserved 50h

Reserved 54h

Reserved 58h

Reserved 5Ch

Table 7-5 · Capability Structure (Master cores with hot-swap and FIFO status)

31–24 23–16 15–8 7–0 Address

Upper Configuration Space

Reserved Hot-Swap Next Pointer (00h) Capability ID (06h) 40h

Reserved 44h

Actel Capabilities Size (24) Next Pointer (40h) Capability ID (09h) 48h

FIFO Status Register 4Ch

PCI Address 50h

Backend Address/Data Value 54h

Transfer Count 58h

DMA Control Register 5Ch
v4.0 107

Actel has an allocated Vendor ID that CorePCIF customers may use, and Actel will allocate a unique Device ID when
the Actel Vendor ID is used. Actel will allocate unique subsystem Vendor IDs on request. Contact Actel Technical
Support (tech@actel.com) for more information.

The capability pointer is used to point to the CorePCIF vendor capability data, and also to the hot-swap capability, if
enabled. The capability list structure varies, depending on the core configuration.

Read/Write Configuration Registers
The following registers have at least one bit that is both read- and write-capable. For a complete description, refer to the
appropriate table.

• Command Register (04h) (Table 7-6)

• Status Register (06h) (Table 7-7 on page 109)

• Memory Base Address Register Bit Definition (Table 7-8 on page 109)

• I/O Base Address Register Bit Definition (Table 7-9 on page 110)

• Interrupt Register (3Ch) (Table 7-10 on page 110)

• Interrupt Control/Status Register (48h) (Table 7-11 on page 110)

Optional Hot-Swap Register (80h) (Table 7-12 on page 110)

Table 7-6 · Command Register 04 Hex

Bit(s) Type Description

0 RW
I/O Space
A value of 0 disables the device's response to I/O space addresses. Set to 0 after reset.

1 RW
Memory Space
A value of 0 disables the device's response to memory space addresses. Set to 0 after reset.

2 RW
Bus Master
When set to 1, this bit enables the macro to behave as a PCI bus Master. For Target-only implementation, this bit is
read-only and is set to 0.

3 RO
Special Cycles
Response to special cycles is not supported in the core. Set to 0.

4 RO
Memory Write and Invalidate Enable
Memory Write and Invalidate Enable is not supported by the core. Set to 0.

5 RO
VGA Palette Snoop
Assumes a non-VGA peripheral. Set to 0.

6 RW
Parity Error Response
When 0, the device ignores parity errors. When 1, normal parity checking is performed. Set to 0 after reset.

7 RO
Wait Cycle Control
No data-stepping supported. Set to 0.

8 RW
SERRN Enable
When 0, the SERRN driver is disabled. Set to 0 after reset.

9 RO Set to 0. Only fast back-to-back transactions to the same agent are allowed.

10 RW
Interrupt Disable
When set, this prevents the core from asserting its INTAn output. This bit is set to 0 after reset.

15:11 RO Reserved. Set to '00000'.
108 v4.0

mailto:tech@actel.com

Target Configuration Space
Table 7-7 · Status Register 06 Hex

Bit(s) Type Description

2:0 RO Reserved. Set to '000'.

3 RO
Interrupt Status
This bit reflects the status of the INTAn output.

4 RO
Capabilities List
This is set to 1. CorePCIF implements a vendor capability ID and optional hot-swap capability.

5 RO
66 MHz Capable
Set to 1 to indicate a 66 MHz Target, or 0 to indicate a 33 MHz Target. The value is set by the MHZ_66
parameter.

6 RO
UDF Supported
Set to 0 (no user definable features).

7 RO
Fast Back-to-Back Capable
Set to 0 (fast back-to-back to same agent only).

8 RW
Data Parity Error Detected
If the Master controller detects a PERRn, this bit is set to 1. This bit is read-only in Target-only implementations
and is set to 0. It is cleared by writing a '1'.

10:9 RO
DEVSELn timing
Set to '10' (slow DEVSELn response).

11 RW
Signaled Target Abort
Set to 0 at system reset. This bit is set to 1 by internal logic whenever a Target abort cycle is executed. It is cleared by
writing a '1'.

12 RW
Received Target Abort
If the Master controller detects a Target Abort, this bit is set to 1. This bit is read-only in Target-only
implementations and is set to 0. It is cleared by writing a '1'.

13 RW
Received Master Abort
If the Master controller performs a Master Abort, this bit is set to 1. This bit is read-only in Target-only
implementations and is set to 0. It is cleared by writing a '1'.

14 RW
Signaled System Error
Set to 0 at system reset. This bit is set to 1 by internal logic whenever the Target asserts the SERRn signal. It is
cleared by writing a '1'.

15 RW
Detected Parity Error
Set to 0 at system reset. This bit is set to 1 by internal logic whenever a parity error, address, or data is detected,
regardless of the value of bit 6 in the command register. It is cleared by writing a '1'.

Table 7-8 · Base Address Registers (memory) 10 Hex to 24 Hex

Bit(s) Type Description

0 RO Memory Space Indicator. Set to 0.

2:1 RO Set to '00' to indicate anywhere in 32-bit address space.

3 RO Prefetchable. Set by the BARi_PREFETCH parameter.

31:4 RW/RO
Base Address. Depending on the BARi_ADDR_WIDTH parameter, these bits may be writable or read-only. If a
128 kB address space is set (BARi_ADDR_WIDTH = 17), bits 31:17 will be readable/writable, and bits 16:4 will
be read-only and set to 0.
v4.0 109

Table 7-9 · Base Address Registers (I/O) 10 Hex to 24 Hex

Bit(s) Type Description

0 RO I/O Space Indicator. Set to 1.

1 RO Reserved. Set to 0.

31:2 RW
Base Address. Depending on the BARi_ADDR_WIDTH parameter, these bits may be writable or read-only. If a
256-byte address space is set (BARi_ADDR_WIDTH = 8), bits 31:24 will be readable/writable, and bits 7:2 will be
read-only and set to 0.

Table 7-10 · Expansion ROM Address Register 30 Hex

Bit(s) Type Description

0 RO Expansion ROM enable bit. Set by the EXPR_ENABLE parameter.

10:1 RO Reserved. Set to 0.

31:11 RW
Base Address. Depending on the EXPR_ADDR_WIDTH parameter, these bits may be writable or read-only. If a
64 kB address space is set (EXPR_ADDR_WIDTH = 16), bits 31:16 will be readable/writable, and bits 15:11 will be
read-only and set to 0.

Table 7-11 · Capabilities Pointer 34 Hex

Bit(s) Type Description

7:0 R For Target-only cores, this will be set to 44 hex. If a Master function is implemented, it will be set to 48 hex or 4C hex.

31:8 RO Reserved. Set to 0.

Table 7-12 · Interrupt Register 3C Hex

Bit(s) Type Description

7:0 RW Required read/write register. This register has no impact on internal logic.

31:8 RO Set to 01 hex to indicate INTAn.

Table 7-13 · Hot-Swap Capability Register 40 Hex

Bit(s) Type Description

7:0 RO Hot-swap capability. Set to 06 hex.

15:8 RO Next Capability Pointer. Set to 00 hex.

16 RO
Device Hiding Arm (DHA)
Since the core only supports programming interface 0, this is '0'.

17 RW
ENUM# Signal Mask (EIM)
When 1, the HS_ENUMn output is held inactive.

18 RO
Pending Insert or Extract (PIE)
Set when bit 22 or 23 is set.

19 RW LED On/Off (LOO)
110 v4.0

Target Configuration Space
21:20 RO
Programming interface (PI)
Fixed at '00', programming interface 0 supports INS, EXT, LOO, and EIM.

22 RW
ENUM# Status – Extraction (EXT)
When set to 1, indicates that the board is about to be extracted. Writing a '1' clears this bit.

23 RW
ENUM# Status – Insertion (INS)
When set to 1, indicates that the board has just been inserted. Writing a '1' clears this bit.

31:24 RO Reserved. Set to 0.

Table 7-14 · Actel Capabilities Register 44, 48, or 4C Hex

Bit(s) Type Description

7:0 RO Actel vendor capability. Set to 09 hex.

15:8 RO Next Capability Pointer. Set to 40 hex.

23:16 RO Capability Size. Set to 8, 12, 20, or 24, depending on core configuration.

25:24 RO

DMA_REG_LOG
Indicates the DMA register location.

0: DMA registers are not implemented.

1: DMA registers are only mapped in the PCI configuration space.

2: DMA registers are mapped to memory locations 50–5F hex of the BAR, indicated by bits 28:26.

3: DMA registers are mapped to I/O locations 50–5F hex of the BAR, indicated by bits 28:26. These two bits are set
by the DMA_REG_LOC parameter.

28:26 RO
Indicates which BAR is used to access the DMA registers if mapped to memory or I/O space. These three bits are set
by the DMA_REG_BAR parameter.

29 RO
Indicates that the backend interface is enabled and has access to the DMA registers. This bit is set by the BACKEND
parameter.

30 RO
When set, indicates that the BAR overflow logic in the core is disabled. Burst accesses will simply wrap within the
BAR. This bit is set by the DISABLE_BAROV parameter.

31 RO
When set, indicates that the watchdog timer in the core is disabled. The core may insert more than the allowed
number of wait cycles during a transfer. This bit is set by the DISABLE_WDOG parameter.

Table 7-15 · Interrupt Control Register 48 Hex (MASTER = 0)

Bit(s) Type Description

9:0 RO Reserved. Set to 0.

10 W
Flush Internal FIFOs
Only has an effect when the FIFO recovery logic is enabled. When written with a '1', all the internal FIFOs will be
flushed. When the FIFOs are flushed, any data that was stored in them will be lost. Always returns 0 when read.

13:11 RO Reserved. Set to 0.

14 RW
External Interrupt Status
A '1' in this bit indicates an active external interrupt condition (assertion of EXT_INTn). It is cleared by writing a '1'
to this bit. It is set to 0 after reset.

Table 7-13 · Hot-Swap Capability Register 40 Hex

Bit(s) Type Description
v4.0 111

15 RW
External Interrupt Enable
Writing a '1' to this bit enables support for the external interrupt signal. Writing a '0' to this bit disables external
interrupt support.

31:16 RO Reserved. Set to 0.

Table 7-16 · FIFO Status Register

Bit(s) Type Description

2:0 RO Number of words queued inside the core for BAR 0

3 RO External FIFO status for BAR 0; 0 = empty, 1 = non-empty

6:4 RO Number of words queued inside the core for BAR 1

7 RO External FIFO status for BAR 1; 0 = empty, 1 = non-empty

10:8 RO Number of words queued inside the core for BAR 2

11 RO External FIFO status for BAR 2; 0 = empty, 1 = non-empty

14:12 RO Number of words queued inside the core for BAR 3

15 RO External FIFO status for BAR 3; 0 = empty, 1 = non-empty

18:16 RO Number of words queued inside the core for BAR 4

19 RO External FIFO status for BAR 4; 0 = empty, 1 = non-empty

22:20 RO Number of words queued inside the core for BAR 5

23 RO External FIFO status for BAR 5; 0 = empty, 1 = non-empty

31:24 RO Reserved. Set to 0.

Table 7-17 · PCI Address Register 50 Hex

Bit(s) Type Description

1:0 RW
These two bits set the lowest two bits of the PCI address. For normal DWORD-aligned transfers, these two bits
should be '00'. They may be set to non-zero values to alter the requested burst order for memory accesses or to specify
a byte address for I/O accesses.

31:2 RW
This location contains the PCI start address and will increment during the DMA transfer.

If using 64-bit transfers, bit 2 should also be set to 0.

Table 7-15 · Interrupt Control Register 48 Hex (MASTER = 0)

Bit(s) Type Description
112 v4.0

Target Configuration Space
Table 7-18 · Backend Address Register 54 Hex (ENABLE_DIRECTDMA = 0)

Bit(s) Type Description

1:0 RO Set to '00'. PCI transfers must be on DWORD boundaries.

31:2
RW/
RO

This location contains the backend start address and will increment during the DMA transfer. The width of this
register depends on the MADDR_WIDTH parameter. If MADDR_WIDTH is set to 20, bits 31:20 of this register
are read-only and set to 0.

If using 64-bit transfers, bit 2 should be set to 0.

Table 7-19 · Backend Address and Data Register 54 Hex (ENABLE_DIRECTDMA = 1)

Bit(s) Type Description

31:0 RW

When DMA_BAR = '111' (Table 7-21 on page 113), this register contains the 32-bit data value that will be written
to or read from the PCI bus.

When DMA_BAR ≠ '111', this specifies the backend address.

The core will ignore bits 1 and 0 to align the transfer count to a DWORD boundary. If using 64-bit transfers, bit 2
should also be set to 0.

Table 7-20 · DMA Transfer Count 58 Hex

Bit(s) Type Description

31:0 RW
Specifies the size of a DMA transfer in bytes. For 32-bit operation, this should be a multiple of four, and for 64-bit
operations, a multiple of eight. Bits 1:0 are read-only and return 0. The maximum transfer size is set by the
DMA_COUNT_WIDTH parameter. When set to zero, 2DMA_COUNT_WIDTH bytes will be transferred.

Table 7-21 · DMA Control Register 5C Hex

Bit(s) Type Description

1:0 RW

DMA Status
00: No Error
01: Master Abort
10: Parity Error
11: Target Abort

2 RW
DMA Done
A '1' indicates that the DMA transfer is complete. Writing a '0' clears this bit.

3 RW

DMA Request
Writing a '1' will initiate a DMA transfer, and the bit will remain set until the DMA transfer completes or an error
occurs (Master abort or Target abort). This bit can only be set if the bus Master enable bit is set in the PCI Command
register (Table 7-6 on page 108).
v4.0 113

7:4 RW

Cycle Type
Sets the DMA transfer type and direction. These four bits directly set the PCI transfer type. Any of the sixteen PCI
commands may be used, but the recommended commands are as follows:

0010
Data is moved from the PCI bus to the backend.
An I/O Read command is used on the PCI bus.

0011
Data is moved from the backend to the PCI bus.
An I/O Write command is used on the PCI bus.

0110
Data is moved from the PCI bus to the backend.
A Memory Read command is used on the PCI bus.

0111
Data is moved from the backend to the PCI bus.
A Memory Write command is used on the PCI bus.

1010
Data is moved from the PCI bus to the backend.
A Configuration Read command is used on the PCI bus.

1011
Data is moved from the backend to the PCI bus.
A Configuration Write command is used on the PCI bus.

1100
Data is moved from the PCI bus to the backend.
A Memory Read Multiple command is used on the PCI bus.

8 RW
DMA Enable
This bit must be set to 1 to enable any DMA transfers.

9 RW
Transfer Width
Writing a '1' to this bit enables a 64-bit memory transaction. For 32-bit cores, this bit is read-only and is set to 0.

10 W
Flush Internal FIFOs
Only has an effect when the FIFO recovery logic is enabled. When written with a '1', all internal FIFOs will be
flushed. When the FIFOs are flushed, any data that was stored in them will be lost. Always returns 0 when read.

11 RO Reserved. Returns 0.

12 RW
DMA Interrupt Status
A '1' in this bit indicates that the DMA cycle has completed and the interrupt is active. It is cleared by writing a '1' to
this bit. Set to 0 after reset.

13 RW
DMA Interrupt Enable
Writing a '1' to this bit enables the DMA Complete interrupt. Set to 0 after reset.

14 RW
Backend Interrupt Status
A '1' in this bit indicates an active backend interrupt condition (backend assertion of EXT_INTn). It is cleared by
writing a '1' to this bit. Set to 0 after reset. This bit can only be set when the backend interrupt is enabled (bit 15).

15 RW
Backend Interrupt Enable
Writing a '1' to this bit enables the backend interrupt. Writing a '0' to this bit disables backend interrupt support.

23:16 RW

Byte Enables
These eight bits directly set the byte enable values that will be used during the DMA transfer. When bit 16 is 0,
CBEN[0] will be active (LOW). Bit 17 controls CBEN[1], etc. In 32-bit cores, bits 23:20 are read-only and return 0.
For normal burst DMA transfers, these bits should be set to 0.

25:24 RO Reserved. Set to 0.

Table 7-21 · DMA Control Register 5C Hex (Continued)

Bit(s) Type Description
114 v4.0

Target Configuration Space
28:26 RW

DMA BAR Select
Used to select which of the backend memory BARs the DMA will address. These bits are used to drive the
DMA_BAR and BAR_SELECT outputs during the DMA transfer.

When set to '000', BAR 0 will be selected. When set to '110', the Expansion ROM will be selected. When set to
'111', a direct DMA access will be done. Data will be read from and written to the DMA data registers (54h), and no
backend cycle will be carried out. When direct DMA mode is used, the transfer count register (58h) must be
programmed to transfer one DWORD (0004 hex). The transfer width must be set to 32 bits.

31:29 RW

Maximum Burst Length
When set to '000', the Master controller will attempt to complete the requested transfer in a single burst. When set to
a non-zero value, the Master will automatically break up long bursts and limit burst transfer lengths to 2n–1, where n is
the decimal value of bits 31:29. Therefore, maximum transfer lengths can be limited to 1, 2, 4, 8, 16, 32, or 64
dataphases. For example, if the maximum burst length is set to '101' (16 transfers), a 1,024-DWORD transfer count
would be broken up into 64 individual PCI accesses.

Table 7-21 · DMA Control Register 5C Hex (Continued)

Bit(s) Type Description
v4.0 115

8
Testbench Operation

Three testbenches are provided with CorePCIF.

• VHDL verification testbench: Complex testbench that verifies core operation. This testbench exercises all the features
of the core. Actel recommends not modifying this testbench. This VHDL testbench can be used to simulate the Verilog
version of the core if a mixed-mode simulator is available.

• VHDL user testbench: Simple-to-use testbench written in VHDL. This testbench is intended for customer
modification.

• Verilog user testbench: Simple-to-use testbench written in Verilog. This testbench is intended for customer
modification.

Verification Testbench
The verification testbench consists of a master test controller, a PCI monitor, an arbiter, and devices under test. The test
master is used for generating configuration cycles and performing basic read-and-write tests of the macro when
operating as a PCI Target. The PCI monitor checks for and flags abnormal PCI bus activity. The arbiter determines
PCI bus ownership.

Figure 8-1 · The Verification Testbench

The verification testbench supports up to 14 cores connected to the PCI bus. Each core is configured differently,
allowing multiple core configurations to be tested at the same time. Table 8-1 on page 118 details the core configurations
used in the standard testbench.

PCI Bus

Test Master Fast Master PCI Monitor

Procedural Testbench

Core 1 Core N–1Core 2 Core N–2

Backend
Memory and

Control

PCI
Arbiter

Backend
Memory and

Control

Backend
Memory and

Control

Backend
Memory and

Control

PCI Target
v4.0 117

The following coding is used within the table:

Function T = Target, M = Master, B = Backend, D = Direct DMA, S = Slow Read, H = Hot-Swap

DMA C = DMA registers in configuration space
Mn = DMA registers in memory space using BAR n
In = DMA registers in I/O space using BAR n
B = Backend access to DMA registers enabled
nn, nnK = Maximum DMA transfer count; 4K = 4096 bytes
N = No access; replaces C, M, I, or B

Bars nn, nnK, nnM = BAR size
M = Memory space
I = I/O space

The procedural testbench controls testbench operation through the test master and fast master blocks. When the
testbench starts, the procedural testbench scans the PCI bus, discovering which PCI devices are connected to the bus.
As shipped, it will discover 12 PCI cores with configurations as described in Table 8-1. It will then allocate memory
space and configure all the cores.

Once all the cores are configured, the procedural testbench will prompt for which test to run. The available tests are
listed below. Entering 99 will run all tests and exit the simulation. Running all tests may take more than 10 hours,
depending on your computer configuration. The tests are fully detailed in “Verification Testbench Tests” on page 141.

CorePCI Verification Testbench Commands

#

ENTER => 01 To Run Simple Read/Write Test

ENTER => 02 To Run All BAR’s Read/Write Test

ENTER => 03 To Run Byte Enable Test

ENTER => 04 To Run DEVSEL Timing Test

ENTER => 05 To Run Address Parity Error Test

Table 8-1 · Verification Testbench Configurations

Core Width Function DMA
BAR

B0 B1 B2 B3 B4 B5 ROM

1 32 TH - 1KI 4KM 4KMF 512M 4KM 4K

2 32 TM C4K 64KM 4KM

3 32 TMBD NB1G 1GM 64KI

4 32 MBD NB4K

5 32 TMBD M3B1G 1GM 1KM 1KM 256M

6 32 TMBD M2B16K 64KMF 64KMF 256M 64KMF

7 32 TMS CB4K 1KI 1KM 64I 128I 64I

8 64 T – 64KM 1KI

9 64 TMB I2B 256KM 64KI 256I

10 64 TMB NB64K 4KMF 4KMF 4KMF 4KMF 4KMF 4KMF

11 64 MB NB4K

12 64 TM M2N16K 256KM 1KM 256M
118 v4.0

Verification Testbench
ENTER => 07 To Run Interrupt Test

ENTER => 08 To Run Data Parity Error Test

ENTER => 10 To Run Two Target Test

ENTER => 11 To Run Retry Test

ENTER => 13 To Run Target Abort Test

ENTER => 14 To Run Back-to-Back Test

ENTER => 15 To Run Bar Overflow Test

ENTER => 16 To Run Memory Read Line, Memory Read Multiple and Memory Write Invalidate

Test

ENTER => 17 To Run Unaligned Address Transfer Test

ENTER => 18 To Run Target Dataflow test

ENTER => 19 To Run FIFO Interface test

ENTER => 20 To Run BAR Select test

ENTER => 21 To Run Read Byte Handshake tests

ENTER => 22 To Run Hot Swap Interface Tests

ENTER => 23 To Run Configuration Cycle Tests

ENTER => 24 To Run Retry/Disconnect Time Tests

ENTER => 25 To Run Multiple FIFOs tests

ENTER => 26 To Run User target tests

ENTER => 27 To Run FIFO Status tests

ENTER => 40 To Run Simple DMA Transfer Test

ENTER => 41 To Run Back-end Control During Cycle Test

ENTER => 42 To Run DMA Single Transfer Test (with and W/O Wait States)

ENTER => 43 To Run DMA Poll Status Test

ENTER => 44 To Run DMA Counts Test

ENTER => 45 To Run DMA Mega Test

ENTER => 60 To Run MASTER Mode Test

ENTER => 47 To Run DMA Single Transfer Test with DMA completion interrupt enabled

ENTER => 48 To Run DMA Poll Status Test with DMA completion interrupt enabled

ENTER => 49 To Run DMA Single Transfer Test Busy_Master test

ENTER => 50 To Run DMA Single Transfer Test Stall_Master test

ENTER => 51 To Run Byte Enable Test on DMA registers

ENTER => 52 To Run Byte Enable Test on Back End registers

ENTER => 53 To Run DMA With Max Transfer Length

ENTER => 54 To Run DMA dataflow using FIFOIF

ENTER => 55 To Run DMA Burst length tests using FIFOIF

ENTER => 56 To Run DMA Auto transfer test using FIFOIF

ENTER => 57 To Run Fast Master Back-to-Back Test

ENTER => 58 To Run Direct Mode DMA Transfer Test

ENTER => 59 To Run Miscellaneous DMA Tests

ENTER => 60 To Run Backend Config Space Tests

ENTER => 70 To Run MASTER Mode Test
v4.0 119

ENTER => 71 To Run User DMA tests

ENTER => 98 To Quick Test (All Slots)

ENTER => 99 To Run Exhaustive Tests (All Tests/All Slots)

ENTER => S To Run test 00-99 on slot S ie 112

ENTER => Q TO EXIT Testbench

Customizing the Verification Testbench
The number of core instances in the verification testbench and the configuration of each core can be modified by editing
the coreconfig.vhd file. It is recommended that customers using the OEM version of ModelSim supplied with Libero
IDE modify the NSLOTS constant at the top of the coreconfig.vhd file to reduce the number of active cores to three.
This will decrease simulation time, but test coverage is reduced to 32-bit cores only.

The usertests.vhd file contains two example routines that perform Target transactions and Master transfers. These
routines can be used as starting points for adding additional tests if required. However, due to the complexity of the
verification testbench, Actel recommends that it not be modified, and that the simple user testbenches described in the
following sections be used as starting points for any user simulations. The verification testbench is provided to
demonstrate the core’s operation under multiple conditions.
120 v4.0

User Testbench
Files Used in the Verification Testbench
Table 8-2 lists all the VHDL source files used in the verification testbench and gives a description of their functions. All
source files are provided with the RTL release. With the Evaluation release, only some of the source files are provided.
All others are pre-compiled into the CorePCIF simulation library.

User Testbench
The user testbenches are intended to act as a starting point for creating a simulation environment for the end-user
circuit, and are provided in both VHDL and Verilog. The testbench structure and tests carried out are identical for the
VHDL and Verilog testbenches.

Table 8-2 · Verification Testbench Source Files

File Supplied Function

tb_verif.vhd Yes Top level of testbench. Creates a PCI bus and instantiates all the devices connected to the bus.

coreconfig.vhd Yes
VHDL package that is used to configure the number of cores and the parameter settings for each of
the cores. By default, 12 cores are configured, allowing multiple core implementations to be tested at
the same time.

pci_monitor.vhd RTL only
PCI bus monitor that monitors PCI activity, looking for illegal activity. Also capable of tracing and
displaying PCI activity.

pci_target.vhd RTL only PCI Target used to generate error conditions when testing the DMA function.

pci_arbiter.vhd RTL only PCI arbiter that supports up to 16 Masters used in the testbench.

test_master.vhd RTL only
PCI Master function used by the testbench to carry out PCI cycles. Also contains the main procedural
testbench and user command entry code. It calls the tests provided in the tests.vhd package.

fast_master.vhd RTL only
Second PCI Master function used by the testbench to carry out PCI cycles. This Master is capable of
performing PCI transactions at a very fast rate.

tests.vhd RTL only VHDL package that contains all the procedures used for performing the tests

usertests.vhd RTL only
VHDL package that contains some basic test routines that can be used as templates for adding
additional tests if required

tb_package.vhd RTL only VHDL package that defines all the types and low-level function calls used in the testbench

backend.vhd RTL only
This backend interface logic implements each of the required backend memory blocks using
bendmem.vhd, and provides control logic to access the backend interface. It also allows the testbench to
control and monitor the backend interface.

bendmem.vhd RTL only
Implements the actual backend memory block for each configured BAR. It can be configured to
operate as a FIFO or as memory.

waveforms.vhd RTL only
VHDL package that contains all the procedures used for generating the waveforms shown in this
handbook

waveform.vhd RTL only
Monitors the PCI bus and retimes the signals for output to a VCD file for generation of the
waveforms shown in this handbook.

tb_components.vhd RTL only VHDL package that declares the components used in the testbench

textio.vhd RTL only VHDL package that provides the printf function used in the testbench

misc.vhd RTL only VHDL package that provides some very low-level type definitions and functions
v4.0 121

The testbench structure is shown in Figure 8-2. It instantiates a single core that is connected to the PCI bus. The core is
instantiated in the PCISYSTEM module. This adds backend memory and FIFOs to the core to create a simple PCI
system.

Figure 8-2 · User Testbench

Also attached to the PCI bus are a PCI monitor that displays the PCI bus activity and a simple PCI Target model that is
used as a Target when CorePCIF is carrying out DMA activity. The PCI Master module is used by the procedural
testbench to carry out PCI cycles. The procedural testbench can also access the CorePCIF backend interface to program
the DMA registers.

The PCISYSTEM module creates a simple PCI system that contains a memory BAR and a second BAR connected to
input and output FIFOs. Data from the output FIFO is moved to the input FIFO at a variable rate controlled by the
procedural testbench.

The PCISYSTEM design can be synthesized when the Axcelerator, IGLOO/e, ProASIC3/E, or Fusion FPGA family
is selected, creating a single-chip PCI system. To synthesize the design, move the pcisystem, fifo, memory, fifo512x32, and
ram2k8 files from the CorePCI stimulus directory to the HDL source files directory in Libero IDE. Also supplied is an
even simpler design, PCISYSTEM2, that implements just a memory BAR connected to the PCI core. This can be
synthesized by copying the pcisystem2 file as well.

PCISYSTEM

CorePCIF
Target = 1
Master = 1

Backend = 1

Bar 0
Memory

Bar 1

FIFO

Bar 1

FIFO

Backend
Control

PC
I B

u
s

PCI
Monitor

Simple
PCI Target

PCI
Master

Procedural Testbench
122 v4.0

User Testbench
Files Used in the User Testbenches
Table 8-3 lists all the VHDL and Verilog source files used in the user testbenches and gives a description of their
functions. All source files are provided with the RTL release. With the Evaluation release, only some of the source files
are provided. All others are pre-compiled into the CorePCIF simulation library.

Table 8-3 · User Testbench Source Files

File Supplied Function

tb_user.vhd

tb_user.v
Yes

Top level of testbench. Creates a PCI bus and instantiates all the devices connected to the bus. It
also contains the procedural testbench.

pcisystem.vhd

pcisystem.v
Yes

Top level of the test design that includes the cores and memory blocks. This is a synthesizable
design in some families.

memory.vhd

memory.v
Yes

Top-level memory module creating the 8 k words of memory (or 16 k for 64-bit cores) used for
BAR 0

fifo.vhd

fifo.v
Yes Top-level FIFO module creating the FIFOs used for BAR 1

ram2k8.vhd

ram2k8.v
Yes Low-level memory block implementing the memory using FPGA memory blocks

fifo512x32.vhd

fifo512x32.v
Yes Low-level FIFO block implementing the FIFO using FPGA FIFO blocks

coreparameters.vhd

coreparameters.v
Yes

Package or include file used to configure the core instantiated in the PCISYSTEM module. The
testbench file uses this to decide which tests to run. This file is auto-generated by CoreConsole
during the core generation, and the settings will match those set in the CoreConsole GUI.

pcimaster.vhd

pcimaster.v

RTL and
Obfuscated

only
PCI Master function used by the testbench to carry out PCI cycles

pcitarget.vhd

pcitarget.v

RTL and
Obfuscated

only

Simple PCI Target function that implements a PCI Target capable of responding to memory
read and write cycles

pcimonitor.vhd

pcimonitor.v

RTL and
Obfuscated

only

PCI bus monitor that monitors PCI activity, looking for illegal activity. Also capable of tracing
and displaying PCI activity.

textio.vhd RTL only
VHDL package that provides the printf function used in the testbench. Not required for the
Verilog version.

misc.vhd RTL only
VHDL package that provides some very low-level type definitions and functions. Not required
for the Verilog version.
v4.0 123

Testbench Operation
When the testbench starts, it initially reads the vendor and device IDs from the core and verifies that they are defined by
the constants in the coreconfig file. It then sets up the PCI configuration space. This sequence is shown in Figure 8-3.

Figure 8-3 · User Testbench Startup Sequence

While these transfers are being carried out, the PCI monitor function logs all PCI bus transactions.

PCI User Testbench - Actel IP Solutions Group
CorePCIF 3.0 Release 1 December 2006
#
#Basic Core Configuration from coreconfig.vhd
TARGET 1
MASTER 1
BACKEND 1
PCI_WIDTH 32
DMA_REG_LOC 2
#
###
Reading Device & Vendor IDs
PCI CONFIG Read Slot: 1 AD:00000000
PCI32 Command CFGRD Started AD : 02000000
PCI32 CFGRD ADDR : 02000000 DATA : 600011AA BYTES
: 1111
Device Vendor ID 600011AA
#PCI CONFIG Read Slot: 1 AD:0000002C
PCI32 Command CFGRD Started AD : 0200002C
PCI32 CFGRD ADDR : 0200002C DATA : 600011AA
BYTES : 1111
Subsystem Device Vendor ID 600011AA
###
#Programming Configuration Space
124 v4.0

User Testbench
Once configured, the testbench will perform the sequence of tests in Table 8-4. If the core configuration, as set in
CoreConsole, does not support the required function, the test will not be performed.

Additional verification tests can be run by typing runall.do at the ModelSim prompt. This will invoke the simulation
multiple times using different core configurations (not those set in CoreConsole), and will also enable additional tests.

Customizing the User Testbenches
The user testbenches are intended to be customized by the user. First, the PCISYSTEM module should be replaced by
the actual PCI design being implemented. Once this is done, the test sequence in the main testbench file can be
modified to perform the required configuration and memory cycles. When the simulation is run, the PCI monitor
function will display the PCI activity, and the simple PCI Target can be used as a Target if the unit under test
implements a PCI Master function.

“VHDL User Testbench Procedures” on page 143 and “Verilog User Testbench Procedures” on page 145 list all the
procedure calls using the VHDL and Verilog testbenches. It is recommended that the testbench.vhd (.v) file be read
carefully to fully understand testbench operation.

Table 8-4 · User Testbench Test Sequence

Test
Required Core

Parameters
Description

0 Target = 1 PCI device and vendor IDs are verified and the configuration space initialized.

1
Target = 1
Bar0_ENABLE = 1

Single-cycle Target write and read cycle to BAR 0.

2
Target = 1
Bar0_ENABLE = 1

Burst Target write and read cycle to BAR 0.

3
TARGET = 1
MASTER = 1
BAR0_ENABLE = 1

DMA transfer test initially from BAR 0to the PCI bus (the simple Target). The DMA access is
initiated by the testbench using the PCI Master to write to the DMA registers. A second DMA
transfer is then performed to move the data back from the PCI bus to a different location in
BAR 0. Finally, the resultant data is verified.

4

TARGET = 1
MASTER = 1
BACKEND = 1
BAR0_ENABLE = 1

DMA transfer test initially from BAR 0 to the PCI bus (the simple Target). The DMA access
is initiated by the testbench writing to the DMA registers using the backend interface. A
second DMA transfer is then performed to move the data back from the PCI bus to a different
location in BAR 0. Finally, the resultant data is verified.

5

TARGET = 1

MASTER = 1

BACKEND = 1

BAR1_ENABLE = 2

FIFO test

Initially, the testbench, using the PCI Master, fills up the output FIFO by writing data to
BAR 1. While data is being written, the clock used to move data from the output to the input
FIFOs is disabled; all data remains in the output FIFO. Once all the data is loaded, the
testbench (through the backend interface) programs the DMA engine to move all the data from
BAR 1 to the PCI Target and re-enables the backend clock to move data between the two
FIFOs. As data is moved into the input FIFO, CorePCIF automatically moves the data from
the FIFO to the PCI Target using its DMA engine until the DMA transfer is completed.

While this process is occurring, the rate at which data is moved between the two FIFOs varies,
causing the input FIFO to empty and causing the PCI core to stop the DMA transfer until the
FIFO is non-empty.

When the DMA transfer is complete, the data in the PCI Target is verified.
v4.0 125

9
Implementation Hints

Clocking
CorePCIF supports generating the PCI clock when the FPGA is also the main bus control function. It is important that
the clock networks be configured correctly to allow the core to meet the PCI setup and hold times, as well as to avoid
internal clock skew.

When generating the PCI clock, the clock source should be connected to the CLK_IN port. This is then routed to the
PCI clock pad to drive the PCI bus, and driven back into the core using a global network. This global network on the
CLK_OUT port should be used to clock the rest of the FPGA logic running off the PCI clock network (Figure 9-1).

Figure 9-1 · Clock Generation

Clocking in SmartFusion2
In the SmartFusion2 device, when using 66 MHz configuration, the CorePCIF PCI CLK input signal should be driven
by a Fabric CCC (FCCC). You must instantiate the FCC in the top-level design and use the external CLK input as a
reference clock. This is to ensure that external setup and clock to out timing are met in the design.

Note: The data paths (for example, AD) use registers to drive the output and you need to use IO-REG combining for
these register outputs.

Figure 9-2 shows the clock-to-out path in SmartFusion2, which has a requirement of 6ns (as part of the PCIF standard.
In the SmartFusion2 device, the sum of UPAD, UGB, and URGB on the clock input is around 3ns, if you use the IO
bank as shown in “Pin Assignments” section on page 129. The output pad delay is roughly 2.5ns. This leaves only
around 500ps to route and register the output internally. This does not allow enough margin to achieve timing closure in
most cases.

Figure 9-2 · Clocking in SmartFusion2 with No CCC

A

D Q4

Q1
A

D

A

D

A

D

Q1

Q1

Q1

GENERATE_PCICLK

CLK_IN

CLK_OUT

PCI BUS
CLOCK

CLKBUF

ENB
v4.0 127

To increase the timing margin, it is advised to use an FCCC in the CLK data path to shift the clock backward, as
shown in Figure 9-3.

Figure 9-3 · Clocking in SmartFusion2 with CCC

Using an FCCC, the clock can be shifted forward or backward. In this particular case, the clock should be shifted
backwards, which will afford a large margin on clk-out path to the user. In the Libero SoC software, this is achieved
using the programmable delay element in the FCCC output. Figure 9-4 shows how to configure the FCCC with a
negative delay.

Note: The feedback must be set to CCC Internal. Otherwise, the reference clock and the output clock GL0 will
remain in phase.

Figure 9-4 · FCCC Configuration in SmartFusion2

You must simply use the FCCC output to drive the CorePCIF design at the top-level, and any other logic in the
FPGA required as well (unless the CLK_OUT as described above is used).
128 v4.0

Clock and Reset Networks
Clock and Reset Networks
The core includes global buffers for both the PCI clock and reset inputs. The buffered versions of these signals are
provided on the CLK_OUT and RST_OUTN ports. These should be used for clocking and resetting any additional
logic included in the FPGA running of the PCI clock.

The core also uses two additional global resources for internal routing of the high-fanout TRDYN and IRDYN nets, if
required. Target cores will require IRDYN to be routed on a global; if the Master function is implemented, the TRDYN
net will be routed on a global network.

In SX-A and RTSX-S implementations with both Master and Target functions enabled, the reset network is demoted to
a normal buffer tree, as there are only three global resources available in these devices. They are required for the clock
and the TRDYN and IRDYN nets.

Assigning Pin Layout Constraints
You can assign pins manually with the PinEditor tool or import them directly into Designer from the corresponding pin
constraint file. The pin file will be a PIN, GCF, or PDC file, depending on the FPGA family being used.

Pin Assignments
To be able to meet the critical PCI setup, hold, and clock-to-out requirements, it is critical that the PCI pin locations be
assigned correctly. Two aspects need to be considered:

1. Pin assignments should minimize FPGA place-and-route issues. Pin assignment is extremely important in meeting
the PCI setup, hold, and clock-to-out requirements.

2. Pin assignments should minimize PCB layout issues. The PCI specification limits the track lengths allowed on the
PCB. Chapter 4 of the PCI specification details the requirements.

The PCI specification recommends that the pin order around the device align exactly with the add-in card (connector)
pinout. The additional signals needed in 64-bit versions of the bus continue wrapping around the component in a
counterclockwise direction in the same order they appear on the 64-bit connector extension. “PCI Pinout” on page 135
provides details of the recommended pin order.

Example pin files are provided in the layout directory for some of the possible FPGA family, device, and package
combinations. These can be adapted to support other device/package combinations.

Each supported FPGA family has different requirements to minimize FPGA layout issues; these are detailed below.

SX-A and RTSX-S Families
The pins should be located around one side of the package in the order specified by the PCI specification. The pins
should be located on the same side of the package where CLKA and CLKB are located.

1. Locate TRDYN and IRDYN close to the CLKA and CLKB pins, but do not use these pins.

2. Assign the rest of the PCI pins around the package in the order that will match the add-in connector. Do not use
any of the CLK, QCLK, or HCLK pins.

3. Connect the PCI CLK to the HCLK pin.

ProASICPLUS Family
The pins should be located around one side of the package in the order specified by the PCI specification. The pins
should be located on the west side of the die (in the pin editor, these pins will be identified by a “W” on the pin),
depending on the package type. This may be the left or right side of the package.

1. Locate TRDYN and IRDYN close to the GL inputs.
v4.0 129

2. Assign the rest of the PCI pins around the package in the order that will match the add-in connector. Do not use
any of the special function pins.

3. Connect the PCI CLK to one of the GL input pins on the opposite side of the package.

Axcelerator and RTAX-S Families
The pins should be located around one side of the package in the order specified by the PCI specification. The pins
should be located on the lower side of the package using the bank 4 and bank 5 I/O locations.

1. Locate TRDYN and IRDYN close to the routed clock inputs, but do not use these pins.

2. Assign the rest of the PCI pins around the package in the order that will match the add-in connector. Do not use
any of the special function pins.

3. Connect the PCI CLK to an HCLK input pin.

Care should be taken to minimize the number of I/O banks used; the I/O banks used for PCI signals must be set to use
PCI electrical levels that may be incompatible with other devices connected to the FPGA. When using large packages,
exercise care in making sure that the PCI track lengths can be met with the planned pinout and FPGA location on the
PCB. In some cases it may be necessary to move the PCI clock to an RCLK network to reduce the PCB track lengths.

Fusion, IGLOO/e, ProASIC3L, and ProASIC3/E Families
The pins should be located around one side of the package in the order specified by the PCI specification. Initially,
identify an I/O bank that contains the global inputs G***.

1. Assign the TRDYN and IRDYN pins to, or close to, two of these global inputs.

2. Assign the rest of the PCI pins around the package in the order that will match the add-in connector. Leave one
spare normal I/O pin vacant close to the global pins. Do not use any of the special function pins.

3. For 33 MHz operation, connect the PCI CLK to a global input. For 66 MHz operation, connect the CLK to the I/
O pin left vacant close to the global inputs.

Care should be taken to minimize the number of I/O banks used; the I/O banks used for PCI signals must be set to use
PCI electrical levels that may be incompatible with other devices connected to the FPGA.

SmartFusion2
There are typically four PCI-capable banks available on most devices, that is, the MSIO banks. For example, on the
M2S050T device, Banks 1, 2, 3, and 8 support the PCI standard. However, to meet timing and to ease board layout,
130 v4.0

Pin Assignments
only Banks 1, 2, and 3 should be used, that is, on the east edge of the package. If using unlocked automatic pin
assignment, you need to make sure that bank 8 is not used for PCI IOs.

Figure 9-5 · SmartFusion2 M2S050T Device

Note:

• Do not use bank 8 for PCI I/Os

• Use bank 1, 2, and 3 for PCI I/Os

Alternatively, this may be achieved by manually assigning I/Os to banks 1, 2, and 3. After that, achieving timing should
be done either by using the provided PDC file as a reference and modifying as necessary, or by following these steps:

1. Using the following configuration and pin assignment, run an initial Place and Route using High-Effort,
Timing-driven routing.

a. Use -iostd PCI to ensure that I/Os are assigned to PCI compatible pins.

b. Where possible, force the placer to use I/O registers using the -REGISTER Yes switch and the -OUT_REG Yes
or -IN_REG Yes depending on whether the register resides in the input or output path for that particular I/O. It
is possible that they are both, if both Master and Target modes are enabled.

c. Do not assign PCI I/Os to any pins.

d. Depending on the data width, TRDYN and IRDYN may be best routed through a global net. In 64-bit mode,
TRDYN and IRDYN are best routed locally. In 32-bit mode, TRDYN and IRDYN are best routed globally.

2. Lock down the I/O in the Libero I/O constraints editor or modify the PDC file by adding the pinname the -fixed
yes switch to each set_io line.

3. Run SmartTime to perform static timing analysis.
v4.0 131

a. Adjust the (negative) programmable delay in the FCCC (as described in “Clocking in SmartFusion2” section on
page 127) until External Setup violations go away in Max Delay Analysis, but not so far as to introduce Internal
Setup violations.

b. Adjust all input delays until hold violations on paths ending at input ports go away in Min Delay Analysis, using
the -IN_DELAY x switch in the PDC.

Notes on Synthesis:

To ensure that timing is met, it is important to be able to push as many flip-flops as possible into the I/O registers. To
accomplish this, keep the max fanout on output registers at 1 during synthesis. This can be accomplished using the
following SDC attributes in the Synthesis constraint file (The instance name need to match with the instance name of
your design):

define_attribute
{{i:UCORE.MAKE_TARGET.DATAPATHE64.MAKE_DATAPATH_REGISTERS.AD_REGS[31:0]}}
{syn_preserve} {1}

define_attribute {{i:UCORE.MAKE\.UDMA.CBEN_PAD[7:0]}} {syn_replicate} {1}

define_attribute {{i:UCORE.MAKE\.UDMA.CBEN_PAD[7:0]}} {syn_maxfan} {1}

define_attribute
{{i:UCORE.MAKE_TARGET.DATAPATHE.MAKE_DATAPATH_REGISTERS.AD_REGS[31:0]}} {syn_preserve}
{1}

define_attribute {{i:UCORE.MAKE_TARGET.BurstE.UA1\.MAKE_ACK64_OUT.Q_INT}}
{syn_replicate} {1}

define_attribute {{i:UCORE.MAKE\.UDMA.MAKE_REQ64N1.Q_INT}} {syn_replicate} {1}

define_attribute {{i:UCORE.MAKE\.UDMA.MAKE_REQ64N1.Q_INT}} {syn_maxfan} {1}

define_attribute {{i:UCORE.MAKE_TARGET.BurstE.UA1\.MAKE_ACK64_OUT.Q_INT}} {syn_maxfan}
{1}

define_attribute {{i:UCORE.MAKE_TARGET.BurstE.UM1\.MAKE_IRDY_OUT.Q_INT}}
{syn_replicate} {1}

define_attribute {{i:UCORE.MAKE_TARGET.BurstE.UM1\.MAKE_IRDY_OUT.Q_INT}} {syn_maxfan}
{1}
132 v4.0

Pin Assignments
All Families
For 64-bit cores, the PAR64 pin should be located as close as possible to the upper CBEN pins. This creates a non-ideal
PCB layout but significantly helps to meet the internal FPGA timing in 66 MHz, 64-bit implementations.

It is recommended that the pinout chosen be verified to check that PCI timing requirements can be met before PCB
layout is completed. The core plus loopback database files supplied with the core can be used to verify the pinouts. Load
a layout database from the chosen FPGA technology that matches the core function (T, TD, TM, or M; 32- or 64-bit;
33 or 66 MHz) and change the device type and package as required. Then modify the pinout to match your chosen
pinout, re-run layout, and verify timing.

Meeting PCI Hold Requirements
The PCI hold time requirements should be checked post-layout. These can easily be found using the Minimum Delay
Analysis View in the Timing Analyzer. All the hold times should be less than 0 ns. If any of the PCI inputs violate the
hold time requirements, one of the following methods can be used to insert extra delay in the datapath to correct the
hold time:

1. Modify the RTL source code, if available, to insert BUFD cells between the IOPAD and the registers violating hold
time requirements. This can be done easily in the DEL_BUFF module, which allows the number of delay buffers
inserted on each PCI input to be specified. Re-run synthesis and layout.

2. For families that support programmable input delays (Axcelerator, RTAX-S, ProASIC3E, and SmartFusion2), the
I/O pad can be configured to insert additional delay.1 This is a good way to correct hold problems on the AD bus;
however, adding additional input buffer delays on the control inputs TRDYN, IRDYN, FRAMEN, etc., may cause
other endpoints from these inputs to violate the PCI setup times.

3. Export a netlist from Designer. Modify the netlist to insert BUFD cells between the IOPAD and the registers
violating hold time requirements. Re-run layout with the incremental layout feature enabled.

4. Using ChipPlanner, move registers that have a hold time violation away from the I/O pad to increase the delay and
fix the hold time violation. Re-run layout with the incremental layout feature enabled.

1. Use PinEditor to select the I/O bank. Right-click the colored I/O bank in the GUI to open the Configure I/O Bank dialog box. Once you set
the bank delays, you can set the input delays on all PCI pins.
v4.0 133

v4.0 135

A
PCI Pinout

Figure A-1 shows the recommended pin ordering around the package.

Figure A-1 · Recommended PCI Pin Ordering

PCI Component

All PCI Shared Signals
Below this Line

PCI Card Edge

PAR64
AD[32]

AD[63]
C/BE4#

C/BE7#
C/BE6#
C/BE5#

REQ64#
ACK64#
AD[0]

AD[7]
C/BEO#

JTAG

INTA#
RST#
CLK

GNT
REQ

AD[31]

AD[24]
C/BE3#

IDSEL

A
D

[2
3]

C
/B

E2
#

A
D

[8
]

A
D

[1
5]

A
D

[1
6]

C
/B

E1
#

FR
A

M
E#

ST
O

P#
D

EV
SE

L#

PE
R

R
#

SE
R

R
#

IR
D

Y
#

LO
C

K
#

TR
D

Y
#

PA
R

B
Synthesis Timing Constraints

The required timing constraints are given in Table B-1.

Table B-1 · Synthesis Timing Constraints

Frequency
(MHz)

PCI Specification (ns) Synplicity Constraints (ns)

Ports Setup Clock to Output Period Input Delay Output Delay

33 AD

CBEN

DEVSELN

FRAMEN

IRDYN

TRDYN

PAR

PERRN

SERRN

STOPN

TRDYN

PAR64

ACK64N

REQ64N

7 11 30 23 19

IDSEL

GNTN

10 20

INTAN

REQN

11 19
v4.0 137

Note: Actel recommends that you NOT use the PALACE™ physical synthesis tool with CorePCIF. Using PALACE
may undo critical buffering and logic structures required to meet the PCI setup timing requirements.

66 AD

CBEN

DEVSELN

FRAMEN

IRDYN

TRDYN

PAR

PERRN

SERRN

STOPN

TRDYN

PAR64

ACK64N

REQ64N

3 6 15 12 9

IDSEL

GNTN

5 10

INTAN

REQN

6 9

Table B-1 · Synthesis Timing Constraints (Continued)

Frequency
(MHz)

PCI Specification (ns) Synplicity Constraints (ns)

Ports Setup Clock to Output Period Input Delay Output Delay
138 v4.0

C
Place-and-Route Timing Constraints

The required timing constraints are given in Table C-1.

Table C-1 · Place-and-Route Timing Constraints

Frequency
(MHz)

PCI Specification (ns) Designer Constraints (ns)

Ports Setup Hold Clock to Output Period Input Delay Input Hold Output Delay

33 AD

CBEN

DEVSELN

FRAMEN

IRDYN

TRDYN

PAR

PERRN

SERRN

STOPN

TRDYN

PAR64

ACK64N

REQ64N

7 0 11 30 23 0 19

IDSEL

GNTN
10 0 20 0

INTAN

REQN
11 19
v4.0 139

66 AD

CBEN

DEVSELN

FRAMEN

IRDYN

TRDYN

PAR

PERRN

SERRN

STOPN

TRDYN

PAR64

ACK64N

REQ64N

3 0 6 15 12 0 9

IDSEL

GNTN
5 0 10 0

INTAN

REQN
6 9

Table C-1 · Place-and-Route Timing Constraints (Continued)

Frequency
(MHz)

PCI Specification (ns) Designer Constraints (ns)

Ports Setup Hold Clock to Output Period Input Delay Input Hold Output Delay
140 v4.0

D
Verification Testbench Tests

The verification testbench performs the tests in Table D-1.

Table D-1 · Verification Testbench Tests

Test Description

01 Simple Read and Write Test

02 All BARs Read/Write Test

03 Byte Enable Test

04 DEVSEL Timing Test

05 Address Parity Error Test

07 Interrupt Test

08 Data Parity Error Test

10 Two Target Test; checks that two targets do not interfere with each other.

11 Target Disconnect and Retry Test

13 Target Abort Test

14 Back-to-Back Transfer Test

15 BAR Overflow Test

16 Memory Read Line, Memory Read Multiple, and Memory Write & Invalidate Test

17 Unaligned Address Transfer Test

18 Target Dataflow Test with variable transfer rates

19 FIFO Interface Test with variable transfer rates

20 BAR Select Test; verifies BAR decode logic.

21 Read Byte Handshake Tests

22 Hot-Swap Interface Tests

23 Configuration Cycle Tests

24 Additional Target Retry/Disconnect Tests

25 Multiple FIFO Tests

26 User Target Routine

27 FIFO Status Register Tests

40 Simple DMA Transfer Test

41 Backend Control during Cycle Test

42 DMA Single Transfer Test

43 DMA Poll Status Test

44 DMA Counter Tests
v4.0 141

45 DMA Mega Test; multiple DMA tests at the same time

60 Master Mode Test

47 DMA Single Transfer Test with DMA completion interrupt enabled

48 DMA Poll Status Test with DMA completion interrupt enabled

49 DMA Transfer Test with Busy_Master assertion

50 DMA Transfer Test with Stall_Master assertion

51 Byte Enable Test with DMA transfers

52 Byte Enable Test on Backend Registers

53 DMA with Maximum Transfer Length

54 DMA Dataflow with variable transfer rates and FIFO recovery

55 DMA Burst Length Tests with FIFO recovery

56 DMA Auto Transfer Test with FIFO recovery; checks DMA starting and stopping conditions.

57
Fast Master Back-to-Back Test, DMA termination and another Master accessing the core
immediately.

58 Direct Mode DMA Transfer Test

59 Miscellaneous DMA Tests

60 Backend Configuration Access Tests

70 Master Mode Test

71 User DMA Routine

98 Quick Test (all slots)

99 Exhaustive Tests (all tests / all slots)

S..n Test 00–99 on Slot S (e.g., 112)

Q Quit Testbench

Table D-1 · Verification Testbench Tests (Continued)

Test Description
142 v4.0

E
VHDL User Testbench Procedures

The following is a list of the supported procedure calls in the VHDL user testbench. Actel recommends that you
examine the testbench.vhd file to understand how to use these procedure calls.

config_write(SLOT,ADDRESS,DATA_DW ,PCICMD,PCISTAT,MSETUP);

config_write(SLOT,ADDRESS,DATA_INT ,PCICMD,PCISTAT,MSETUP);

config_write(SLOT,ADDRESS,N,DATA(0 to N-1),PCICMD,PCISTAT,MSETUP);

config_read (SLOT,ADDRESS,DATA_INT ,PCICMD,PCISTAT,MSETUP);

config_read (SLOT,ADDRESS,DATA_DW ,PCICMD,PCISTAT,MSETUP);

config_read (SLOT,ADDRESS,N,DATA(0 to N-1),PCICMD,PCISTAT,MSETUP);

memory_write(ADDRESS,DATA_DW ,PCICMD,PCISTAT,MSETUP);

memory_write(ADDRESS,DATA_INT ,PCICMD,PCISTAT,,MSETUP);

memory_write(ADDRESS,DATAH_DW,DATAL_DW,PCICMD,PCISTAT,MSETUP);

memory_write(ADDRESS,DATAH_INT,DATAL_INT,PCICMD,PCISTAT,MSETUP);

memory_write(ADDRESS,N,DATA(0 to N-1),PCICMD,PCISTAT ,MSETUP);

memory_read (ADDRESS,DATA_DW ,PCICMD,PCISTAT,MSETUP);

memory_read (ADDRESS,DATA_INT ,PCICMD,PCISTAT,MSETUP);

memory_read(ADDRESS,DATAH_DW,DATAL_DW,PCICMD,PCISTAT,MSETUP);

memory_read(ADDRESS,DATAH_INT,DATAL_INT,,PCICMD,PCISTAT,MSETUP);

memory_read (ADDRESS,N,DATA(0 to N-1),PCICMD,PCISTAT,MSETUP);

compare_data(ERRCOUNT,"Message",EXP_INT,GOT_INT);

compare_data(ERRCOUNT,"Message",EXP_DWORD,GOT_DWORD);

compare_data(ERRCOUNT,"Msg",EXP_DATA(0 to N-1),GOT_DATA(0 to N-1));

be_write(ADDRESS,DATA_DW , BYTEEN, PCICMD,PCISTAT);

be_write(ADDRESS,DATA_INT, BYTEEN, PCICMD,PCISTAT);

be_read (ADDRESS,DATA_DW , PCICMD,PCISTAT);

be_read (ADDRESS,DATA_INT, PCICMD,PCISTAT);
v4.0 143

The parameters to the above procedure calls are described in Table E-1. To simplify the parameters, some predefined
types are used. These are defined in the misc.vhd package.

subtype NIBBLE is std_logic_vector (3 downto 0);

subtype DWORD is std_logic_vector (31 downto 0);

type DWORD_ARRAY is array (INTEGER range <>) of DWORD;

Table E-1 · Procedure Call Parameters

Parameter Type Description

SLOT INTEGER PCI slot number to use for configuration cycles

When 0, will set the eight upper address bits to 01 hex.

When 1, will set the eight upper address bits to 02 hex, etc.

The testbench connects address bit 25 to the core IDSEL input; therefore, the slot number should
be set to 1.

ADDRESS INTEGER Address for the PCI cycle

DATA_DW DWORD Data word

DATAH_DW DWORD Upper 32 bits of a 64-bit data word

DATAL_DW DWORD Lower 32 bits of a 64-bit data word

DATA_INT INTEGER Data word

DATAH_INT INTEGER Upper 32 bits of a 64-bit data word

DATAL_INT INTEGER Lower 32 bits of a 64-bit data word

PCICMD TPCICMD
Record used to communicate within the testbench. Allows the procedure to start the PCI Master
cycle.

PCISTAT TPCISTAT
Record used to communicate within the testbench. Allows the procedure to monitor the PCI
Master cycle.

MSETUP TMSETUP Record used to set the Master transfer rates. This contains four fields that may be altered.

Name Type Description

IRDYRATE0 INTEGER Initial delay from FRAME to IRDY assertion

IRDYRATEN INTEGER Subsequent delay between IRDY assertions

PCI64 BOOLEAN Indicates whether to request a 64-bit transfer.

ERROR TERROR
Allows errors conditions to be inserted. Should be set to
“NONE” for normal operation. Supported error conditions are
described in the VHDL source files.
144 v4.0

F
Verilog User Testbench Procedures

Following is a list of the supported tasks in the Verilog user testbench. Actel recommends that you examine the
testbench.v file to understand how to use these tasks.

// PCI configuration cycles

config_write (SLOT,CADDRESS,COUNT);

config_read (SLOT,CADDRESS,COUNT);

// PCI memory cycles

memory_write (ADDRESS,COUNT,PCI64);

memory_read (ADDRESS,COUNT,PCI64);

compare_data (ERRCOUNT,COUNT);

// Writes and reads to and from the core backend interface

be_write (BADDRESS,WDATA, BYTEEN);

be_read (BADDRESS,RDATA);

The parameters to the above tasks are described in Table F-1 and Table F-2 on page 145. Data for the PCI
configuration and PCI memory read and write cycles is passed in the pciwdata and pcirdata global arrays rather than
through the task parameters.

Table F-1 · Global Descriptions

Globals Type Description

pciwdata reg [31:0] [0:31]
This is an array in which the user sets up the data that will be written before calling the memory_write or
config_write tasks. For 64-bit operations, the lower DWORD is specified in the odd addresses and the
upper DWORD in the even addresses.

pcirdata reg [31:0] [0:31]
This is an array by which the memory_read and config_read functions return data. For 64-bit operations,
the lower DWORD is specified in the odd addresses and the upper DWORD in the even addresses.

Table F-2 · Parameter Descriptions

Parameters Type Description

SLOT reg [2:0]
PCI slot number to use for configuration cycles. When 0, will set the eight upper address bits to
01h. When 1, will set the eight upper address bits to 02h, etc. The testbench connects address bit 25
to the core IDSEL input; therefore, the slot number should be set to 1.

CADDRESS reg [7:0] Configuration space address

COUNT reg [7:0]
Number of DWORDs to be written, read, or compared. If 64-bit operation is enabled, this must be
an even number. The maximum count is thirty-two 32-bit transfers or sixteen 64-bit transfers.

ADDRESS reg [31:0] Memory space address

PCI64 reg When 1, the testbench will request a 64-bit transfer.

ERRCOUNT inout reg [31:0]
The compare routine will increment this value if it detects any errors. At the end of a test sequence,
it can indicate the total number of errors.
v4.0 145

BADDRESS reg [7:0] Backend address

WDATA reg [31:0] Data to be written to the core backend

RDATA output reg [31:0] Data read from the core backend

BYTEEN reg [3:0] Byte enables to backend writes should be set to 4'b1111.

Table F-2 · Parameter Descriptions

Parameters Type Description
146 v4.0

G
Ordering Information

Ordering Codes
CorePCIF can be ordered through your local Actel sales representative. It should be ordered using the following
number scheme: CorePCIF-XX, where XX is listed in Table G-1.

Table G-1 · Ordering Codes

XX Description

OM RTL for Obfuscated RTL – multiple-use license

RM RTL for RTL source – multiple-use license
v4.0 147

H
List of Document Changes

The following table lists critical changes that were made in the current version of the document.

Previous
Version

Changes in Current Version (v4.0) Page

v4.0
(November 2013)

The “Clocking in SmartFusion2” section is added and “Pin Assignments” section is updated in
“Implementation Hints” chapter.

127

v3.2 The core version was updated to v3.6. N/A

The “Tool Flows” chapter was revised to remove licensing information and add SmartDesign instructions.
Figure 3-1 · CorePCIF Configuration in SmartDesign through Figure 3-3 · CorePCIF Configuration in
SmartDesign (continued are new.

29

The “Stitching and Generation” section was removed from the “Tool Flows” chapter. The “Importing into
Libero IDE” and “Simulation Flows” sections were removed. The “Synthesis in Libero IDE” section was
revised to remove references to CoreConsole.

29

ProASIC3L was added to the possible values of the Family parameter in Table 4-1 · General Parameters.
The description for the USE_REGISTERS parameter was revised.

35

The description for the DMA_REG_LOC parameter value of 0 was revised in Table 4-4 · Master/DMA
Parameters.

39

The USE_GLOBAL_CLK and STALL_MODE parameters were added to Table 4-5 · Default Build
Parameters1.

40

The following tables were renamed to better distinguish them from one another:

Table 5-1 · PCI Bus Interface Signals

Table 5-3 · Dataflow Interface Signals

Table 5-4 · Target Mode Control Signals

Table 5-5 · Master Mode Signals

A cautionary note was added for the SERRN_OUT signal in Table 5-2 · System-Level Signals. The
INTAN_OUT signal was added to Table 5-4 · Target Mode Control Signals.

44

The “STALL_MASTER Operation” section was revised to include “with STALL_MODE = 0” in
parentheses, for clarification.

94

The “Axcelerator and RTAX-S Families” section was revised to include information about meeting PCI
track lengths with the planned pinout and FPGA location on the PCB.

130

v3.1 The core version was changed to v3.5. 6

The utiliziation values were updated in Table 2 · 32-Bit CorePCIF Device Utilization and Table 3 · 64-Bit
CorePCIF Device Utilization.

7, 8

ProASIC3L was added to Table 2 · 32-Bit CorePCIF Device Utilization and Table 3 · 64-Bit CorePCIF
Device Utilization. Table 4 · Device Speed Grade Requirements, Table 7 · Supported Electrical
Environments, and Table 3-1 · Designer Compile Options were updated to change ProASIC3/E to
ProASIC3/E/L where appropriate.

7–9,
13, 34

Figure 2-1 · CorePCIF Structure was revised to remove cm8dxe2. Table 2-2 · Technology-Specific Source
Files was updated to remove the cm8dxe2 file.

25, 27

Figure 3-1 · CorePCIF Configuration and Figure 3-2 · CorePCIF Configuration (continued) were
updated.

28, 29

The “Ordering Information” chapter was added. 147
v4.0 149

v3.0 The core version was changed to v3.3. 6

The BARi_PREFETCH parameter description in Table 4-3 · BAR Parameters was expanded to include
the definitions for settings 0 and 1. The BARi_INITVAL parameter description was updated with further
instructions on setting this parameter.

38

The “BAR Parameters” section was updated with information on how to configure a DMA_REG_BAR if
a memory or I/O BAR is used for the DMA registers.

38

In Table 4-4 · Master/DMA Parameters, the DMA_REG_LOC description was updated to note that
BACKEND must be set to 1 for backend access. The DMA_REG_BAR parameter description was
updated to state that the BAR used for DMA registers may not be shared with other memory and I/O
BARs used to access user logic connected to the core.

39

Table 5-2 · System-Level Signals was updated to revise the description for RST_OUTN. The
CFG_STATUS parameter was added.

44

v2.1 The core version was changed to v3.2. 6

The “Synthesis in Libero IDE” section was added to. 29

Table 4-1 was updated to include the USE_GLOBAL_TRDY and USE_GLOBAL_IRDY parameters. 35

Table 4-3 was updated to include the BARi_64BIT and EXPR_64BIT parameters. 38

Table 4-5 was updated to include the BARi_64BIT (i = 0..9) and EXPR_64BIT parameters. 40

In Table 5-4, the BUSY signal description was updated. 47

v2.0 The core version was changed to v3.1. 6

Figure 3-1 was updated. 28

Table 4-1 and Table 4-5 were updated to include the GENERATE_PCICLK, ONCHIP_ARBITER,
and ONCHIP_IDSEL parameters.

35, 40

Table 5-1 was updated to change the signal type of SERRN from output to bidirectional. 43

Table 5-2 was updated to add the CLK_IN, FRAMEN_OUT, IRDYN_OUT, and SERRN_OUT
signals.

44

The “Clocking” section was added. 127

Previous
Version

Changes in Current Version (v4.0) Page
150 v4.0

I
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
v4.0 151

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
152 v4.0

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
A
Actel

electronic mail 151
telephone 152
web-based technical support 151
website 151

B
backend

dataflow 20
interface 18
Master dataflow signals 48
Master DMA register access signals 49
system-level signals 44
Target and Master dataflow signals 45
Target dataflow signals 47

block diagram 5, 15
burst transfers 20
byte-controlled transfers 21

C
capability structure 106
CardBus support 20
clock networks 129
clocking 127
CompactPCI Hot-Swap support 20
compile options 34
configuration space 105
contacting Actel

customer service 151
electronic mail 151
telephone 152
web-based technical support 151

core
interfaces 43
structure 25
version 6

customer service 151

D
data storage, internal 16
dataflow control 21
datapath 16
default core parameter settings 40
device

requirements 6

utilization 8
disconnects 18
DMA Master registers 19

E
electrical requirements 13
example implementations 6
example system implementation 23

F
FIFO recovery logic 21
functional description 15

H
hot-swap interface 50

I
I/O requirements 12
implementation

clock and reset networks 129
hints 127
PCI hold requirements 133
pin assignments 129
pin layout constraints 129

internal data storage 16

L
Libero Integrated Design Environment (IDE)

place-and-route 33
synthesis 29

M
Master function 5, 18

byte commands 19
commands 18
controller 15
DMA registers 19
transfers 19

N
networks, clock and reset 129

O
ordering information 147
v4.0 153

Index
P
parameters 35

BAR 38
default settings 40
general 35
Master/DMA 39
PCI configuration space 37

PCI
bus signals 43
configuration space 105

Target 105
hold requirements 133
recommended pinout 135

performance statistics 9
pin assignments 129
pin layout constraints 129
place-and-route 33

timing constraints 139
product support 151–152

customer service 151
electronic mail 151
technical support 151
telephone 152
website 151

R
requirements

device 6
electrical 13
I/O 12

reset networks 129
retries 18

S
signals

backend Master dataflow 48
backend Master DMA register access 49
backend system-level 44
backend Target and Master dataflow 45
backend Target dataflow 47
hot-swap interface 50
PCI bus 43

source files
common 26
miscellaneous 27
technology-specific 27

synthesis 29
timing constraints 137

T
Target function 5, 17

commands 17
configuration space 105

controller 15
technical support 151
testbenches 117

user 121
customizing 125
files 123
operation 124
Verilog procedures 145
VHDL procedures 143

verification 117
customizing 120
files 121
tests 141

timing constraints
place-and-route 139
synthesis 137

timing diagrams 51
64-bit burst transfer 68
backend-terminated (BUSY) cycle at transfer

start (Target) 73
backend-terminated (BUSY) cycle during data

burst (Target) 76
backend-terminated (ERROR) cycle at transfer

start (Target) 75
burst transfer at maximum transfer rate 55
burst transfer with FIFO recovery enabled 63
burst transfer with slow backend 59
burst transfer with slow PCI Master 57
byte-controlled transfers 65
direct DMA transfers 101
DMA operation with FIFO backend 87
DMA register access from backend 98
hot-swap sequence 103
PCI configuration cycle 79
PCI interrupt generation 81
RD_BUSY_MASTER and WR_BUSY_MAS-

TER operation 92
simple DMA transfer 82
single-cycle read and write 52
slow read transfers 71
STALL_MASTER operation 94
STOP_MASTER assertion during data burst 88

transfers
burst 20
byte-controlled 21
dataflow control 21

U
user testbench 121

customizing 125
files 123
operation 124
Verilog procedures 145
VHDL procedures 143
154 v4.0

CorePCIF
utilization statistics 7

V
verification testbench 117

customizing 120

files 121
tests 141

W
web-based technical support 151
v4.0 155

s of

tor
trial
log
nd

 at

Microse
One En
Within t
Sales: +
Fax: +1
© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademark

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconduc
solutions for: aerospace, defense and security; enterprise and communications; and indus
and alternative energy markets. Products include high-performance, high-reliability ana
and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, a
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more
www.microsemi.com.

mi Corporate Headquarters
terprise, Aliso Viejo CA 92656 USA
50200087-7/02.14

Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.he USA: +1 (949) 380-6100
1 (949) 380-6136
 (949) 215-4996

http://www.microsemi.com

	Introduction
	Core Versions
	CorePCIF Device Requirements
	Utilization Statistics
	Performance Statistics
	I/O Requirements
	Electrical Requirements

	Functional Block Descriptions
	Functional Description
	Target Controller
	Master Controller
	Datapath
	Internal Data Storage

	CorePCIF Target Function
	Supported Target Commands
	Disconnects and Retries

	CorePCIF Master Function
	Backend Interface
	Supported Master Commands
	DMA Master Registers
	Master Transfers
	Master Byte Commands

	CardBus Support
	CompactPCI Hot-Swap Support
	CorePCIF Backend Dataflow
	Burst Transfers
	Byte-Controlled Transfers
	Dataflow Control

	FIFO Recovery Logic
	Example System Implementation

	Core Structure
	Tool Flows
	SmartDesign
	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	CorePCIF Parameters
	General Configuration Parameters
	PCI Configuration Space Parameters
	BAR Parameters
	Master/DMA Parameters
	Default Core Parameter Settings

	Core Interfaces
	PCI Bus Signals
	Backend System-Level Signals
	Backend Target and Master Dataflow Signals
	Backend Target Dataflow Signals
	Backend Master Dataflow Signals
	Backend Master DMA Register Access Signals
	Hot-Swap Interface

	Timing Diagrams
	Single-Cycle Read and Write
	Burst Transfer at Maximum Transfer Rate
	Burst Transfer with a Slow PCI Master
	Burst Transfer with a Slow Backend
	Burst Transfer with FIFO Recovery Enabled
	Byte-Controlled Transfers
	64-Bit Burst Transfer
	Slow Read Transfers
	Backend-Terminated (BUSY) Cycle at Transfer Start (Target)
	Backend-Terminated (ERROR) Cycle at Transfer Start (Target)
	Backend-Terminated (BUSY) Cycle during Data Burst (Target)
	PCI Configuration Cycle
	PCI Interrupt Generation
	Simple DMA Transfer
	DMA Operation with a FIFO Backend
	STOP_MASTER Assertion during Data Burst
	RD_BUSY_MASTER and WR_BUSY_MASTER Operation
	STALL_MASTER Operation
	DMA Register Access from the Backend
	Direct DMA Transfers
	Hot-Swap Sequence

	PCI Configuration Space
	Target Configuration Space
	Read-Only Configuration Registers
	Read/Write Configuration Registers

	Testbench Operation
	Verification Testbench
	Customizing the Verification Testbench
	Files Used in the Verification Testbench

	User Testbench
	Files Used in the User Testbenches
	Testbench Operation
	Customizing the User Testbenches

	Implementation Hints
	Clocking
	Clocking in SmartFusion2
	Clock and Reset Networks
	Assigning Pin Layout Constraints
	Pin Assignments
	SX-A and RTSX-S Families
	ProASICPLUS Family
	Axcelerator and RTAX-S Families
	Fusion, IGLOO/e, ProASIC3L, and ProASIC3/E Families
	SmartFusion2
	All Families
	Meeting PCI Hold Requirements

	PCI Pinout
	Synthesis Timing Constraints
	Place-and-Route Timing Constraints
	Verification Testbench Tests
	VHDL User Testbench Procedures
	Verilog User Testbench Procedures
	Ordering Information
	Ordering Codes

	List of Document Changes
	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

